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Modeling of coherent polarized light propagation in turbid scattering medium by the Monte Carlo method pro-
vides an ultimate understanding of coherent effects of multiple scattering, such as enhancement of coherent back-
scattering and peculiarities of laser speckle formation in dynamic light scattering (DLS) and optical coherence
tomography (OCT) diagnostic modalities. In this report, we consider two major ways of modeling the coherent
polarized light propagation in scattering tissue-like turbid media. The first approach is based on tracking trans-
formations of the electric field along the ray propagation. The second one is developed in analogy to the iterative
procedure of the solution of the Bethe-Salpeter equation. To achieve a higher accuracy in the results and to speed
up the modeling, both codes utilize the implementation of parallel computing on NVIDIA Graphics Processing
Units (GPUs) with Compute Unified Device Architecture (CUDA). We compare these two approaches through
simulations of the enhancement of coherent backscattering of polarized light and evaluate the accuracy of each
technique with the results of a known analytical solution. The advantages and disadvantages of each computa-
tional approach and their further developments are discussed. Both codes are available online and are ready for
immediate use or download. © 2014 Optical Society of America

OCIS codes:

(070.7345) Wave propagation; (170.3660) Light propagation in tissues; (260.5430) Polarization;

(290.1350) Backscattering; (290.5855) Scattering, polarization.
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1. INTRODUCTION

Studying the propagation of coherent polarized light in turbid
tissue-like scattering media is a fascinating topic of research
that provides an understanding of the coherent effects of
multiple scattering, such as an enhancement of coherent
backscattering (EBS) and formation of laser speckles in op-
tical coherence tomography (OCT) and in dynamic light scat-
tering (DLS). Because of the diversity of probing conditions
for complex composite materials, including biological tis-
sues, there is no analytical solution that can fully describe
the transfer of coherent polarized light in such turbid tissue-
like media. Stochastic techniques such as Monte Carlo (MC)
modeling provide a solution to the radiative transfer equation
for cases where an analytical solution is impossible to obtain.
Therefore, nowadays MC has become the “gold standard”
technique for studying light propagation and scattering in
complex media, and more than 1,000 MC-based codes have
been developed for various diagnostic applications. A num-
ber of MC codes have been specially developed to track the
state of polarization of light propagating through a scattering
medium. Utilizing the Stokes—Mueller formalism, the propa-
gation of incoherent polarized light in turbid media has
been described by Kattawar and Plass [1], Bartel and
Hielscher [2], Wang and Wang [3], Coté and Vitkin [4],
Ramella-Roman et al. [5], and others. Still, these codes are
not fully capable of describing the complexities of spatially
and temporally coherent light, including effects of multiple
scattering, such as EBS [6-9].
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Enhancement of coherent backscattering, known also as
coherent backscattering (CBS), is a coherent wave phenome-
non in which light rays traveling through time-reversed paths
(i.e., two light rays that travel through the same sequence
of optical events but in the opposite directions relative to
each other) interfere constructively to create an angular
intensity peak centered around the backscattering direction.
A single time-reversed path can be thought of as one Young’s
double pinhole experiment, where the separation between the
two pinholes is determined by the exit positions of the time-
reversed rays [Fig. 1(a)]. The spherical waves emanating from
these two points form a cosine angular diffraction pattern in
the far field [Fig. 1(b) and Media 1].

