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INTRODUCTION, HISTORY, EMBRYOLOGY

Bruch’s membrane is 1 thin (2-4 pm), acellular, five-layered
extracellular matrix located between the retina and choroid 4
It extends anteriorly to the ora serrata, interrupted only by the
optic nerve. Tissue resembling Bruch's membrane is visible
anterior to the ora servata extending forward 1o the pigmened
epithelium of the ciliaty body. Bruch's membrane lies between
the metabolically active retinal pigment epithelium (RPE) .nd
a capillary bed (choriocapillaris) and thus serves two major
functions as the substratum of the RPE and a vessel wall, It
has major clinical significance because of its involvement in
age-related macular degeneration (AMD) and other chorio-
retinal diseases,

Early History _
Carl Ludwig Wilhelm Bruch (1819-1584) (Fig. 22.1 online) €
first isolated the “lamina vitrea® that we now know as Bruchs
membrane and described it in his 1844 doctoral thesis™*
where he also first described the tapetum found in many
mammals, By light microscopy, Bruch’s membrane appeared
transparent, with little internal structure. Later studies by AE
Smirnow’ divided this membrane into an outer elastic layer
(first described by Sattler in 1877) and an inner cuticular layes,
separated by a dense plexus of very fine elastic fibers.” 1

Development of Bruch’s Membrane

The bipartite character of Bruch's membrane arises from the
embryology of its tissue. When the optic cup invaginates:
and folds, its inner layer forms the neural retina, and its cuter:
layer, the RPE. The RPZ lies in contact with mesenchyme A ol
this apposition, Bruch’s membrane forms by 6-7 weels' gesta=
tion. Thus, its inner layer is composed of ectoderma! HSSUES
and its outer, mesodesmal. At the border of two layers, T
elastic layer forms last, becoming histologically visibie 8¥
11-12 weeks*" :

The collagen that fills the extracellular space, and the
appearing elastin, appear 1o be made by invading fibrob
and the filopodia of endothelial cells lining the adi
choriocapillaris. The two basal laminas are produced oY
associated cell layers.” In addition to collagen [V sub
spedific to specialized basal lamina, RPE expresses genes &



collagen 11 and angiostatic <ollagen XVHI in a

gructural entally regulated manner linked to photoreceptor
12

elopm

Hon. . :
week 13, fenestrations are apparent in the endothelium
ruch’s membrane, ” indicating that at this stage, trans-
across this tissue may be functional. Choroidal endothe-
ariginate from paraocular mesenchyme. Development
 ofthe choroidal vasculature, and Bruch's as part of it, depends
9 differentiated RPE and its production of inductive signals,
R ding basic fibroblast growth factor (bFGF) and vascular
1othelial growth factor {VEGF)."
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: RE OF BRUCH'S MEMBRANE

N THE YOUNG ADULT EYE

Jogan's five-layer nomenclature for Bruch’s membrane™ ™ is
ommonly used. Gass proposed a three-layer system that did
ot include the ceflular basal laminas as part of Bruch’s
ner. " These layers are shown in Fig. 22.2 and their con-
.ts in Table 22.1. Important components in specific
. are structural collagens, elastin, and proteoglycans with

Iy charged glycosaminoglycan side-chains.
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APE Basal Lamina (RPE-BL)

his «~0 15-um thick layer is a meshwork of fine fibers like
wther basal laminas in the body." The RPE-BL resembles
hat of the choriocapillaris endothelium {ChC-BL) in contain-
ing heparan sulfate proteoglycans with several sulfation
motifs. " Unlike ChC-BL, RPE-BL does not contain collagen
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V1. The RPE-BL contains collagen IV 3.5, like that of kidney
glomerulus, another organ with specialized fltration and
transport functions. The RPE synthesizes specific laminins that
preferentially adhere Bruch’s membrane to the RPE through
interaction with integrins.”*

Inner Collagenous Layer (ICL)

The ICL 15 ~1.4 pm thick and contains 70-nm-diameter fibers
of collagens [, 111, and V in a multilayered crisscross, parallel
to the plane of Bruch’s membrane.' The collagen grid is associ-
ated with interacting molecules, particularly chondroitin
sulfate and dermatan sulfate proteoglycans.' ¥

Elastic Layer (EL)

The EL consists of stacked layers of linear elastin fibers, criss-
crossing to form a 0.8-um thick sheet with interfibrillary
spaces of ~1 pm. This sheet extends from the edge of the
optic nerve to the ciliary body pars plana.’ In addition 10
elastin fibers, the EL contains collagen V1, fibronectin, and
other proteins, and collagen fibers from the two collagenous
layers can cross the EL. Some EL elastin fibers cross the tissue
space between the chariocapillaris and join bundles of cho-
roidal elastic tissue.”* The EL confers biomechanical properties,
vascular compliance, and antiangiogenic barrier functions. It
is discontinuous in the macula, perhaps explaining why
chotoidal neovascularization is more prominent there.** This
concept is supported by the extensive laser-induced neovascu-
larization in mice deficient in lysyl oxidase-like 1, an enzyme
required for elastin polymerization.”
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P9, 222 Maculsr Bruch's membrane throughout the itespan. Retnal pigment epfhalium (RPE) (s at the top of al panels. APE basal lamina

Browheads) and elastic layer (EL, yaVow arows, discontinuous in macua) are shown, (4) 17 years: Electron-dense amorphous debris and

IRCprotens are absent, Scake bar: 1 um. (B) 46 years: Electron-gensa amorphous dabris and lipoproteine are present. A coatied membrans

M@ A body lgveen arrow) containg ipoproteins. L, lpofuscin, (C) 65 years: Electron-dense amerphous debris and Ipoprotens are abundant.

;h "0us debris, also called lipoprotein-cerived debrs {red amow) has electron-ciense extenors within BLamD (7). Within OCL, banded materia
S1pe VI collagen, often found In BLamD,
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TABLE 22.1 Structural and Molecussr Cormponents of Bruch's Membrans

Basal laminar deposit (BlamD} + Fibronectin, laminin, IV 4-5, VI, endostatin, EFEMP1 220, 223, 277-280
RPE-Baedl laming (RPE-BL W a5, V, laminins 1, 5, 10, and 11, ndogen-1, heparan sullate, chondroltin 19, 22, 23, 78, 281,26
sulfle i
Lipid Wal/ Basal linear deposi + Lipoproteins 52, 63, 282
(BinD)
Irner colagenous fayer (CL) I, il V, fironectin, chondroitin sulfate, dermatan sultate, lipoprotelns T, apcE. 44, 47, 52, 53, 76, 182
hame, clustenn, vronactin 197, 281, 284-287
Elastic layer |EL) A ElastinT, caleium phosphatel 78-81, 281, 285
Cuter colagenous layer 1001 I, LW, fibubne5, dbronectin, chondroftin sulfate, denmaten sulfate, 19, 53, 189, 281, 285, 284
lpoproteins T, spok, clustern ‘ .j
ChC—8aaal lamina IV a1,2, V, VI, laminin, haparan eufate, chondrotin sulfate, endoststin 22, 279, 251, 282, 2%0
Bruch's, Swoughout or aver ot 1T, collagen solubility), perlecan. MMP-2T, MMP-9T, TIMP-2; TIMP-3T,
speciied pentosidineT, CMLT, GA-AGET, AGH-d, apoB. oxidzed apod- 100,

7 KCn, NOA. LHP, HHET, DHP-ysT, FHL-1, C3dT, C5b-91,
pentraxin-3T, thrormbospondn-1, 2ne

Tablke shows dofinitaly kecalzed components. Most determnations were rmade in macua. Studies showing histochamical/ immunchistochemics
varficaticon of biochemistry and utrastuctural validiation of structures identified by Ight microscopy fschniques were given greater weight.
Localizations were assgred to spechc layers ¥ immunogold-slectron microscopy or high mapnification confocal microscogy imagas were
avaiable. Roman numeras dencts colagens, Componants are ordered within sach ayar: structural components, lipoprotaing, estracellitar mass
and its regulation, modfied Ipids and proteins, complementAmmuniy, cellular resporsa‘actmty, matals. Known chengsas with advancing age are
bold with an arrow indicating directiom of changs. Naw add®ions with age are shown with a plus (41 Plain text means no dhanga or not tested

74, 75, 86, 174, 183, 196,

e

Abbreviations: 7-KCh, 7 keto-cholesteros™ OML. carbaxymethyl-ysing;™ DHP-Lys, diydropyridine lysine:™ GA-AGE, glyoolakichyde damved i

AGE™ HHE, 4-hydroxynexaral;™ MEA, malondlaldehyda, ™

Outer Collagenous Layer (OCL)

