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Abstract 

  

To leverage the omnipresent hardware parallelism in modern systems, applications must 

efficiently communicate across parallel tasks, e.g., to share data or control execution flow. The 

longstanding mechanisms for shared memory and distributed memory, i.e., coherence and 

message passing, remain the dominant choices to implement communication. I argue that these 

stalwart constructs can be transparently optimized, improving performance without exposing 

developers to the growing complexity of modern hardware that employ both shared and 

distributed memory. Then, I explore the ultimate ambition: a unified transparent communication 

abstraction across all memory types.         

 

In shared memory multiprocessors, communication is performed implicitly. Cache coherence 

maintains the abstraction of a single shared memory among hardware threads, so the application 

does not have to explicitly move data between them. However, coherence protocols incur an 

increasing overhead in modern hardware due to their conservative, reactive policies. I designed a 

new coherence protocol called WARDen to exploit the novel WARD property, which indicates 

large regions of memory that do not require fine-grained coherence. By transparently disabling 

the coherence protocol when it is unneeded, WARDen maintains the abstraction of shared 

memory and improves application performance by an average of 1.46x. 



 

In distributed memory machines, communication between memory domains is performed 

explicitly by the application. To specify the necessary communication, collective operations are 

the predominant primitive because they allow programmers to elegantly specify large-scale 

communication patterns in a single function call. The Message Passing Interface (MPI) is the de 

facto standard for collectives in high-performance distributed memory systems like 

supercomputers. MPI libraries typically contain 3-4 implementations (i.e., algorithms) for each 

collective pattern. 

 

Despite their utility, collectives suffer performance degradation due to poor algorithm selection 

in the underlying MPI library. I created a series of autotuners named FACT and ACCLAiM that 

use machine learning (ML) to tractably find the optimal collective algorithms for large-scale 

applications. The autotuners are sometimes limited when all the available algorithms fail to 

properly leverage the underlying hardware. To address this issue, I developed a set of more 

flexible algorithms that can better map to complex, modern networks and increase the potency of 

autotuning. Combining these efforts on Frontier (the world's fastest supercomputer at time of 

writing), I achieve speedups of over 4x compared to the proprietary vendor MPI library. 

 

Lastly, I explored my vision for a higher-level programming model that abstracts away 

communication altogether. I ported the popular NAS Parallel Benchmark Suite to an FMPL 

(Functional, Memory-managed, Parallel Language). I found that FMPLs have the potential to 

drastically improve transparency because the program does not need to be aware of 

communication at all. However, FMPLs are currently limited to shared memory machines. I built 

a prototype that extends an FMPL to distributed memory, charting the course to FMPLs in high-

performance computing. 

 

Across these research thrusts, I developed novel optimizations for communication in high 

performance applications. Together, they show how existing communication abstractions, i.e., 

shared memory and message passing, can be transparently optimized, maintaining or even 

improving the level of abstraction exposed to the developer. 
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ABSTRACT

On Transparent Optimizations for Communication in Highly Parallel Systems

Michael Wilkins

To leverage the omnipresent hardware parallelism in modern systems, applications must effi-

ciently communicate across parallel tasks, e.g., to share data or control execution flow. The long-

standing mechanisms for shared memory and distributed memory, i.e., coherence and message

passing, remain the dominant choices to implement communication. I argue that these stalwart

constructs can be transparently optimized, improving performance without exposing developers

to the growing complexity of modern hardware that employ both shared and distributed memory.

Then, I explore the ultimate ambition: a unified transparent communication abstraction across all

memory types.

In shared memory multiprocessors, communication is performed implicitly. Cache coherence

maintains the abstraction of a single shared memory among hardware threads, so the application

does not have to explicitly move data between them. However, coherence protocols incur an in-

creasing overhead in modern hardware due to their conservative, reactive policies. I designed a

new coherence protocol called WARDen to exploit the novel WARD property, which indicates

large regions of memory that do not require fine-grained coherence. By transparently disabling

the coherence protocol when it is unneeded, WARDen maintains the abstraction of shared memory

and improves application performance by an average of 1.46x.
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In distributed memory machines, communication between memory domains is performed ex-

plicitly by the application. To specify the necessary communication, collective operations are the

predominant primitive because they allow programmers to elegantly specify large-scale commu-

nication patterns in a single function call. The Message Passing Interface (MPI) is the de-facto

standard for collectives in high-performance distributed memory systems like supercomputers.