In other words, the diffraction pattern is simply the 2D Fou-
rier transform of the spatial pinhole distribution. In a tissue-
like medium where light is multiply scattered, there are an
infinite number of time-reversed path-pairs that exit the
scattering medium with different spatial separations. These
time-reversed paths are a direct consequence of Maxwell’s
equations and represent rays that travel through the same se-
quence of scattering events, only in the opposite directions of
each other. The rays leave the medium with the probability
that is specified by the spatially resolved diffuse reflectance
profile I(x,y) [see Fig. 1(c)]. The 2D Fourier transform of
the spatially resolved intensity distribution defines the angular
CBS peak 1(6,.0,) [see Fig. 1(d)] as

I(va gy) — ff_ogo I(x, y)eik(x sin 0,4y sin Hy)dxdy, (1)
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Fig. 1. Schematic presentation of the CBS peak formation. (a) Two
pinholes with spatial coordinates. (b) Diffraction pattern from pin-
holes in terms of angular coordinates. (c) Spatially resolved diffuse
reflectance I(x,y). (d) Angular CBS peak defined as the 2D Fourier
transform of the spatially resolved intensity distribution
Icps(0,.0,) = FT{I(x,y)]. See also further details in (Media 1), or
see Ref. [10].

where 0, and 0, are the angles of backscattering with sub-

scripts & and y indicating the scanning directions.
Akkermans et al. [11] derived an equation that governs the

shape of the CBS peak using a scalar diffusion approximation:

3 2z, 1
Icps(@) =—|14+204 -
ons (65) 87;[ T +(1+1a9$z;)3

1 - exp(-2kb,z,)
'(” k0,03 )] @

where 0 is the backscattering angle, [} is the transport mean
free path, and z, is the location of the trapping plane (typically
assumed as 0.7173).

In the current report, we introduce two major ways of
modeling coherent polarized light propagation in scattering
tissue-like turbid media with the specific purpose of CBS
simulation. We present the current state-of-the-art technique
for electric field MC modeling of coherent polarized light
propagation in turbid multiple scattering medium and com-
pare two major MC approaches used in simulations of CBS.
The first approach is based on tracking the transformations
of the electric field along the ray of photon propagation
and scattering through the medium, which has been widely
implemented by many research groups including Martinez
and Maynard [12], Xu [13], Sawicki et al. [14], and Radosevich
et al. [15]. The second approach, pioneered by Kuzmin and
Meglinski [16,17], also tracks the electric field along photon
trajectories, but it has been developed in analogy to the iter-
ative procedure for the solution of the Bethe—Salpeter equa-
tion. We start with a brief introduction of the MC method, and
then present, discuss, and compare the results of modeling
with the results of the known analytical solution. Finally,
the advantages and disadvantages of each technique and their
possible further developments are discussed.
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2. BASICS OF MONTE CARLO PHOTON
MIGRATION MODELING

To the extent of our knowledge, the first implementation of the
MC method for simulation of light propagation in biological tis-
sue was introduced by Wilson and Adam in 1983 [18]. Since that
time, the MC approach has been further developed [19-25] and
widely used for various applications in biomedical optics [26].

The principles behind the conventional MC method are
based on modeling energy transfer through the medium, and
they have been described comprehensively elsewhere (e.g.,
[19,25]). Within the practical realization of the approach, a pho-
ton packet is first initialized with a weight of one and injected
into a modeling semi-infinite medium. Then, the photon packet
undergoes a sequence of events representing light-matter
(light-tissue) interactions (including scattering, absorption, re-
flection, and refraction at the medium boundary) until it is ei-
ther fully absorbed or leaves the medium. The distance (s) that
a photon packet propagates between scattering events is deter-
mined randomly following the Beer-Lambert law:

P(S) = (Uq + ps) - exp(—(,ua + Us)S), 3

where y, and u, are the absorption and scattering coefficients,
respectively. After updating the photon packet position, its
weight is then reduced by multiplying the current photon
weight by the albedo u,/ (¢, + us). A new direction of the pho-
ton packet is defined at each scattering event by the scattering
phase function F'(6), which is typically described by the
Henyey—Greenstein function [27]:

1-g2

1
Fug0) == - )
e (6) 2(1 + g2 - 2g cos 0)%/2

@

where 6 is the polar scattering angle (0 €[0,z]) and g is
the anisotropy factor, defined as the average (cos 6) =
J _11 cos OFyg(cos 6)d cos 0 for any given phase function
(9 €[-1.1]).