The OCL contains many of the same molecular components
as the ICL, and the collagen fibrils running parallel to the
cheriocapillaris additionally form prominent bundles. This
layer, unlike the ICL, has periodic outward extensions between
individual choriocapillary lumens called intercapillary pillars,
where thickness cannot be determined due to the lack of a
boum&ary. Between pillars, OCL thizkness can range from 1 o
5 um.?**

Choriocapillaris Basal Lamina (ChC-BL)

This 0.07-pum-thick layer is discontinuous with respect 1o
Bruch's membrane due 10 the intesruptions of the intercapil-
lary pillars of the choroid. It is continuous with respect to the
complex network of spaces defined by the choriocapillary
lumens because the basal lamina envelops the complete cir-
cumference of the endothelium. A remarkable structural
feature of the adjacent choriocapil’ary endothelium is fenes-
trations that are permeable to macromolecules (Fig. 22.3).**
This basal lamina may inhibit endothelial cell migration into
Bruch's membrane, as do basal laminas asscciated with retinal
capillaries, ™

BRUCH'S MEMBRANE IN AN AGED EYE

Aging is the largest risk factor for developing AMD,” and
Bruch's membrane undergoes significant age-related changes.
Identification of factors predisposirg to disease progression is
a priority. This task has been challenged by difficulty imposed
by the thinness of the tissue, and the closely integrated func-
tions of RPE, Bruch’s membrane, and choriocapillaris, Current
opinion holds that RPE and Bruch's membrane age in concert,
and normal Bruch's membrane aging transforms insidiously
into AMD pathology."*"'*** This section covers aging, to
inform the following section on function.

Lipid Accumulation: Bruch's
Membrane Lipoproteins

Early electron micrescopists described aged Bruchs mem-
brane as being filled with debrs, including amorphous
electron dense material, membrane fragments, vesicles, wnd
calcification.”™™ Debris deposition in ICL and OCL begins
in the second decade of life in the macula and is delayed in
equatonal regions.* Verhoeff speculated that calcification of
aging Bruch’s membrane might follow lipoidal deposition®™
as it does in atherosclerosis. later investigators desciibed
aged Bruch's membrzne as sudanophilic (i.e., histochemically
detectable lipid) *™* Histochemical, ultrastructural, biochemi-
cal, gene expression, cell biologic, and epidemiologic evidence
have converged to indicate that the lipid-rich material (ccu-
mulating with age in Bruch's membrane is cholesterol-rich
lipoprotein particles containing apolipoproteins B and E
that are assembled and secreted by the RPE.' This process,
ongoing throughout life vet first revealed by aging, has ixf’:pli-
cations for formation of AMD-specific lesions, RPE physiok
ogy, nutrient and waste product transport to and from the

outer retina, and maintenance of photoreceptor health. 'l1:|¢»E
physicochemical properties, physiologic roles, and distiibu-

tion of cholesterol in relation to AMD pathology has been
reviewed.* .

Clinical observations on fluid-filled RPE detachments if
older adults led to Bird and Marshall’s hypothesis that &

lipophilic barrier in Bruch’s membrane blocked a normal. -

outwardly directed fluid efflux from the RPE® (as opposed 10
leakage from neovascularization). This hypothesis motive
a seminal histochemical study by Pauliekhoff* that deman

strated oil red O-binding material (EC, esterified d:olcm.cd'ml; ;
TG, triglyceride; FA, fatty acid) localized exclusively to BrUCEs

membrane, unlike ather stains. This lipid was absent dﬁl
years, variably present at 31-60 years, and abundant 2! 2

years.** Biochemical studies confirmed the strongly 386

related nature of the deposition,“***
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Fig. 22.3 Surface of the endothalium of the dyriocapiliars showing fenestrations with a bicycle-spoka pattern (yedow srrow) and presumed
artifactual openings anising from tissue preparation (cyan amow); quick-freaze/deep-eatch, 64-year-oid eye, macula. Scale bar: 100 nm. (Reovo-
duced with parmissioan from Jaltnson M, Huang J-D, Presfey JB, et al. Comparison of mophaolegy of human maciar and pericheral Bruch's

membrane in alder eyes. Cur Eye Res 2007,:32:741-9.}

Fig. 22.4 Lipid Wall, a layer of lipoprotans on the inner surlace of Bruch's membrane. (A} Lipoprcteins (spherical vasicles of uniforrm diameater)
accumulate 3-4 deap between the RPE basal lamina {hiack srowheads) and Bruch's membrane ICL (white arowheads). Thin ssction transmission
BlECtron micrograph folowing cemium postiixation. BPE, retinal pigment epithefum; B, Bruch's membrane, L, ipofuscin. Sectioning plane is
vertical, scale bar: 1 pm, (B) Quick-freeze deep-etch shows tightly packed Bruch's membrans lpoprotans in the Lipid Wal, and that lpoprotans
have cassic core and surface marphology.™ Fracture plane is obligue; scale bar: 200 nm.

The oil red O-binding material proved to be EC, which with
Unesterified cholesterol (UIC) accumulates markedly in Bruch’s
membrane, in sevenfold higher quantities in macula than
Penphery " Key techniques were use of the fluorescent
Marker filipin, which binds the 3-B-hydroxy group of sterols
to reveal unesterified (free) cholesterol (LIC) or EC depending
On tissue pretreatment'’ and hot stage polanizing microscopy, *
Which showed very few birefringent crystals signifying the
feutral lipid TG. Among lipids, EC is confined exclusively to

4 membrane,* focusing attention on lipoproteins, the
only means by which EC is released by cells. Human RPE
SxPresses apol gene and protein, along with microsomal tri-
e transfer protein, required for apoB lipidation and

secretion. ? This suggests that RPE is a constitutive lipoprotein

secretor. Indeed, human- and rat-derived RPE cell lines secrete
full-length apoB.***

Lipid-preserving ultrastructure and analytic biochemistry
support this concept.  Ultrastructural  studies  described,
in Bruch’s membrane of older eyes,” numerous small
(<100 nm), round, electron-lucent vesicular profiles, imply-
ing aqueous interiors. These so.called vesicles are actually
solid, lipid-containing particles (Fig. 22.4B) when prepared
by lipid-preserving methods including postfixation in osmium
paraphenylenediamine (OTAP)* and, strikingly, quick-freeze/
deep-etch (QFDE), a freeze fracture method with etching wo
remove frozen water.” " Particles vary in size from 60 w0
100 nm and occasionally appeared 10 coalesce (Fig, 22.4). Par-
ticles of comparable diameter with lipoprotein-like flotation
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properties and spherical shapes indicating neutral lipid cores
are isolable from normal human Bruch’s membrane®™* (Fig
22.5). These fractions indude apolipoproteins B, A-l, and E.
Bruch's membrane cholesterol is EC-enriched (EC/total cho-
lesterol = 0.56)**“*** and there is little triglyceride (EC/TG
= 4-11), unlike hepatic very-low-density lipoprotein (VLDL),
of similar diameter. An early report of TG-enriched Bruch'’s
membrane' was not replicated. Thus, Bruch’s membrane
apoB-lipoproteins are unusual because they are large like
VLDL yet EC-rich like atherogenic LDL (Fig. 22.5).

A natural history of Bruch’s membrane lipid deposition
obtained with quick-freeze deep etch showed lipoprotein
particles first gathening among fibnls of the elastic layer in
early adulthood.”*® This accumulation then extends toward
RPE to fill the ICL by the seventh decade of life,™ " consistent
with an RPE origin. In many older eves, a new layer, the Lipid
Wall,forms between RPE basal lamina and OCL, and this is
considered a precursor to basal lincar deposits, a specific
lesion of AMD (see below). With solid lipoprotein particles
occupying nearly 100% of this sub-RPE space, the Lipid Wall
displaces ICL cellagen fibrils that anchor the RPE basal lamina
(Fig. 22.4).