MPI libraries typically contain 3-4 implementations (i.e., algorithms) for each collective pattern.

Despite their utility, collectives suffer performance degradation due to poor algorithm selec-

tion in the underlying MPI library. I created a series of autotuners named FACT and ACCLAiM

that use machine learning (ML) to tractably find the optimal collective algorithms for large-scale

applications. The autotuners are sometimes limited when all the available algorithms fail to prop-

erly leverage the underlying hardware. To address this issue, I developed a set of more flexible

algorithms that can better map to complex, modern networks and increase the potency of autotun-

ing. Combining these efforts on Frontier (the world’s fastest supercomputer at time of writing), I

achieve speedups of over 4x compared to the proprietary vendor MPI library.

Lastly, I explored my vision for a higher-level programming model that abstracts away commu-

nication altogether. I ported the popular NAS Parallel Benchmark Suite to an FMPL (Functional,

Memory-managed, Parallel Language). I found that FMPLs have the potential to drastically im-

prove transparency because the program does not need to be aware of communication at all. How-

ever, FMPLs are currently limited to shared memory machines. I built a prototype that extends an

FMPL to distributed memory, charting the course to FMPLs in high-performance computing.

Across these research thrusts, I developed novel optimizations for communication in high per-

formance applications. Together, they show how existing communication abstractions, i.e., shared

memory and message passing, can be transparently optimized, maintaining or even improving the

level of abstraction exposed to the developer.
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THESIS STATEMENT

Communication is a foundational aspect of high-performance parallel programming for applica-

tions big and small, but it is a growing bottleneck on modern hardware. I claim that the existing ab-

stractions of communication (e.g., coherence, message passing) can be transparently optimized to

address the performance challenge. Furthermore, I hypothesize that a new, higher-level program-

ming model make communication transparent altogether while maintaining high performance.
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CHAPTER 1

INTRODUCTION

Application-level parallelism is a critical component of high-performance computer programs.

Since the end of Dennard Scaling [68] nearly 20 years ago, the sequential processing capabil-

ity of computer hardware has plateaued [194]. Applications must now directly leverage hardware

parallelism to achieve high performance. Examples are wide-sweeping, from general workloads

running on multiprocessors to high-performance computing (HPC) codes using exascale super-

computers.

For all of these use cases, communication between concurrent tasks is a foundational aspect

of parallel programming. Application tasks regularly communicate to share data, synchronize,

load balance, resolve dependencies, etc. To perform this communication, applications leverage

well-understood constructs like shared memory and/or message passing (e.g., MPI [92]). In recent

years, new programming models (see Section 6.3 for examples) have arisen to help users better

utilize modern hardware, but their adoption remains limited.

I argue that the existing constructs can be transparently optimized, maintaining their familiar

programming model while improving performance on modern computer systems. Also, I present

my own vision for the future of high-performance parallel programming, where a higher-level

programming model shields the programmer from communication altogether while maintaining

high performance.

This work is organized into three thrusts: 1.) shared memory communication 2.) distributed

memory communication, and 3.) new programming model. Below, I include primers for each.
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1.1 Communication in Shared Memory

With the slowdown of single core performance improvements, major hardware manufacturers now

sell processors with multiple physical cores. This trend continues to grow; for example, the latest

AMD EPYC processors include up to 128 cores [3]. Over the last 6 years, this chip line-up has

increased its Instructions Per Cycle (IPC) by only 68%, while the maximum number of cores has

increased by 4x. Furthermore, many computer systems support more than one processor chip,

further increasing the core count. When executing across a single multiprocessor, applications

utilize the abstraction of “shared memory” to communicate efficiently.

Shared memory is the illusion that all concurrent tasks are accessing a single memory. This

abstraction is incredibly useful because threads can freely access the program’s entire working set

without an explicit mechanism or programmer effort. The illusion of shared memory is primarily

maintained in hardware by cache coherence. In reality, separate cores in multiprocessors have

their own memory hierarchies (e.g., caches) and may maintain copies of the same memory location.