The photon packet continues to travel through the medium
according to Egs. (3) and (4) until it is either fully absorbed or
leaves the scattering medium. At this point, any relevant quan-
tities (e.g., the spatial distribution of light exiting the medium)
can be recorded. A new photon packet is then initiated, and
one follows the same process described above. As soon as a
large enough number of photon histories (typically >10°) are
tracked to sufficiently reduce numerical uncertainty, the sim-
ulation terminates.

Thus, the conventional, or so-called scalar, MC approach
does not take into account the wave nature of light, and hence
it does not account for associated wave phenomenon such as
polarization, coherence, phase retardation, and interference.
Nevertheless, the conventional MC method has been widely
employed for simulations of fluence rate distributions
[21,22,24,25], skin reflectance spectra and color [28-30],
and other quantities of interest in biomedical optics [26].

3. CBS ELECTRIC FIELD MONTE CARLO
MODEL I

In the scalar MC approach discussed above, the phase and
polarization state of each ray are not considered at all. For cal-
culation of CBS, we consider the propagation of time-
reversed photon path-pairs. Since these rays travel through
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the same path length, the portion of phase change attributable
to propagation through space is the same. We, therefore,
only consider the changes in phase and polarization due to
scattering.

In order to track the phase of the electric field and its
changes during propagation in scattering media, MC model
I uses the Jones calculus formalism [31]. This algorithm uses
a heavily modified version of the Stokes vector meridian plane
MC code written by Ramella-Roman et al. [5]. Briefly, in the
framework of this approach the incident electric field E;
undergoes three linear transformations to arrive at the scat-
tered electric field E for a single scattering event:

[Ew}_[COS(}’—ﬂ) —Sin(}’—ﬂ)}[sz(&f/)) 53(0,47)}

E sin(y —z)  cos(y —n) || Su(0.¢) S1(0.9)
><|:cosq§ —sin ¢:||:E”,;i|’ -
sin¢ cos ¢ E;
E; = R(y - 1)S(0, p)R(PH)E;, ©)

where R(¢) is a rotation matrix that transfers the E; compo-
nent of the electric field from the initial meridian plane OP,P,
into the scattering plane OP; Py, S(0, ¢) is the amplitude scat-
tering matrix, and R(y - x) transfers £ back into the meridian
plane OP,P, for further photon propagation. Figure 2 depicts
the geometry used in MC model I. Further details describing
the use of this geometry in light scattering applications
can be found in the seminal works by Chandrasekhar [32]
and Kattawar and Plass [1].

The Henyey-Greenstein phase function in Eq. (4) assumes
spherically symmetric scattering centers. This assumption re-
moves the ¢-dependence of function S, as well as the cross-
terms S; and S,, leaving

(M

S(0) = ~ik? - Fyg(0) - [C"S 0 0],

0 1

where k is the wavenumber, k = 2z /4, and 1 is the wavelength
of incident light.

In a multiple scattering medium, the single scattering elec-
tric field transformations in Eq. (6) accumulate for every scat-
tering event until the photon leaves the medium. Accordingly,

E' =R, (-7)S,(O)R,(9) - --Ri(=7)S1(O)R (P)E;.
= ME;, ®

X’
Fig. 2. Geometry of MC model I. For scattering from direction OP; to
OP,, three linear transformations of the electric field are made
according to Egs. (5) and (6). ¢ and y are the angles between the scat-
tering plane and meridian planes OP;P, and OP,P,, respectively.
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where the subscripts R and S indicate the number of scatter-
ing events, E' is the electric field leaving the medium after n
scattering events, and M represents the effective complex
scattering matrix for the entire photon path within the
medium.