The fauy acid composition of Bruch's membrane lipids
implicates diet as a driving force in RPE lipoprotein secretion.
A longstanding hypothesis that debris in aging Bruch’s mem-
brane originates as outer segment membranes phagocvtosed
by RPE™ was tested through fauy acid profiling of Bruch’s
membrane lipoproteins and lipid extracts.”?" Outer segment
membranes have charactenstically high concentrations of
docosahexaenoate® In contrast, all lipid classes in Brach's
membrane were dominated by linoleate, the most abundant
fatty acid in plasma, with linle (<2%) docosahexaenoate.
Bruch’s membrane lipid deposition is thus proposed as a
recycling system whereby plasma lipoproteins delivering
dietary essentials (vitamins A, E, lutzin, UC) are taken up by

RPE, stripped of cargo destined for photoreceptors, and excess
fatty acids and UC repackaged as lipoproteins for basolateral
secretion and choroidal clearance®

If the proposed primacy of diet 1s true, then cells in cultyre
medium should be asle to create deposits without supple
mentation by outer segments. A landmark study by Johnson
ct al. confirmed these predictions,” demonstrating that highly
differentiated and polarized human fetal RPE, supplemented
only by culture medium, secreted apoE-immunoreactive par-
ticles resembling native Bruch’s membrane lipoproteins.
While the source of cholesterol in Bruch's membrane lipopro
teins has not been detzrmined to date, endogenous synthesis,
taken-up plasma lipoproteins. and phagocytosed outer seg-
menits are obvious choices (see below),

Itis informative to contrast Bruch’s membrane lipid depo-
sition with the systemic process whereby extracellular oil red
O-binding lipids increase with age in normal human connec.
tive tissues. In arteriad intima, tendons, sclera, and cornea,
perifibrous lipid provides the background to atherosclerosis,
xanthomas, and lipid keratopathy.**"*“ The source of extra-
cellular EC in these locations is LDL translocated from plasma
and trapped via binding to proteoglycans.”** After apolipa-
proteins degrade, the remaining lipid components fuse®
The evidence that lipid deposition in aging Bruch's membrane
is a distinct process dictated by photoreceptor physiology
and not simply an ecular manifestation of this systemic
process is compelling'® (see below, AMD lesions). Indirect
evidence also emerges from epidemiology. If EC deposition in
Bruch’s membrane and AMD-associated lesions were a mani
festation of systemic perifibrous lipid and atherosclerosis, then
a strong positive correlation between disease status and plasm,
lipoprotein levels, like that in cardiovascular disease,”” might
be expected. Such an assocation has not emerged despiv
many studies. ™ Nevertheless, the commonality of cholesterol-
rich lipoproteins in a vessel wall is a rationale for seeking

Fig. 22.5 Bruch's membrane ipcprctein sompoasition. {4) Lipoprotein particles isclated from Bruch's membrane are large and spherical; regave
stain.™ Scale bar: 50 nm. (8) Bruch’s membrans ipoprotein compoaition nfared from drect assay, ™ druse composition, and RPE ‘a'f"ﬁ
expression.™ ™ TG, tiglyoarde: £C, esterified cholesterol; UC, unesterified cholesteral; PL, phosrhoiipid: Apo, apolipoprotens. The quasha

mark sigrifiss that not all apolpoproteing are known.




guidance in cardiovascular disease for AMD pathogenesis and
freatments,

pther Aging Changes

pruch’s membrane thickens throughout adulthood (20-100
years), two- to threefold under the macula and becoming
more variable between individuals at older ages.™ """ Equato-
rial Bruch’s membrane changes little while Bruch’s membrane
near the ora serrata increases twofold during this time.*" In the
macula, the OCL thickens more prominently than the ICL.™
A large ultrastructural study of 121 human donor eyes dem-
anstrated that the macular EL is three 1o six times thinner than
penphﬂal EL at all ages.z‘

Linbalanced regulation of extracellular matrix molecules
and their modulators are thought to result in Bruch’s mem-
brane thickening. Increased histochemical reactivity for glyco-
conjugates, glycosaminoglycans, collagen, and elastin is seen
in the macula relative to equator and near the ora serrata.™
Collagen solubility declines with age™ Metalloproteinases
MMP-2 and MMP-3 increase with age as does a potent inhibi-
tor of metalloproteinases, TIMP-3. TIMP-3 immunoreactivity
reaches mature levels at 30 years of age near vasculature in
Jung, kidney, and in Bruch's membrane, signifying the end of
developmental organogenesis.” The reduction or absence of
TiMP-3 is proangiogenic, as this proxein not only regulates
metalloproteinases during the normal tumover of Bruch's
membrane matrix components but it also binds to VEGE™

The EL thickens with age but decreases relative to overall
thickening of Bruch’s membrane.™ Thus elastin referenced to
other Bruch’s constituents, as detected by Raman spectroscopy,
decreases with age.”* Similar arguments can be made for col-
lagen 11 and IV, A prominent age-change,”™ noted early,™ is
calcification and ensuing brittleness. This process involves
deposition of fine electron-dense particulate matter™ con-
firmed as calcium phosphate™ on individual elastin fibrils,

Long-lived proteins like collagens are modified in vivo by
nonenzymatic Maillard and free radical reactions to yield
advanced glycation end products (AGEs) and the formation
of lipid-derived reactive carbonyl species like malondialde-
hyde (MDA), and 4-hydroxyhexenal (HHE), collectively called
age-related lipoperoxidation end products (ALEs). Accumula-
tion of AGEs and ALEs, characteristic of diabetes and athero-
sclerosis, also occurs in aging Bruch’s membrane (Table 22.1).
Finally, other components prominent in aged eyes include
complement components C3d, C5b-9, and pentraxin-3, a
homolog of the acute phase respondent C-reactive protein.
Thus, at the molecular level, aging Bruch’s membrane contains
evidence of many biologic activities including remodeling,
oxdative damage, and inflaimmation, in addition to lipopro-
tein accumulation,
~ New evidence from Clark, Bishop, Day, and associates
indicates that variations in proteoglycan sulfation in Bruch’s
membrane  have potential  pathogenic  significance  for
AMD 259 Brych'’s membrane has many heparan sulfate (HS)
proteoglycan structures and motifs, as determined with anti-
bodies to specific full-length and enzymatically truncated
forms* Sequénce variants in the gene encoding the fluid
Phase regulator of complement factor H (CFH) are highly
associated with risk for AMD.® Key in innate immunity, CFH
€an discriminate self from nonself for clearing by recognizing
Polyanionic structures such GAG chains of proteoglycans (eg.,
HS5 and dermatan sulfate), thereby inhibiting complement
activation on host cell surfaces. CFH of molecular weight
155 kD comprises 20 complement control protein {(CCP)
domains and contains main GAG-binding regions in CCP7
and CCP20, The Y402H polymorphism, in CCP7, alters CFH
binding 1o sulfated GAGs. This polymorphism also affects
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factor H-like protein-1 (FHL-1), a 43 kD protein containing
the CCP7 module that is generated by a splice variant of the
CFH gene The disease-associated 402H polymorphic variant
of CFH was found to require 2.0- and/or 6-O-sulfation for
binding to HS and dermatan sulfate in human Bruch's mem-
brane tissue slices, In contrast, the non-disease-associated
402Y form binds to a broader range of proteoglycans, suggest-
ing that it is overall more tightly bound and thus potentially
more effective as an inhibitor. Imporantly, in aged human
Bruch’'s membrane, HS is reduced 50% overall and in the
macula,™ This change, attributed 1o either decreased produc-
tion or increased turnover of HS core proteins, is one way in
which disease-assodated sequence variants could promote
complement activation, lipoprotein binding to extracellular
matrix,** and AMD progression in Bruch's membrane.

FUNCTION OF BRUCH'S MEMBRANE

As a vessel wall of the choroid, Bruch’s membrane primary
function is structural, like other vessel walls, Its architecture
is similar to vascular intima, with a sub-endothelial extracel-
lular matnx and elastic layer corresponding to the internal
elastic lamina. The abluminal surface of Bruch’s membrane
differs from other vessel walls in that it abuts a basal lamina,
that of the RPE. Essentially, Bruch’s membrane is compnsed
of two epithelial membranes i apposition, consistent with
its embryologic origin The luminal surface faces a fenestrated
vascular endothelium and basal lamina, making Bruch's
membrane structurally analogous to the renal glomerulus and
providing a basis for commonality between retinal and kidney
disease '™ The impontance of fluid and macromolecular
transport across the renal glomerulus is well known.* Trans-
port is a second important function of Bruch’s membrane.

Structural Role of Bruch's Membrane

Bruch’s membrane encircles more than half the eye and
stretches with the corneoscleral envelope as intraocular pres-
sure (1OP) increases. It withstands this stretch and retumn to
its original shape when 101 decreases. This tissue also stretches
to accommodate changes in choroidal blood volume. Finally,
the choroid (and Bruch’s membrane with it) may act as a
spring that pulls the lens during accommadation.”*™ For these
reasons, then, Bruch's membrane requires elasticity.