Cache coherence is the implementation of a policy called a “cache coherence protocol” that ensures

all copies of the same memory location are kept consistent.

While it provides a powerful abstraction to applications, cache coherence is a major bottleneck

in multiprocessors. Coherence can amount to 50% or more of on-chip interconnect traffic [74, 39,

65, 198]. Future systems, which are projected to expand through higher core counts, multi-socket

systems [103, 38, 210, 156, 108, 125, 9, 118, 67] or disaggregation [41, 140, 153, 113, 76, 174,

134, 131] will further increase the cost of coherence.

There have been numerous variations and improvements proposed [203], but cache coherence

protocols remain a bottleneck in modern systems because they treat each access equally and reac-

tively. Intuitively, however, not all memory accesses made by an application must be treated the
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same. A simple example is a read-only data structure. The cache coherence protocol does not have

to worry about the data being modified (because it is read-only), and could therefore turn off the

protocol to improve performance. However, memory usage restrictions do not propagate to the

hardware, so application-driven coherence deactivation optimizations are currently impossible for

conventional architectures.

To better bridge the gap between applications and cache coherence, many designs have sought

to remove/deactivate coherence, such as hardware-supported, compiler-directed (HSCD) cache

coherence [59], OS-driven coherence deactivation [62], and software cache coherence [129, 214,

11, 167, 213, 55, 58, 64, 164]. However, these prior works require the programmer to mark

their application’s memory behavior using pragmas or recover this information through run-time

inspector-executor methods and compiler analyses. Pragmas place additional burden on the pro-

grammer, which violates the primary tenet of my thesis. Others recoup the usage information

using compiler analysis, but these methods are woefully limited. For example, some analyses treat

entire arrays as single variables and fail to detect false sharing [55, 58], or limit array subscripts

to loop iterators [64]. Again more approaches rely on software for triggering coherence actions

and hardware for selective self-invalidations, but they incur high overhead in lock-intensive pro-

grams [11] or are restricted to unity loop iterators in affine loops without conditionals [164]. Lastly,

hardware-directed approaches [65, 198] avoid some coherence costs by piggy-backing the virtual-

to-physical address translation, but they cannot work in the presence of common complexities like

false sharing. In summary, there remains a need for a performant and transparent co-designed

cache coherence solution.

My cache coherence protocol, WARDen, seeks to address this outstanding challenge. The

basis for WARDen is a new memory property called WARD, which stands for Write-After-Write

Apathy and Read-After-Write Dependence freedom. WARD refers to Write-After-Write (WAW)



28

Heap PH

Fork

CH1 CH2

Join

CH1PH CH2

New, Empty Heaps 

Heaps Merged into Parent

CH3

CH3

P P

C1 C2 C3

P

Figure 1.1: Memory Heap Hierarchy of a Fork-Join Parallel Program. Memory heaps are
organized identically to the fork-join pattern of the parallel tasks. “Leaf Heaps” are the memory
heaps at the lowest level of the hierarchy (e.g., PH is initially a leaf heap, then CH1-3 are leaf
heaps). Tasks may only access their own heap and those of their ancestors in the hierarchy.

and Read-After-Write (RAW) memory hazards, which along with Write-After-Read (WAR) form

the three categories of memory (or data) hazards that can be encountered in a parallel programs.

These hazards occur when two parallel tasks access the same memory location. For example, one

task may attempt to read a value written by another task, which constitutes a RAW hazard. It is the

cache coherence protocol’s primary responsibility to correctly service memory hazards. Intuitively,

the WARD property restricts the allowable memory hazards to make the cache coherence protocol

superfluous, meaning WARDen can safely disable it. A formal definition of the WARD property

is included in Chapter 2.

If WARDen were to mimic the previous work, it would either a.) require to programmer to

manually signal where the WARD property occurs (called “WARD memory regions” or “WARD

regions” for short) or b.) attempt to derive it using some limited analysis. Instead, I co-designed

WARDen directly with the programming language to overcome these challenges.