Thus, in order to calculate the CBS peak the calculation of
the effective complex scattering matrix for both the forward
(Mg) and reverse propagating paths (M®) is required. Fortu-
nately, once the forward propagating path has been calcu-
lated, the reverse propagating path can be determined
easily. For arbitrary complex variables @, b, &, and d, the for-
ward propagating path can be succinctly written as

o i b
Mo=|% 2| 9
o) [ P d,] €)
The reverse path is then simply [12]
- a —c
Mg = [_5 b ] (10)

After the matrices Mg and Mg have been calculated, the
electric field leaving the scattering sample can be calculated
by multiplying the incident electric field E by the matrix M:

Ey = MgE, Ep=MgE. (11)

where Ei; and Eg are the electric fields leaving the medium for
the forward and reverse propagating paths, respectively. The
incoherent light intensities are then determined for the forward
path by calculating the Stokes parameters using E’O [33]:

I =E\E} +E,Ef.
Q=EE; -E,E},
U= E\E; +E\E},
V = i(E\E] - E.E}). (12)

Scoring the incoherent intensities according to their exit
positions, the spatial distribution of co- (1) and cross- ()
polarized intensity light exiting the medium can be found as

N, ph

1
Tywy) =53 Wi [1+Q@.y)/Iw.y)
i=1

Npn
L@y =2 Wi - Q@/leyl  (3)
ph =1

where W is the photon weight and NV, is the total number of
detected photon packets.

In order to determine the extent to which the forward and
reverse paths interfere, we define the degree of interference
as [15,34]

L BByl

2
DOI—M— — . -
|[Eol” + |[Egl

Bl + |Egl

where the symbol N[-] indicates the real part of the complex
cross-term EgEg. DOI takes values between -1 and 1, which
represent the total destructive and constructive interference,
respectively.
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For the linear co-polarized channel, the reciprocity theo-
rem guarantees that each time-reversed path-pair exits the
medium with the same accumulated phase. Mathematically,
it is seen as an equivalent of the diagonal terms of Mg and
1\7[®. As a result, the DOI for the linear co-polarized channel
DOI; is equal to unity. For the linear cross-polarized
channel, there is no such guarantee for the phase differ-
ence between time-reversed light paths (note that the
cross-terms of Mg and Mg are not the same). For a par-
ticular photon’s trajectory by combining Egs. (9)—(11), and
(14), the DOI for the linear cross-polarized channel DOI;
can be found as

—2%R[¢- b*]
== 15)
SjEP + 1B
Thus, the co- (I)) and cross- (I,) polarized intensities of
the CBS peak are defined as

Npn

1
Iy @ Y)oss = 5 > W, - DOY - [1 + Q. y) /I(%,y)).
ph =1

L]
L@ y)ons = §— > W, DOL - [1-Q@.y)/Ix.y).  (16)
ph =1

Finally, the angular CBS peak is calculated according to
Eq. (1) by taking the 2D Fourier transform of Eq. (16).

4. CBS ELECTRIC FIELD MONTE CARLO
MODEL II

The Bethe—Salpeter equation (BSE) [35] describes the transfer
of a pair of complex-conjugated fields, incident into the point
of source Rg with the wave vector k; and outgoing in the
detecting point R, with the wave vector kp. Iterating the
BSE presents the intensity of scattered light as the series in
scattering orders, where the first term describes single scat-
tering, the second term describes two scattering events, and
so forth. Within the MC framework, the scattering intensity
can also be presented as the sum of scattering orders
[36,37]. Thus, in the second electric field MC algorithm by
an analogy to the iterative procedure of the solution of the
BSE, polarization tracking in a multiple scatteging medium
is performed in terms of a polarization vector P that under-
goes a sequence of transformations after each scattering
event. The trajectories of the photon packet are weighted
(W) in accordance with the polarizzltion state, and the polari-
zation vector of the scattered wave P; is transformed upon the
i-th scattering event as [38]

Py =& x[e;xP ]=[1-& ®&P,,, an

where ¢, is the unit vector aligned along the trajectory element
of a photon packet after the ¢-th scattering event. Tensor S; =
[I - ¢; ® ¢;] is presented as