Marshall and Hussain's group estimated the modulus of
elasticity in Bruch’s membrane-choroid preparations to be
7-19 MPa. " These values are similar to those of sclera (although
sclera is much thicker and thus can support more load) consis-
tent with the notion that Bruch’s membrane contributes to load
bearing. After early adulthood, the modulus of elasticity of
human Bruch's membrane-choroid complex increases (p<.001)
at a rate of ~1% per year. Bruch’s membrane stiffness in AMD
eves does not differ from age-matched normals,™

Transport Role of Bruch’s Membrane

The choroid services the metabolic needs of the outer retina,
facilitated in part by fenestrated endothelium (Fig. 22.3).
Oxygen, electrolytes, nutrients, and cytokines destined for the
RPE and photoreceptors pass from the choriocapillaris and
through Bruch’s membrane, and waste products travel back in
the opposite direction for elimination. Vitamins, signaling
molecules, and other factors needed for photoreceptor fune-
ton are carried to the RPE by lipoprotein particles passing
through Bruch’s membrane, as do the RPE-produced lipopro-
teins that are eliminated in the opposite direction. The RPE
pumps water from the subretinal space to counter the swelling
of the interphotoreceptor matrix glycosaminoglycans (GAGs).
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This fluid flows across Bruch’s membrane to reach the circula-
tion. Thus, many transport processes involve Bruch's mem-
brane, as reviewed here.

Hydraulic Conductivity of Bruch's Membrane

GAGs are concentrated in the interphotoreceptor matrix”**
and corneal stroma.” In both locations, these highly charged
macromolecules maintain geometrik fidelity essential for
vision (periodic collagen spacing for corneal transparency,
orderly photoreceptor spacing for wvisual sampling)*® ™
GAGs generate significant swelling pressure (up to 50 mm Hg
in comea).'"™™ Without a mechanism to maintain tissue
deturgescence, GAGs would imbibe fluid, swell, destroy tissue
geometry, and interfere with visual function, Corneal endo-
thelium forestalls swelling by continuously pumping fluid
out, This function is accomplished far retina by the RPE, and
its failure can lead to retinal detachment.

The fluid pumped by the RPE must then flow from the
basal surface of the RPE, across Fruch's membrane, and
through the endothelial lining of the choriocapillaris to be
adsorbed by the vasculature. A driving force adequate 10
overcome the collective flow resistznce of these tissues is
provided by a gradient in fluid pressure and oncotic pressure
(the osmotic pressure generated by plasma proteins). This
balance is embodied by Starling’s Law that characterizes the
relationship between fluid flux (4: flose per unit area; positive
when flow is out of the blood vessely across a capillary vessel
wall and the forces driving this flow:

q =L, *(AP~GAIT) [22.1]
L, is hydraulic conductivity, which characterizes the ease with
which fluids flow cross the vessel wall. If the surface area of
the blood vessel is A, then 1/(L, A) is the flow resistance of
the vessel wall. AP is the difference between the fluid pressure
within the blood vessel (P.) and the pressure at the basal
surface of the RPE (Py.). AlT is the difference between the
oncotic pressure within the blood vessel (IT,) and that at the
basal surface of the RPE ([g).  is ~he reflection coefficient
that characterizes the extent to which the vessel wall rejects
the plasma proteins species generating Afl. ¢ ranges from 0
for a freely permeable species to 1 when a spedies is completely
rejected by the membrane.

We can estimate the magnitude of AP—g AlTusing measured
value of ¢ and L,. The fluid pumping rate by human RPE
has been measured as g=11 uL h'' cm?, similar to that in
other animals (Table 22.2). The hydraulic conductivity
of macular Bruch's membrane/choroid of healthy voung
humans ranges from 20 t0 100x107"" m s Pa™."™ Then, using
g=11 uL. h™' em™ and L,=50x10""" m "' Pa™',* we can calculate
that the magnitude of {AP-o All) necessary to drive this flow
through Bruch's membrane is roughly 0.05 mm Hg.

o can be roughly estimated by assuming that the fluid in
the suprachoroidal space is in equilibrium with blood in the
choroid. Using measurements in monkeys of plasma protein
concentration inside and outside of choriocapillaries (82.1
and 23.7 mg/ml, respectively),”™ and the Landis Pappen-
heimer equation' for osmotic pressure, the osmatic pressure
difference, in this species, across the choroid can be estimated

“This does not include the flow resistarce of the chorocapillaris
endothelium, which is not measured when [, of a Bruch's membrane/
choroidal preparation is determined. For this highly fenestrated
endothelium with fenestra taking up roughly 80% of luminal surface
area,"™ [, can be estimated as roughly 25x107™ m s™' Pa™',"™ which
does not affect our conclusions.

TABLE 22.2 Aetnal Pigrrent Epthefium Fud Purging Rates

Frog 48-7.6 303, 304
Rabbit 1244 306, 306
Carnina 64 aony
Primate® 143 408, 308
Humean 1" 310

Ratind pigment epithelum (RPE) purmping rates ware measured by
reabsomtion of subvetinel fuid or by direct mesasurement in culiure.

*Cantrell and Padarson measured 8 much higher franspon rate than
that raportad here, ™™ but usad uoreacein as a tracar which fkely
doas not track flud fow due to its high diffusion coefficient.

o be 33 mmHg - 6 mmHg=27 mmHg. The pressure in
suprachoroidal fluid wzs measured by Emi™ to be 4.7 mmHg
below 1OP while that in the choriocapillaris was measured at
8 mmHg higher than 10P' giving a pressure difference across
this wall of 12.7 mmHg Then, Eq. 22.1 is used to estimate
that =0.5, assuming equilibrium conditions.

Using T1,=33 mmkEg, P =I0P+8 mmHg Ilu=0 mmHg
{fluid pumped by the RPE is assumed protein-free), and we
take Py =IOP (assumirg no pressure is generated by the RPE
above that necessary for crossing Bruch's), we find that AP-a
AlTis approximately 8.5 mmHg pulling fluid into the choroid.
Thus, in normal youngz adults, oncotic pressure within the
choroid is more than sufficient to adsorb all the fluid pumped
by the RPE. We can ako use Eq. 22.1 10 calculate that the
lowest value of L, that still adsorbs fluid pumped by the RPE
without generating an eclevated pressure at the RPE basal
surface is L, >0.3x107" m s™* Pa™'.

Experiments using “aser ablation of Bruch's membrane/
choroid explants allowed Starita et al.'"™ to condude that the
ICL was responsible for most of the flow resistance in Bruch’s
membrane. Attempts to further localize the flow resistance
using morphometric methods are complicated by (i) stereo-
logic issues and (ii) the loss of ultrastructural fidelity from
connective tissue corventionally processed for electron
microscopy.™ Failure to apprediate the former difficulty can
lead to unphysiological iy low estimates for tissue porosity and
thereby hydraulic cond activity.'

Age-Related Changes in Hydraulic
Conductivity and Disease

Fisher was the first to measure L, of human Bruch’s mem-
brane,"? finding that I, decreased significantly with age.
However, his values foe L, of Bruch’s membrane and other
tissues are much lower than those found by later investiga:
tors. ™"+ Marshall and Hussain carefully revisited these
measurements using Fruch’s membrane/choroid with RPE
removed, a preparation that was simpler to create. They
showed using laser ablation that the flow resistance of thesc
preparations was entirely due to Bruch's membrane. They
also found that flow rate increased linearly with driving pres-
sure, indicating that L, of Bruch's membrane is relativel
insensitive to pressure up to 25 mmHg, .
They reported that L, of macular Bruch’s membrane exhib
ited a dramatic, expomential decline throughout life (Fig.
22.6), dropping from 130x10°™ m s™' Pa™* in young children
to 0.52x10° m s Pa”' in old age. L, of macular Bruch*
membrane dropped more rapidly with age than did that o
the periphery, consistent with an accelerated process occurming
in the macula."'"*951¢ Note that the lowest value measured
for L, of Bruch’s memktrane in normal eyes is similar to the
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Fig. 22.6 Hydraulc conductivity (L) of Bruch's membrane as a function of age. Dotted lnes are exponential fits 1o data from macular and
perpheral reglons, respsectively. Note that &l of the data from eyes with AMD ftaken cnly in perdpheral region) have lower vakses of L, than the
best fit to data taken from peripheral Bruch'’s membrane of nondissasad eyes.''®

calculated minimum value of L, (0.4x107 m s Pa”’, see
above) that allows complete resorption of fluid pumped by
the RPE without need of an elevated pressure at the basal
surface of the RPE. Marshall and Hussain reached similar
conclusions regarding this process.”’