WARDen is co-designed with the High-Level Parallel Language (HLPL) family of program-

ming languages. HLPLs are memory-managed languages that make parallel programming simpler
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and safer. For my thesis research, I focused on HLPLs that implement the fork-join programming

idiom popularized in lower-level contexts such as Cilk [29, 87] and OpenMP [165]. Example

HLPLs include Multicore Ocaml [206] and various dialects of Parallel ML [85, 231, 7, 205].

HLPLs are growing in popularity across academia, industry, and education. Academia and

industry are actively developing and improving these languages [7, 231, 206, 207]. Also, HLPLs

are part of the curricula of top undergraduate programs. For example, Carnegie Mellon University

uses HLPLs to teach the fundamentals of data structures and parallel algorithms. Due to their

growing popularity and attractive properties, I selected HLPLs as the target for my new protocol.

HLPLs use memory in a disciplined manner to ensure some degree of determinism, efficiency,

and scalability [132, 133, 27, 97, 10, 28, 26, 175, 138, 98, 208, 85, 182, 95, 231, 7]. Through

WARDen, I show that this disciplined use of memory can be exploited to improve performance of

the underlying communication. The HLPL I specifically target (a derivative of Parallel ML defined

by the MPL compiler [231]) organizes memory into a hierarchy that matches the logical hierarchy

of the parallel tasks. An example hierarchy and how it changes throughout the fork-join life cycle

is shown in Figure 1.1.

I observed that the leaf nodes in the memory hierarchy, which represent the local working sets

of the active tasks, all have the WARD property by construction, meaning WARDen can leverage it

without programmer effort or any analysis. WARDen receives the memory locations of leaf heaps

from the language runtime, and uses a novel hardware protocol called MESI-W to dynamically

disable coherence for these regions. On a set of benchmarks and applications written in Parallel

ML, WARDen achieves a 1.46x average speedup that increases with scale and memory disaggre-

gation. Overall, the WARDen protocol showcases the possibility to transparently upgrade existing

communication mechanisms.
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1.2 Communication in Distributed Memory

Many parallel applications must span multiple distributed memory domains to fully utilize the

hardware parallelism of a system. Supercomputers are a prominent example. In 2022, Oak Ridge

National Laboratory’s Frontier became the first exascale system at the top of the TOP500 list.

Frontier’s 9408 distributed nodes achieve 1.6 exaflops peak performance. To communicate across

such a vast system, applications predominantly rely on the Message Passing Interface (MPI).

MPI is the de facto standard for communication in distributed high-performance comput-

ing [92]. The primary abstraction provided by MPI is the idea of “message passing”. To com-

municate between two distributed processes, the program calls MPI Send on one process and

MPI Recv on the other. The MPI library interfaces with the network to transfer the message

from the send buffer to the receive buffer. Point-to-point messaging is an iconic programming

model, but it quickly becomes unwieldy at large scale. For example, to communicate a single

message from one node to all the other nodes on Frontier, an application would need 1000s of

point-to-point calls.

To better express large-scale communication, MPI includes “collective” primitives. Collec-

tives allow the programmer to express the communication pattern for all processes with a single

call. The one-to-all example from the previous paragraph can be implemented using a single

MPI Broadcast collective. Collectives are the most popular primitive in MPI, and they are the

focus of my optimization efforts.

While popular, MPI collectives are a significant bottleneck. A characterization of production

HPC systems in 2018 found that MPI applications spend 50% or more of their execution time on

MPI rather than actual computation [60]. 25–33% of the MPI overhead in this study is contributed

by collectives. This percentage is expected to grow on new systems. A profile of the Exascale
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Computing Project’s (ECP) Proxy Application Suite 4.0 found the expected workload of exascale

systems, such as Frontier, expend 40% or more of their overall runtime on collectives alone [211].

Clearly, collectives are an important target for optimization.

Collectives’ higher level of abstraction allows for optimization of the communication pattern’s

implementation. In response, MPI libraries sport a set of algorithms for each collective. Selecting a

sub-optimal algorithm can significantly reduce performance (35–40% [109]), but selecting a good

algorithm is not easy.