2
. 1-ejy

—€ixliy —€ix€iz
S; = | —exewr

2

1- eiY —€;vy€iz |- (18)
2

—exeiz exeyz 1-¢jy
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and, thus, the chaitl of projection operators Si transform the
initial polarization Py, upon a sequence of n scattering events
to the final polarization P,, i.e.,:

A P

P,=8,8,.1..8,P. (19)

Consequently, propagation of co- and cross-polarized compo-
nents of the electromagnetic field in the medium is described
along the same trajectories obtained for the scalar field. The
Rayleigh factor is taken into account at every scattering event
for the electromagnetic field [38,39] to link the scalar and vec-
tor nature of electromagnetic fields according the optical
theorem [40,41]:

2

[=0—u—.
1+ cos?6

(20)

Thus, in the final expression, I, and I, are calculated as

N,
1 & )
Iy@.y) = > (WiPLTy exp(-paly).
ph j—1

Npn

1 )
Ii(x,y) = N—hZ(WiParzl exp(-u.Ly)). (1)
ph =1

where 7 is the number of scattering events experienced by the
i-th photon packet along its trajectory L from the point of in-
cidence Rg to the detector Rp. Respectively, for the CBS peak,
the co- and cross-polarized components are [38,39]:

N,
1 & )
1y(05.6,) cps = ]TMZ(VWiP%,-F% exp(—iqL;)) — Ly,
i=1
Non
> GWiPLTR exp(-paLy). (22)

i=1

1
11(0:,0y)cps = o
where I}, defines the single scattering, y is the phase factor
defined for each photon packet as: cos[(k; +kp), (Rp —Rg) ||~
exp(k(x, —x;)0s), and x defines the angle scanning
direction. Finally, the depolarization ratio DR of backscat-
tered light intensity is defined as

_ -1

DR = .
IL+1,

(23)

5. RESULTS AND DISCUSSION

We compare the two electric field MC approaches presented
above by performing simulations of CBS peaks utilizing the
Henyey—Greenstein scattering phase function. Figure 3 shows
the results of CBS peak modeling by MC models I and II for
different values of anisotropy of scattering (¢) and the mean
free path length (I3). In each simulation, we study the shape of
the CBS peak for a scattering mean free path length of
33.3 pm, a representative value within the range of biologically
relevant optical properties [42]. For a particular pair of
simulations, the R? value was calculated as the square of
Pearson’s linear correlation coefficient between the two
MC models [43]. An excellent quantitative agreement has been
found between the two electric field MC approaches with
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Fig. 3. Angular dependence of CBS for varying anisotropy of scatter-
ing. The solid lines indicate the CBS peaks obtained by MC algorithm
I. The symbol lines show the results obtained with the MC algorithm II:
squares correspond to ¢ = 0,0 =33 pm, circles to g =0.5
I = 66.6 pm, and triangles to g = 0.9, I} = 333.3 pm. The inset shows
results calculated using the scalar diffusion approximation by Akker-
mans et al. [44].

determination coefficients of R = 0.97 for g = 0, R?2 = 0.98
forg = 0.5, and R? = 0.99 for g = 0.9 (see the summarized val-
ues in Table 1).

Due to an increase in the anisotropy of scattering (¢ — 1),
there is a corresponding increase in the total photon path
length within the medium. As a result of the increased path
length, the shape of the CBS peak becomes increasingly more
narrow (see Fig. 3). For media with a higher anisotropy of
scattering g — 1 (more forward scattering), the height of
the CBS peak (h, which is the value of the CBS peak at
0, = 0) is increased. These changes in the shape of the
CBS peak are explained by the fraction of scattering orders
that contributed to the constructive and/or destructive inter-
ference upon formation of the intensity of CBS [40,44]. This
also corresponds to the mathematical interpretation by con-
sidering the Fourier transform relationship between the angu-
lar peak shape and the spatial separation of light exiting the
medium [35].