Determining [, of Bruch’s membrane in isolated macular
samples of AMD eyes is difficult due to scar formation and
other changes."® However, Marshall and Hussein's group
showed that in the periphery, L, of Bruch’s membrane is
decreased in AMD eyes as compared to age-matched normal
eyes (Fig. 22.6)."% Assuming that similar processes occur in
macular Bruch’s membrane due to the profound lipid accu-
mulation in this region, then in discased eyes, the RPE must
generate higher pressures at its basal surface to drive fluid into
the choriocapillaris, with further pathologic consequences.*
Above an unknown threshold level, higher pressure will cause
the RPE-EL to separate from the ICL, leading to RPE detach-
ment and fluid accumulation, as seen in 12-20% of AMD
patients.™

What causes the dramatic age-related decrease in L, of
Bruch’s membrane? It is nawural 10 suspect the age-related lipid
accumulation, In fact, McCarty et al."’ showed that lipid
particles trapped in an extracellular matrix can generate very
significant flow resistance, more than would be expected based
simply on their size and number. However, Marshall and
Hussain observed that most of the marked change in L,
occurred before age 40 (Fig. 22.7A) while the increase in
Bruch’s membrane lipid content occurred largely after this age.
They thus concluded that other age-related changes must be
responsible for changes in [,

A different condusion can be reached from examining
age-effects on flow resistivity, the imwerse of L,. Resistivity
increases from a low of roughly R=10* Pam ' s for young
individuals to R=10"Pam™ s for aged persons. Thus,
when hydraulic conductivity L, droPs from roughly 100x
100"ms' Pa' to 25x10” ms™' Pa’ between the ages of
birth and 40 years of age, 75% of its total possible decrease,
resistivity Rincreases from 1x10" Pam™ s 'to4x10° Pam ' s°',
only 4% of the ultimate increase. Simply put, hydraulic con-
ductivity drops more rapidly with age at young ages because
its value is high to start with. Fig. 22.7B plots resistivity and
histochemically detected EC against age for Bruch's mem-
brane."" The agreement between the trends and the fits to the
data are striking, This is strong evidence that the increasing
lipid content and progressively hydrophobic character of
Bruch's membrane are responsible for impairing fluid transfer
with age, as postulated.” The strong correlation between flow
resistivizy of Bruch’s membrane and lipid content was likewise
found by Marshall and Hussain."”*"* Laser ablation studies
localizing flow resistance to the ICL'™ further supports this
conclusion, because lipids accumulate prominently in the ICL
with aging™ Further, more laser pulses were required to
abolish flow resistance in the oldest eyes, consistent with
presence of a Lipid Wall, requiring prior removal.

Thus, it appears that decreased L, and increased resistivity
of Bruch's membrane with aging is closely related 1o the age-
related accumulation of lipids, primarily EC. Lipids accumu-
late mare rapidly in the macular Bruch’s membrane than in
the periphery, """ Thus, L, of the macula decreases more
rapidly with age than it does in the periphery.
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University Prass; 1998 . 669-92)

L, in Other Species

L, of dog Bruch’s membrane was measured as
3.7x107" m &7 Pa”," ™' similar to the value found in an
older human. Hillenkamp et al."* reported a very low value
of L=0.345x10"" m s Pa~'in cow eyes, lower than that found
in any human eyes. Cankova et al."”” sxamined calf eves and
found a much higher value of [, (14.2x107" m s™' Pa’') that
was threefold lower in the cow eyes that they examined
(4910 m s Pa’'), although not zs low as measured by
Hillenkamp et al. Cankova et al."” concluded that, as in
humans, L, decreases with age.

Permeability of Bruch’s Membrane to Solute Transport

Along with bulk fluid flow, there is significant transport of
individual molecular species across Bruch’s membrane,
including dissolved gases, nutrients, cytokines, and waste

products driven by passive diffusion. Flow crossing Bruch’s
membrane is too slow 1o influence this process. This can be
seen through calculation of the Peclet number, the relative
magnitude of convection of a species due to bulk flow to that
of diffusion:"**

L (22.2)

D,

where V is the velocity of the flow, L is the transport path
length, and D, the free diffusion coefficient of the species
being transported. (The free diffusion coefficient in saline 15
used rather than its valu= in tissue, since the species carried by
flow is constrained 10 the same extent by the tissue as is its
diffusion). Using the RPE pumping rate (Table 22.2) for Vi
Bruch’s membrane thickness (average of 3 pm”) for L, and &
range of diffusion coefficents of species crossing Bruchs



membrane !2:-(10" emi/sec for LDL to 2x10°° em?fsec for
oxygen)**'** we find that the Peclet number ranges in value
from 5x10°* ta 5x107°, Thus, convection is neghgible in trans-
porting species across Bruch's membrane under physiologic
conditions.

Diffusion follows Fick's law whereby the diffusive flux per
unit area (j) is proportional to the diffusion coefficient (D) of
that species in the medium through which it passes and to the
concentration  difference across the medium (AC), and
inversely proportional to the diffusion length:

=D ac/L [22.3]

The permeability of a tissue to a given species is defined as
P = j/AC, We see then that P=D/L, For example, the permeabil-
ity of Bruch’s membrane to oxygen is ~0.067 cm/sec. Note
that since diffusion moves down a concentration gradient, one
species might be diffusing across Brech's membrane toward
the RPE (e.g, oxygen) while another species (e.g, carbon
dioxide) diffuses simultaneously in the other direction.

With high diffusion coefficient and little interaction with
extracellular matrix, small molecules (e.g., oxygen, qtosine,
RNAaseA) diffuse quickly across Bruch’s membrane with dif-
fusion coefficients nearly the same as in free solution.'
However, macromolecules have much smaller free solution
diffusion coefficients due to their larger size. Their diffusion
coefficients are further reduced by interactions with extracel-
lular matrix and/or lipoproteins that accumulate with age. For
example, the diffusion coefficients of albumin and ferritin are
an order of magnitude smaller in Bruch's membrane than
their values in free solution.'**

The transport of amino acids,"”” serum proteins,"** drugs, "™
and LDL""" across Bruch’s membrane has been examined.
Transport experiments by Clark and associates® suggest that
FHL-1 (43 kDa) crosses Bruch's membrane more readily than
CFH (155 kDa) and is in fact the major CHF form in native
aged Bruch’s membrane.

There are technical challenges 10 these transport experi-
ments. First, as indicated in Eq. 22.3, diffusional flux depends
on the length of the tissue. Since the diffusion coefficient of
the transported species is likely different in Bruch’s membrane
than in the choroid in a combined preparation, but the path
lengths of both tissue components are usually not determined,
itis difficult to use the measured values to determine absclute
values of permeability. Instead the more easily measured flux
rate (J: see Eq. 22.3) is usually presented. Second, an unstirred
layer can develop near the membrane thereby complicating
the results, and this can occur even in cases when the sclutions
are stirred.”” Nonetheless, useful comparative results can be
generated.

The wansport rate across human Bruch's membrane
declines linearly with age for all molecules measured. Amino
acids exhibited permeabilities of 0.6x 107 cm/sec (phenylala-
nine) to 1.2x107* cm/sec (glycine) for young Bruch's mem-
brane and exhibited a modest decline (twofold or less) with
aging.'* Serum proteins decrease more markedly, dropping
from 3.5x10"" em/sec in the first decadle 10 0.2x107 cm/sec in
the ninth decade, a >10-fold decrease.' ** In particular, proteins
larger than 100 kDa have significantly decreased flux through
Bruch’s membrane of older individuals. Macular Bruch's
membrane showed a steeper decrease with age than did the
periphery,'" Permeability was reduced in eyes with AMD rela.
five to age-matched normal eyes,'"
~ Decreased permeability of Bruch's membrane to transport
15 likely due 10 a decrease in diffusion coefficients, especially
for the larger species affected by interaction with extracellular
matrix and lipoproteins. As indicated in Eq. 22.3, increased
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path length due to age-related thickening of Bruch's mem-
brane” could also have a significant effect,

An original proposal of a molecular weight (MW) exclu-
sion limit 1o Bruchs membrane macromolecule transport of
66-200 kD' has been questioned by more recent work
suggesting that if such a limits exists, it is much higher.'™
Because of the importance of lipoproteins in transporting
lipophilic nutrients to the RPE for ultimate use by the photo-
receptors, and also because lipoproteins accumulate with age
in Bruch’s membrane, Cankova et al."™ specifically examined
the reflection coefficient of bovine Bruch’s membrane to
plasma LDL. They measured a reflection coefficient of 0.62
(compared to a reflection coefficient of artenal endothelium
to LDL of 0,998 and arerial intima to LDL of 0.827'"). Thus,
while LDL did not pass freely through Bruch’s membrane, it
could nonetheless pass. Hussain et al.'** also concluded that
particles as large as LDL could cross Bruch’s membrane
Accordingly, RPE cells have been shown to internalize plasma
LDL from the choroid.""*'*