Generally speaking, the performance of each algorithm is influenced by many factors, from

software (e.g., message size) to hardware (e.g., network latency). Dynamic factors (e.g., network

congestion, connectivity of the participating nodes) vary frequently, making it impossible to make

accurate static selections. To address the challenge of collective algorithm selection, autotuning is

a natural solution.

Multiple methods have been proposed to autotune collective algorithm selection. Examples

include analytical models [225, 77, 177, 178, 142] and exhaustive benchmarking tools [47]. Ana-

lytical models have failed to gain adoption because they are difficult to implement, maintain, and

expand for new algorithms. Production tools such as Intel’s MPITune and OPTO [47] use exhaus-

tive benchmarking. Benchmarks must be rerun frequently to account for dynamic factors, making

this brute-force strategy impractical for large systems. In practice, it can be used only infrequently

to tune individual scenarios.

I instead explore machine learning (ML)-based autotuning approaches. ML can improve upon

exhaustive approaches by learning to predict scenarios that have not been benchmarked [111, 109],

lessening the benchmarking overhead. ML also has an inherent advantage over analytical models

because it can learn patterns in the data caused by factors that are difficult to model analytically,

such as real-time and/or machine-specific influences.
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While ML has the potential to improve collective algorithm selection, there remain many chal-

lenges. Most prominently, existing ML autotuners rely on random collection to build their training

dataset. This approach was sufficient for the previous work [109] because it only scaled to a small

number of nodes (up to 48). I estimate collecting this data for a larger system of 512 nodes (only a

fraction of the size of Frontier) would take approximately 75,000 core hours, which is over 6 days

of machine time. This data collection must be repeated frequently to capture dynamic factors like

network congestion, resulting in multiple 6 day blocks of machine downtime.

My thesis research features a sequence of ML autotuner designs named FACT and ACCLAiM

(both are acronyms that are expanded in Chapter 3). Among many advancements, FACT and

ACCLAiM primarily seek to reduce the training data collection time. For the previous example,

ACCLAiM reduces the estimated 6 days of data collection time to 4–6 minutes per collective or

4–10 minutes per application.

During my time spent on autotuning existing collective algorithms, I observed that the available

algorithms are outdated due to advancements in networking hardware found on exascale supercom-

puters. As a result, ACCLAiM frequently encounters scenarios where there is not an algorithm

available that improves performance, limiting its effectiveness. To overcome this issue, I created a

set of “generalized” (i.e., variable-radix) algorithms targeted at exascale-class systems.

Previous works have developed generalized collective algorithms which expose the radix of

the algorithm as an optimizable parameter. These efforts show significant performance benefits by

making the algorithms more flexible, so they can better match new networks. However, the pre-

vious works are specialized for specific scenarios (e.g., a specific network topology [195], small

message size allreduce [192], or intranode broadcast [193]), and the broader efficacy of the strat-

egy is unknown. As a result, generalized (i.e., variable-radix) algorithms appear very sparsely in

current implementations of MPI, sacrificing performance on modern HPC systems. In the context



33

of my autotuning efforts, the lack of new algorithms limits the upside of my work.

I identified hardware features shared among the upcoming exascale supercomputers and algo-

rithm generalizations that could better leverage them: binomial, recursive doubling, and ring [193,

192, 101]. Then, I designed 10 new system-agnostic generalized algorithms based on these gener-

alizations. Combined with optimized algorithm selection, my new algorithms achieve up to a 4.6x

speedup over the proprietary, vendor implementation of MPI on Frontier. This result closes the

loop on my work to transparently optimize distributed memory communication.

1.3 A Higher-Level Parallel Programming Model

After investigating optimizations for shared and distributed memory, I sought to make communi-

cation transparent across both domains. Therefore, I explored higher-level parallel programming

models for high-performance applications. There are many recent programming models (see Sec-

tion 6.3)which propose new communication semantics to better match modern hardware, such as

partitioned global data structures, asynchronous tasks, etc.