We also note a good qualitative agreement with the results
predicted by Akkerman’s diffusion approximation in Eq. (2),
as shown in the inset of Fig. 3. It should be pointed out here
that the results of simulations shown in Figure 3 are not meas-
urable experimentally since the vector nature of light (i.e.,
polarization) should be taken into account.

Figure 4 shows the results of CBS peak simulations for lin-
ear polarized light. As one can see, the same trends in the CBS
peak height and shape, in general, are clearly observed for the
same values of anisotropy of scattering (g). While the agree-
ment between the two electric field MC techniques is not as
good as in the scalar case (presented in Fig. 3 and Table 1), a
high degree of correlation is nevertheless seen in Table 2

Table 1. Coefficient of Determination between
CBS Peaks Counted by the Electric Field MC
Algorithms I and II for Media with Different

Anisotropy of Scattering
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Fig. 4. Angular dependence of co- and cross-polarized CBS compo-
nents counted for media with different anisotropy of scattering:
(@g=0,(0d)g=0.5,(c)g=0.9, and (d) g = 0.98. The blue curves
represent co-polarized component I-ps(6,), and the green curves
show the cross-polarized I¢gs(6,) one. The results of simulations ob-
tained by the electric field MC algorithms I and II are presented by
solid and dashed lines, respectively.

Comparing the height of CBS peaks, we noticed that the
intensity of the cross-polarized CBS peak is an order of mag-
nitude lower than the intensity of the co-polarized CBS peak.
According to the reciprocity theorem, for the co-polarized
component each multiply scattered photon path is guaranteed
to possess a time-reversed partner and they become fully co-
herent to each other (i.e., the pairs of photons exit with the
same accumulated phase) [34]. Mathematically, this is seen
as an equality of the diagonal elements of Mg and Mg. In
the cross-polarized component, this relationship is not guar-
anteed and two rays traveling through time-reversed paths
may exit with different accumulated phase. This is due to
the fact that some of the scattering rotations of photon pack-
ets into the cross-polarized configuration are not reversible. In
this case, the cross-terms Mg and Mg revealed are not the
same. As a result, constructive interference does not appeared
for most of the photon packets exiting the medium in frame of
the cross-polarized configuration. Thus, the height of the
cross-polarized CBS peak becomes much lower than the in-
tensity of the co-polarized CBS peak.

Despite the excellent agreement between MC codes I and
II, we acknowledge that minor discrepancies in the shapes of
CBS peaks remain (see Fig. 4). In particular, MC code I results
in a slightly narrower CBS peak than that of MC code II. This is
due to the fact that the implementation of polarization

Table 2. Coefficients of Determination
between the Angular Co- (||) and
Cross- (1) Polarized Components of the CBS
Peak Counted by the Electric Field MC
Algorithms I and II for Media with Different
Anisotropy of Scattering (g)

g 0 0.5 0.9 0.98

Anisotropy of scattering (9) 0 0.5 0.9
Coefficient of determination (R?) 0.97 0.98 0.99

Rﬁ 0.63 0.82 0.90 0.60
R 0.52 0.72 0.82 0.66
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tracking is based on different theoretical concepts between
the two codes. The MC code I uses a semi-analytical modeling
approach that very accurately takes into account the low scat-
tering orders. In contrast, MC code II operates by full photon
trajectories and requires more photon statistics to obtain the
CBS peaks with the shapes identical to those obtained by MC
code L

Figure 5 shows the spatial distributions of the co- (/| (x, y))
and cross- (I, (x,y)) polarized intensities of backscattered
light detected on the medium surface. We note that there is
an excellent qualitative agreement between the results of
simulations obtained by both electric field MC models. An
equally good agreement between the results has also been
obtained for media with different scattering anisotropy
(9 = 0,0.5,0.98; results are not presented here for brevity).