These considerations are relevant not only 10 understand-
ing mass transfer between the choriocapillaris and the RPE,
but also for transcleral drug delivery strategies including
anuangiogenic agenis for treating AMD and steroids for treat-
ing diabetic retinopathy,"”'* Cheruvu and Kompella'™
reported that the choroid-Bruch's layer is a more significant
barrier to drug transport than is sclera. It hindered the trans-
port of lipophilic solutes more than hydrophilic solutes and
in a more dramatic way than does sclera. Importantly, the
reduction in transport across this layer directly correlated with
solute binding to the tissue, Pitakinen et al. found significant
lag times associated with transport of lipophilic beta blockers
across the RPE-choroid, consistent with binding of these drug
to the tissues; however, they found that the permeability of
the lipophilic drugs across this tissue was greater than that of
hydrophilic compounds or macromolecules.'” Lipophilic
substances are known to have both different transport charac-
teristics in connective tissues and also bind to extracelluar
mau,i-x-llﬂ

Summary and Implications

Bruch’s membrane’s physiologic roles are structural and facili-
tating transport. Transport across Bruch’s membrane is
increasingly hindered with age, due at least partly to the
marked age-related accumulation of EC-rich lipoproteins in
this tissue, impeding pumping of fluid from RPE."* A 290%
decrease in transport of some species from the choroid'*'™
may include lipophilic essentials delivered by lipoproteins,
This decline in transport capability is thought to have func-
tional consequences for photoreceptors.' Awell-characterized
change occurring through the lifespan of individuals with
healthy maculas is slowed dark adapration,'” auributed 10
impaired translocation of retinoids across the RPE-Bruch's
interface. This slowing, worse in AMD patients,"™'** can be
partly ameliorated by short-term administration of high-dose
vitamin A,"** presumably overcoming the translocation deficit
via mass action,

However, it is important to recognize that except for the
studies on tissue from individuals with AMD, all of the results
in human summarized here were from eves that did not have
retinal disease. As such, while the age-related decline in the
transport capability of Bruch’s membrane has functional
consequences on photoreceptor function it is not likely that
this represents disease, but instead, is part of the aging process,
Accordingly, a prospective study has shown that slowed dark
adaption is detectable in 22% of older adults with maculas
considered normal by color fundus photography and that
these persons are two times more likely to have incident early
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AMD 3 years later."*""*" Thus the overall model of photorecep-
tor nutritional insufficiency, due 10 impaired transport, at the
interface of aging and disease has strong in vivo validation.

PATHOLOGY OF BRUCH'S MEMBRANE
AMD Lesions

In aging and AMD, characteristic extracellular lesions accumu-
late in tissue compartments between the RPE-BL and ICL (Fig.
22.8). Known as drusen and basal linear deposits (BLinD),**"**
these lipid-containing aggregations ulrimately impact RPE and
photoreceptor health by impairing transport, causing inflam-
mation, and predisposing to chorodal neovascularization.
Basal laminar deposit [BLamD), a stereotypic thickening of
RPE basal lamina, forms in parallel with lipid deposition in
Bruch’s and may indicate RPE stressed by it. Since 2010, clini-
cal optical coherence omography (DCT) has revealed that
AMD lesions include a major new component, called subreti-
nal drusenoid deposits (SDD) by cross-sectional OCT and
histology'*" and reticular pseudodrusen by en face imaging
such as color fundus photography.' These solid space-filling
lesions located between the photoreceptors and RPE (Fig.
22.8) are common in AMD but are 101 unique 10 AMD. In
the section below, we refer to retinal regions as foveal (central
I mm), perifoveal (0.5-3 mm from the foveal center), and
extramacular (>3 mm).

Drusen

In a fundus view, drusen are 30-300 um-diameter yellow-
white deposits posterior to the RPE, By OCT, they appear as
variably hyporeflective spaces in the same location '#-'
Found in most older adulits,”*** drusen are more numerous
in extramacular retina than in macula,"” """ Drusen are typi-
cally classified as “*hard” and “soft” by the appearance of their
borders. Other rare druse types exist and are less well charac-
terized.'™ Soft drusen confer high risk of advanced disease.'™"
' Histologically, drusen are focal, domed lesions between the
RPE basal lamina and the ICL (Fig. 22.8), as illustrated " and
established'**'™ using transmission € ectron microscopy.

In separate 1854 publications, Donders (a Dutch ophthal-
mologist) and Wedl (an Austrian pathologist) described
“colloid bodies” (Colloidiugeln) or “hyaline deposits® on the
inner surface of the choroid in older or diseased human
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eyes""* ' (iranslated by Busk). Both authors interpreted
droplets filling these deposits as “fat-globules.” The term
drusen originated with Miiller in 1856, from the German word
for geode (not to be canfused with drilse, meaning gland). '™
The name drusen was adopted by English writers early in the
20th century'® yet “colloid body” was used by Verhoeff into
the 1920s.'" Lauber'™ (cited in reference 171) noted that
deposits between the lamina vitrea and the RPE were sudano-
philic in 1924. Wolter and Falls™ stated that “hyaline bodies
[drusen] ... stain reddish with ... oil red O" in 1962. Soft
drusen were termed serogranular and hard druse hyaline
(glassy) by S. Sarks,"™ implying different composition. Soft
drusen are oily, difficult to isolate individually, biomechani-
cally more fragile than hard drusen, and found only in the
macula."” Friability upon processing for conventional paraffin
histology was noted early.'™ Due to this and other technical
challenges, few recent drusen compositional studies (Table
22.3 online) included true macular soft drusen,' '™ Many
studies analyzed peripheral drusen, combined macular and
peripheral drusen, or d d not specify location.

Extant theories for druse formation, extending back to their
discovery,'"” fit into two general categories: transformation of
the overlying RPE and deposition of materials onto Bruch's
membrane. The latter is now accepted.'*® The RPE has been
implicated as a source of many druse components, via budding
of membrane-bound packets of cytoplasm or secretion of
lipoproteins with retention by aged Bruch's membrane™ as
experimentally confirmed.”™ BLinD and soft drusen are two
physical forms (layer and lump) of the same AMD-specific
lesion, located only in the macula. BLinD forms consequent
to lipoprotein accumulztion in Bruch’s membrane and forma-
tion of the Lipid Wall, likely involving lipoprotein aggregation,
oxidation of individual lipid classes, and local inflammation.
Soft drusen involves these and other processes that cause the
distinctive dome shape of these lesions. RPE expresses genes
for many druse components, including lipoproteins,'s/™1%
The contribution of plasma-derived companents, in contrast,
has not been well characterized The existence of druse
subregions additionally suggest remodeling in the extracellu-
lar compartment, such as cellular invasion and enzymatic
activity' '™ and uplifting of the Lipid Wall "™

Most prominent among druse constituents are lipids (Table
22.3 online), as noted zarly. All drusen contain EC and UC,
in addition 1o phosphatidylcholine, other phospholipids,

Fig. 22.8 Bruch’s membrane and charactaristic AMD lesions, [A) Bruah's membrane has five layers in a normal eye: 1, basal lamina of the reting!
pigment epitheium {RPE); 2, inner colagenous ayer; 3, elastic layer; 4, cuter collagencus layer; 5, basal lamina of the choriccapilary endothakum
(fenastrated cels, pnk). L, lipofuscin. (B) Oider eyes have basal laminar depast {Blami) and the Lipid Wall, precurser to basal linear depaosit and
soft drusen. (C) Crusan, basd linear deposit, and the Lipid Wall occupy the same tissue compartment. Basal mounds are soft druss

within BlamD. (D] Subreting drusenoid depasit is an extracelular lesion compositionally distinct from drusen, located between the photoreceplors
[nat shown) and the RPE, (Modifed from Curclo CA, Jotinson M, Huang J-D, ef al. Acodpopvotair B-zantaining kpcprotens in retingl aging and

age-ralated macusopathy. J Uipld Res. 2010:51(3):451-67.)
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ceramides, and 7-ketocholesterol, an oxidation product of UC
that is angiogenic and proinflammatory, 4710174188185
Extractable lipids account for 240% of hard druse volume'*
and likely more for macular soft drusen.’™ This includes large
EC-rich lakes in soft drusen (Figs. 22.9A-B), as in atheroscle-
rotic plaques,"” Apolipoprotein immunoreactivity appears in
drusen with high frequency (100%, apoE; >80% apoB; 60%,
A1) Importantly, hard drusen contain many solid,
Folch-extractable electron-dense particles of the same diameter
as the lipoproteins in Bruch's membrane These observations
together with the appearance of membranous debnis in soft
drusen (below) make an RPE-secreted apoB,E-containing
lipoprotein particle an efficient mechanism to place multiple
lipids and apolipoproteins within lesion compartments, Only
half of macular drusen take up hydrophilic fluorescein in
angiography,'” possibly reflecting differing proportions of
lipid classes in individual lesions. ™

Discrete nonlipid components in some drusen granules
of lipofuscin or melanin indicate cellular origin (Table 22.3
1TLININ powe appear
to be due 1o nonspecific binding of proteins to hydroxyapa-
tite spherules (see below), consistent with immunohisto-
chemistry."™'™  Other constituents present in all drusen
include vitronectin, TIMP-3, complement factor H, comple-
ment components C3 and C8, cystallins, ubiquitin, and
Zinc 21BN pany druse components are found also in
retina IL-1'"7 and/or choroid {(carboxypyrrhole adducts®™) of
the same eves and thus are less specific for these lesions than
other components.