However, advancements in individual fields show another path is possible, where higher-level

programming models can make communication completely transparent and achieve high perfor-

mance. A prominent example is AI, where PyTorch [170] and TensorFlow [1] have enabled an

explosion of new research in the field. Similarly, PETSc is the world’s most widely used paral-

lelism solution for scientific applications involving partial differential equations. These libraries

are successful because they present a familiar, consistent programming model while transparently

communicating across distributed hardware.

Inspired by this trend, I explored a more general, high-level programming model for high-

performance applications. To do so, I expanded upon a Functional, Memory-Managed, Parallel

Language (FMPL) to unify and transparentize communication across shared and distributed mem-
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ory. FMPLs are, as the name implies, memory-managed, functional programming languages that

support nested parallelism. Example FMPLs include NESL [25], parallel Haskell [99], and Par-

allel ML [94, 230]. FMPLs make parallel programming easier by transparently communicating

between parallel threads to manage memory and execution flow. In addition, their functional se-

mantics strictly control data mutation, helping users avoid the painful race conditions that are

notorious in parallel programming [161, 147, 2, 35, 33, 34]. FMPLs support parallelism through

high-level constructs (e.g., fork-join, parallel-for loops, parallel recursion, and nested data paral-

lelism) that are popularized by tools like OpenMP [63]. All together, FMPLs enable transparent

parallel programming with a familiar interface.

FMPLs are growing in popularity in many communities. In academia, FMPLs are actively

being developed and improved by programming language researchers [230, 8]. One specific ex-

ample, the ML language family, has been integral to programming language research for multiple

decades [145]. Industry has also adopted these languages. The most prominent example is the

trading company Jane Street, who contribute research and use FMPLs in production code [206,

207]. On the other hand, the FMPLs are unheard of in high-performance areas like HPC.

Performance-driven developers have shown a willingness to consider new parallel program-

ming models and languages both in the past (e.g., High Performance Fortran [141], Coarray For-

tran [162]) and present (e.g., SYCL [187], Chapel [51], modern Fortan [185], etc.). Meanwhile,

there is a nascent trend among the high-performance community pushing towards modern lan-

guages such as Python [242] to avoid the growing complexity of modern systems, such as commu-

nication.

On paper, FMPLs have the potential to be the best of both worlds. Their functional semantics

and strict data/memory control enable powerful optimizations that aim to match the performance

of traditional, lower-level languages [230, 229, 238]. Additionally, FMPLs allow expression of
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the parallelism available in the algorithm without direct reference to the underlying communi-

cation, increasing productivity and portability. Therefore, FMPLs match my vision for a high-

performance, transparent programming model.

I first set out to study the intersection between high-performance applications and FMPLs to

better understand the benefits and drawbacks of FMPLs for my use case. I implemented the most

well-known and widely studied benchmark suite for HPC, the NAS Parallel Benchmarks (NPB), in

a state-of-the-art FMPL, Parallel ML. I documented my experience with FMPL development and

compare the resulting benchmarks with the predominant existing C+OpenMP NPB implementa-

tion [160]. I found that FMPL implementations were 1.02–5.76× slower than the OpenMP ver-

sions, depending on the benchmark. Surprising, the FMPL implementations achieved competitive

performance on a benchmark with regular parallelism (slowdown of 1.02× in the EP benchmark),

indicating that for massively parallel HPC applications, FMPLs can be performance-competitive

with lower-level implementations. However, they are currently limited to shared memory.

Armed with this promising result, I have begun to expand Parallel ML to support distributed

memory parallelism, so it can truly support HPC applications. A distributed Parallel ML language

could be massively beneficial to HPC developers, making it possible to write programs in an easy-

to-use, high-level language and run them on distributed HPC systems without modification.

This project is highly ambitious and far exceeds the scope of my thesis, but I describe my

current progress and the key challenges I have identified. The overarching goal of this work is to

create a blueprint for future research on this exciting idea.
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CHAPTER 2

WARDEN: OPTIMIZING SHARED MEMORY COMMUNICATION

I began my journey to transparently optimize communication by focusing on multiprocessors,

where communication occurs through shared memory. I developed WARDen: a new cache co-

herence protocol co-designed with a high-level parallel language (HLPL). WARDen maintains the

illusion of shared memory while actually disabling cache coherence for many regions of memory

where it is unnecessary. An overview of the WARDen project is shown in Figure 2.1. In this sec-

tion, I describe HLPLs and cache coherence in more detail. Then, I discuss the WARD property

and my novel cache coherence protocol (WARDen) that leverages it. I conclude the section with

the performance results from our evaluation of WARDen, which show how WARDen achieves an

average speedup of 1.46x.