If the polarization of incident light and detection of polari-
zation are oriented along the x-axis, a lesser amount of light
scatters in the direction orthogonal to the initial polarization
resulting in an elongation of the spatial distribution of I} (x, y).
For I,, a cross pattern is formed since the cross-polarized
component of the phase function is primarily oriented along
these directions (i.e., 45° 135°, 225°, and 315°).

Modeling of a large number of photon packet trajectories
(typically 10'1) can be extremely resource consuming, and
this was a significant concern in the MC models developed
in the past [29]. Both models have been implemented utilizing
the advantages of parallel programming on NVIDIA Graphics
Processing Units (GPUs) using Compute Unified Device
Architecture (CUDA). The particular details of GPU imple-
mentation for simulation of coherent polarized light propaga-
tion in turbid tissue-like scattering medium are described in
[45]. Performance of both models has been tested and com-
pared utilizing stand-alone Tesla M2090/Tesla K20X parallel
processors.

For the MC model I, which is based on tracking transforma-
tions of the electric field along the ray propagation, the time
required to simulate 10 photon packet trajectories is depen-
dent on the parameters of the scattering medium and source-
detector configuration. For instance, computing the CBS peak

=
n

o

Y,dl* vpe Y,dI*

1
=
(5}

5 0 1515 0 15
X, d/l*

0 1.
X, d/I*

10° 102 10! 10° 10° 10* 10° 107 0O 05 10

log,o(I), a.u. log,o(I,), a.u. DR, a.u.

Fig. 5. Spatial distributions of backscattered light I, (%, y), I (%, y),
and DR(x, y) at the surface of the medium obtained by electric field
MC algorithms I (top row) and II (bottom row). Both simulations were
performed for semi-infinite scattering medium (I, = 33.3 pm, g = 0.9,
Uo = 0.001 mm™') with the normal incidence of light. 10° photon
packets have been tracked in each simulation.
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for a semi-infinite scattering medium (I; = 33.3 pm, g = 0.9,
and p, = 0.0001 mm™!) takes ~30 s. For the MC model II, a
simulation using the same medium parameters takes ~15 s
to compute, i.e., nearly in realtime.

A NVIDIA visual profiler was used to perform automated
analysis of the codes with the aim of identifying bottlenecks
and obtaining optimization suggestions that can be used to im-
prove the overall performance of MC models. Both models
demonstrate the extensive use of GPU global memory. How-
ever, the negative effects were almost eliminated by the
GDDR5’s bandwidth (up to 177 GB/s). Furthermore, CUDA
multiprocessor occupancy has been accessed. The multiproc-
essor occupancy is the ratio between the actual number of
threads running in parallel and the maximum number of
threads in which resources can be stored on-chip simultane-
ously (known as the maximum occupancy) [45]. Maximizing
occupancy helps hide the effects of long latency accesses
during global memory loads and therefore can improve the
bandwidth-bound program’s performance. For model I, the
occupancy was ~37%, and model II demonstrated a value
of ~63%. Thus, both codes have the potential for further
optimization.

The open-source code for model I is available on the web-
site of the Biophotonics Laboratory at Northwestern Uni-
versity (http://biophotonics.bme.northwestern.edwresources).
For practical use as well as for further validation and possible
further developments, the electric field MC modeling of photon
migration in scattering tissue-like media is now available for
the immediate use online as part of the browser-based MC
modeling tool at www.biophotonics.ac.nz [29].

6. SUMMARY AND CONCLUSIONS

The results of two electric field MC modeling approaches
developed independently for simulation of CBS have been
compared. Good agreement was found for the scalar
(R? > 0.97) and vector cases (R? between 0.52 and 0.9). In or-
der to be more fully relevant to the scenarios present for ac-
tual tissue measurements, the comparison between these
electric field MC models will be extended to include the ef-
fects of reflection/refraction at the medium boundary, circular
polarization, and different phase functions based on Mie
theory. Current and further developments include the integra-
tion of the developed MC models of CBS simulation into an
online GPU MC modeling environment using peer-to-peer
computing infrastructure.
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