The principal lipid-containing cornponent of soft drusen
and BLinD was called “membranous debris” by the
Sarks'*"*™ and *lipoprotein-derived debris” was suggested
as an alternative, for two reasons.™ First, these lesions are
richer in histochemically detectable UC than surrounding
cellular membranes, '™ By transmission electron microscopy
following osmium tetroxide postfixation, membranous debris
appears as variably sized, contiguous coils of uncoated mem-
branes consisting of uni- or multilamellar electron dense lines,
that are denser than cellular membranes and surround an
electron-lucent center (Fig. 22.2). Since conventional ultra-
structural preparation methods can remove lipids, the build-
ing blocks of membranous debris are likely the UC-rich
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exteriors of lipoproteins (natve and fused) whose neutral
lipid intenors are not well preserved in postmortem
tissue.* %™ Second, all drusen have abundant EC that can
only be explained by lipoprotein particles in addition to cel-
lular membranes.

By ophthalmoscopy, refractile or glistening deposits
thought to be calcified drusen'” regularly appear in areas
where drusen regress, before the onset of geographic
atrophy. ™" Recent investigation has confirmed that glisten-
ing drusen in fact contain calcium phosphate in the form of
hydroxyapatite spherules, culminating a five-decade quest.
Studies included detection of refractile nodules by light
microscopy,’ 7~ phosphate detection via von Kossa histo-
chemistry, '™ confirmation of calcium and phosphate
signals in nodules by energy dispersive X-ray analysis,” ' and
identification of hydroxyapatite mineral by synchrotron
micro-X-ray diffraction.”* Most drusen contain 0.5-20 pm
diameter spherules that become dinically visible when the
RPE degenerates.™ Concentric shells within the spherules
account for the refractility.”™ Spherules also have UC within
them ** As hydroxyapatite binds proteins well and is widely
used as a stationary phase for chromatography, these nodules
are strong candidates for nucleation sites for further protein
deposition and druse enlargement.”” Calcification in drusen
differs from that within Bruch's membrane itself by not requir-
ing the presence of elastin fibers. The source and mechanism
of high calcium and phosphate concentration in the sub-RPE
space, likely reflecting RPE physiology, are important areas for
future research.

Basal Linear Deposit

BLinD is a thin (0.4-2 pm) layer located in the same sub-RPE
compartment as soft drusen (Fig. 22.8). BLinD is not visible
clinically except as associated with other pathology. By lipid-
preserving ultrastructural techniques, BLinD is rich in solid
lipoprotein particles and lipid pools (Figs. 22.10A,C) and can
contain hydroxyapatite.” BLinD and soft drusen are consid-
ered alternate forms of the same entity.* ApoE and apoB are
present in BLinD and its precursor, the Lipid Wall.'7%"%™®
Transitional morphologies between Lipid Wall and BLinD have
been reported.”™ BLinD is thicker in the fovea than in the

Fig. 22.9 Esterified cholestercl (EC) forms lekas in maculer soft drusen, (A) EC lakes n a macular soft druse revealed by fiipn flucrescence
lamow). Scale bar: 25 pm. (B) Macular soft druse from en AMD aye has lakes of homogenecus dectron-dense lipid jemowd among partially
pracarved fpoprotein-like material. Basal laminar depost (asterisk) overlying the druse has similar material, called membranous- of lipoprotein-
derhed debris fto the rght of the astersk). Scale bar; 1 pm. (Pane/ A madifled from Malek G, U C-M, Guidry C, ef al. Apoipoprotein &8
Gholesteroi-containing arusen and basal dapasits 7 syes with age-relrted macufopsthy. Am J Pathol 2003,162(2):413-25)
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Fig. 22.10 Lipeprotsin-cerived debris and lipid poois in AMD lesicns are solid rather than vesicular material, {A) Above retinal pigment epithalum
(RPE) basal lamina farrowheads) is basal laminar deposit (BlamD) with individhal particies indicated {arrow). Below RPE basal [amina are rumerous
solid partickes in basal linear depostt (Bin(). Transmission alectron micrasoopy, OTAP fixation; scale bar: 500 rm. (B) BlamD appears as a sold
colunn of basal lamna-like material, with soid particles embedded within (arow). Scale bar = 500 nm. (C) BinD has lipoprotsing of heterogenaous
sizes and shapes as well as pooled lipd, consistent with a model of surface degradation and partice $2si0n. Scale bar = 200 nm. (Panel A Curcio
CA, Presiey JB, Milcan CL, Medetos NE Basal deposits and drusen 0 eyes with age-redited macuopathy: ewndance for solid \pid particlss.
Exp Eye Res 2005;80(6):761-75. Panal B image courtesy of J.-D. Huang, PhD, Panel C Curcio CA, Johnson M, Rucalf M, Huang J-0. The o
SpN i ageing Bauch’s membrane. Br J Ophithalmol 201 1,95(12):1638-45.)

perifovea, unlike SDD, consistent with these lesions reflecting
differential aspects of cone and rod physiology® (see below).

Basal Laminar Deposit

BLamD forms small pockets between ~he RPE and the RPE-BL
in many older normal eyes or a continuous layer as thick as
15 pm in AMD cyes™**"* (Fig. 22.8). The presence and
abundance of BLamD has been used 12 stage AMD . **#” Ulura-
structurally, BLamD resembles basement membrane material
(Fig 22.10B), containing laminin, fibronectin, type IV, and
type VI collagen *** The latter is a distinctive banded mate-
rial with 120 nm periodicity. called wide- or long-spacing
collagen, which also appears in other ocular locations like
epiretinal membranes. Thick BlamD, associated with advanced
AMD risk,*™ contains histochemically detectable lipid includ-
ing UC and EC'™ and is a classically described site for
membranous debris (Fig. 22.2). By lipid-preserving methods,
solid particles are seen in BLamD (Figs. 22. 10A-B). Especially
enriched in basal mounds™ (Fig. 22.8C), lipoprotein-derived
debris in BLamD may be considered as retained in transit from
the RPE 1o BLinD andjor drusen.”™"**** Maorphologically
heterogeneous BlamD also contains vitronectin, MMP-7,
TIMP-3, C3, and C5b-9,""* EC, and UC.™ Evoked in numerous
mouse models of aging, stress, and genetic manipulation,
BLamD is a reliable marker of RPE stress.*****

Subretinal Drusenoid Deposit

Hypotheses of druse formation must eventually also account
for SDD, the extracellular deposits between RPE and photore-
ceptors (Fig. 22.8). These lesions were first illustrated histo-
logically in AMD by the Sarks™ and independently described
as drusen “visible en luniére bleu” by Mimoun et al.”** Con-
ferring risk for late AMD,*” SDD appear in 60% or more of
eyes with geographic arrophy,”™*** 499 of early AMD eyes,
and 23% of older eyes considered normal by color fundus
photography** SDD are also detectable in several Mendelian
inherited disorders affecting the RPE-Bruch’s membrane
complex. ™% Comprehensive histology, clinicopathologic
cormrelation, and adaptive optics scanning laser ophthalmos-
copy™ #*% have definitively localized these lesions in the
subretinal space, after some early debate. SDD lack markers
for cells bounding this space (photoreceptors, Miiller cells,
RPE).""* SDD share protein components with drusen,'”
and importanty, SDD lipid composition differs from drusen
(UC only vs. UC and EC, respectively™®). SDD are abundant
in the perifovea and peripapillary area'** ¥%35237-33 and sparse
in central macula, whereas BLinD is thickest under the fovea.”!
Cones are numerous in the fovea, and rods are numerous in
the perifoveal region aad just beyond.” Thus drusen and
SDD have been linked in a system of outer retinal lipid recy-
cling serving the differential lipid requirements of rod and




cone photoreceptor outer segment membranes.”**' The low
content of EC relative to drusen has been explained by invok-
ing a hypaothetical high-density lipoprotein particle, rich in
LIC, that shuttles UC from and docosahexanoate (o rod outer
segments selectively.” If this hypothesas is true, SDD might be
also rich in docosahexanoate and its d envatives, an important
question to address experimentally.

Summary
Levels of significance ascribed to molecules sequestered in

0 drusen (Table 22,3 online), and by inference, BLinD, include

toxicity to the overlying RPE, stigmata of formative processes
(extrusion of cellular materials, secretion, extracellular enzy-
matic processing, cellular activity), and markers of a diffusely
distributed disease process affecting RPE and Bruch's mem-
brane. Additional significance can be ascribed 1o these lesions
as physical objects that increase path length between chorio-
capillaries and retina and provide a biomechanically unstable
cleavage plane between RPE-BL and ICL. Many of these pro-
cesses likely also occur in the subretinal space in relation 10
SDD.'Y

Response-to-Retention Hypothesis of AMD

The parallels between the pathology of arterial intima of large
artertes in atherosclerosis and that of Bruch’s membrane in
AMD are striking. Both diseases feature cholesteral-rich lesions
in subendothelial compartments within the systemic circula-
tion, involving many of the same molecules and biologic
pracesses at multiple steps, as long anticipated.”*** Accord-
ing to the Response-to-Retention theory of atherosclerosis,
plasma lipoproteins cross the vascular endothelium of large
arteries, and bind to extracellular matrix. By itself, this process
is not pathologic. However, lipoprotein components become
modified via oxidative and nonoxidative processes and launch
numerous downstream deleterious events, including inflam-
mation, macrophage recruitment, and neovascularization
leading to disease.**** Parallel with apoB-lipoprotein-insti-
gated disease in arerial intima, an intraocular Response-to-
Retention involving the RPE and Bruch’s membrane in aging
and AMD would begin with age-related accumulation of
lipoproteins, but of local origin. Oxidation, perhaps driven
by reactive oxygen species from adjacent RPE mitochondria,
would then initiate a pathologic process resembling that in the
vascular system with inflammaton-driven downstream events
including complement activation and structurally unstable
lesions.” New model systems such as highly differentiated
and polarized cultured RPE'™ and mice with genetically modi-
fied lipoprotein pathways™*® will allow rigorous experimental
test of these concepts.

Neovascular AMD

Choroidal neovascularization (CNWV), the major sight-
threatening complication of AMD, involves angiogenesis along
vertical and honzontal vectors: vertically across Bruch's mem-
brane, and either laterally external to the RPE (type 1 CNV,*),
laterally within the subretinal space (type 2 CNV), or further
anteriorly into the retina (type 3 CNV). > Of 40+ conditions
involving CNV, AMD is the most prevalent, followed by ocular
histoplasmosis,”” and including angioid streaks (below). CNV
is a2 multifactorial nonspecific wound healing response to
various specific stimuli, involving VEGF stimulation of chorio-
capillaris endothelium, compromise to Bruch's membrane,
and participation of macrophages.”” Impaired transport across
Bruch's membrane in AMD increasingly isolates the RPE from
Its metabolic source in the choriocapillanies and enhances the
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challenge in waste product disposal. VEGF released by RPEas a
stress signal initiates an angiogenic response by the endothe-
lium. However, Bruch’s membrane compromise is essential for
CNV to proceed, as evidenced by intrachoroidal neovascular-
tzation without CNV in a mouse overexpressing VEGF in the
setting of an intact Bruch’s membrane. **°

Bruch’s membrane in a state of compromise can be
breached easily by new vessels in AMD. It is notable that the
EL is thinner and more interrupted in eyes with neovascular
AMD.”* The length of gaps in the EL is greater in eyes with
carly AMD and any CNV."" In paired donor eyes with and
without CNV secondary to AMD, progressed eyes are distin-
guished by calcification and breaks in Bruch’s membrane.®"
In contrast, calcification in a small number of geographic
atrophy eyes is unremarkable.”™

BLinD and soft drusen together further this process by
presenting a horizontal cleavage plane for vessel formation to
exploit. The lipid-rich composition, relative lack of structural
elements like collagen fibrils, lesion biomechanical instabil-
ity,"” and proinflammatory, proangiogenic compounds like
7-ketocholesterol and linoleate hydroperoxide™ ™™™ [ikely
promote vessel growth in this plane Interestingly, SDD is
strongly associated with type 3 neovascularization, ™" sug-
gesting that this lesion also plays a similarly important proan-
giogenic role.

Angioid Streaks (ABCC6, MTP Genes)

Angioid streaks are ruptures in Bruch’s membrane associated
with multiple disorders, caused by excess calcification of the
elastic layer™ and often accompanied by CNV. They are
prominent ocular manifestation of pseundoxanthoma elast-
cum (PXE), a systemic connective tissue disorder. PXE patients
harbor mutations of a hepatically expressed lipid transporter
ABCC6."* Clinical presenmtation includes, in addition to
streaks and CNV, peau d'orange (flat, yellow, drusen-like
lesions), optic nerve head drusen, outer retinal tubulations,
subretinal fluid, and pigmentary changes.™ PXE cdlinical
manifestations are believed related to ectopic mineralization
of nonhepatic tissues, suggesting a defect in the transport of
antimineralization agents. ="

Angioid  streaks are  associated  with  abeta-
lipoproteinemia,”™** an extremely rare disorder with low
plasma apoB-containing lipoproteins, acanthocytosis of
erythrocytes, neuropathy, and pigmentary retinopathy. It is
historically attributed to lack of lipophilic vitamins delivered
by plasma LDL.** The RPE expresses the abetalipoproteinemia
gene (microsomal triglyceride transfer protein), ™ which
cotranslationally lipidates apoB (see above). How this defi-
cency leads to angioid streaks is unknown, The finding,
however, highlights that lack of apoB lipoproteins has negative
consequences for Bruch's membrane health, likely by impact-
ing RPE health, just as an excess of retained apoB lipoproteins
has negative consequences via lesion formation and impaired
transpornt {see above). Good chorioretinal function thus
requires an optimal balance between these extremes,

Thick Basal Laminar Deposits
(TIMP-3, CTRP5, EFEMP1 Genes)

Three autosomal dominant-inherited disorders with adult
onset - Sorsby fundus dystrophy, late-onset retinal degen-
eration (LORD) and Malattia Leventinese-Daoyne honeycomb
retinal dystrophy (ML-DH) - share phenotypic similarities
with AMD and provide mechanistic support for many aspects
of Bruch's membrane physiology and pathophysiology
discussed above. All three conditions result from mutations
in genes encoding extracellular matrix proteins or their
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regulators s_Sorsby - TIMP3*%, LORD - CTRP5*, and ML-DH
- EFEMP1***)_ All three can progress 1o CNV. All three have
visual dysfunction, especially rods, attributed to a nutritional
night blindness that is responsive 1o short-term administration
of high-dose vitamin A****" Sorsky and LORD are notable
for panretinal thick BLamD and areas of RPE atrophy,*
while ML-DL is notable for radially distributed drusen and
peripapillary deposits. In Sorsby mutant TIMP-3 localizes to
BLamD. In ML-DI, EFEMPI locaizes to BLamD and not
to the pathognomonic drusen themselves, suggesting an
important role of BLamD in druse formation. Notably drusen
in ML-DL are immuncreactive for fibulin-3 and collagen 1V
unlike drusen associated with aging and AMD, "

BLamD in Sorsby and LORD, like that in AMD, is notably
rich in oil red O-binding lipid.”**"* In LORD eyes** deposits
contain EC, UC, and apoB, and lipid-preserving ultrastructural
methods revealed solid electron-dense particles tracking in
intersecting networks across the BLamD. Although not initially
apparent, these may represent native lipoproteins in transit
from RPE to the choriocapillaris. Lipid particle disposition
within these thick deposits has been replicated in a mouse
model expressing the R345W EFEMP] mutation, ™

CONCLUSION

Bruch’s membrane serves essential functions as substrate to
the RPE and vessel wall of the outer retina. Its layers and
constituent proteins collectively repsesent a barrier that keeps
choroidal vessels at bay, provides a route for water, solutes,
and macromolecules that transfer between RPE and choroid
while supporting the structural integrity of both. It is unusual
among human tissues in accumulating a high content of
EC-rich neutral lipid over the lifespan. A natural history and
biochemical model now suggests this lipid is due to apoR
lipoprotein secretion by RPE, whichk may be part of an outer
retinal nutrition system with an second component possibly
also involving lipoproteins in the subretinal space. This depo-
sition can account for the impaired outward movement of
fluid from RPE, increasing risk for RPE detachments more
common in older persons, and impaired macromolecular
transport also leading to RPE stress. Oxidation of these lipid
deposits in Bruch’s membrane likely nitiates an inflammatory
process that leads to lesion formaticn and choroidal neovas-
cularization in AMD.
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Fig. 221 Car Bruch (1819-1884), (\With permission from the
Archines of the University of Heidslberg.)
Table 22,3 Lecalzed components of drussn
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