2.1 Disentanglement in High-Level Parallel Languages

WARDen is designed for HLPLs with nested fork-join parallelism, which relieve the programmer

from manually managing parallelism. They instead use high-level constructs such as parallel-for

loops. This approach relies on a thread scheduler (e.g., work stealing) to create and schedule par-

allel threads. It enables fine-grained parallelism by forking and joining many light-weight threads.

2.1.1 Spawn Trees

During execution, a fork-join program consists of a dynamic tree of light-weight threads called the

spawn tree. Initially, there is a single root thread. At any moment, any leaf (i.e., a thread with
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Figure 2.1: WARDen Overview. WARDen transparently optimizes a broad set of shared-memory
applications while maintaining performance for legacy applications. Acceleration increases with
hardware scale.

no children) may fork, which suspends the thread and spawns two or more new child threads to

run in parallel. When all children of a thread have completed execution, they may join, which

removes the completed children from the tree and resumes the parent as a leaf. In this way, all

internal (non-leaf) threads are suspended, and all computation is performed by leaf threads. Two

threads are concurrent if neither is an ancestor of the other. That is, concurrent threads are siblings,

cousins, etc.

2.1.2 Disentanglement

To avoid race conditions, fork-join parallel programs use memory in a disciplined manner. There

are a number of approaches to this end, including race-detection [81, 86, 54, 148, 183, 184, 224,

23, 83], type and effect systems [32, 121], programming techniques for determinism [132, 133,

27], as well as determinism-by-default with purely functional programming [97, 10, 28, 26, 175,

138, 98, 208, 85, 182, 95, 231, 7].
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Recent work identifies a property called disentanglement, which means that concurrent threads

are oblivious to each other’s allocations [182, 95, 231, 7, 228]. Disentanglement has broad

applicability; it emerges naturally from fork-join parallelism [182], can be guaranteed by race-

freedom [231], and is more general than pure functional programming. Disentanglement allows

communication between concurrent threads only through memory allocated by common ancestors.

2.1.3 MPL and the Heap Hierarchy

Disentanglement can be exploited for improved efficiency and scalability, especially for automatic

memory management and parallel garbage collection, as demonstrated by the MPL (“maple”) com-

piler [155, 231, 7] for Parallel ML. To automate memory management, MPL organizes memory

into a dynamic tree of heaps called the heap hierarchy, which mirrors the spawn tree. Maintenance

of the heap hierarchy is illustrated in Figure 1.1. When a thread is spawned, it receives its own

fresh heap in which it allocates all data. When a thread completes, its data is returned to the parent

by merging its heap into the parent’s.

2.1.4 Disentanglement Definition

Within the heap hierarchy, disentanglement is the property that threads only “use” data in their

root-to-leaf path of heaps. A thread uses some data if the thread is holding a pointer to that data.

By maintaining the heap hierarchy, the language runtime automatically ensures that the disentan-

glement property holds for the generated code [231, 228]. A more formal definition of disentangle-

ment is as follows: A fork-join parallel program is disentangled if each thread only holds pointers

(in its stack or registers) to data in either its own heap or the heap of an ancestor.

Disentanglement can also be defined in terms of the source language (Parallel ML), and the

compiler (MPL) then ensures this property holds of the generated code [231].
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2.1.5 Usefulness of Disentangled Programs

I now compare disentanglement with the classic property of data race freedom (DRF). Previous

work leveraged DRF to improve cache coherence [32, 57, 191, 190]. However, disentanglement is

a more general/useful property for developers.

Disentanglement is more general than data race-freedom because it allows “benign” data races.

One example that leverages data races is a prime sieve, where multiple threads race to mark num-

bers as composite; this constitutes a write-write race, but this race is “benign” because all threads

are writing the same value. Next, consider a calculation that does not decompose into equal-size

parallel tasks on the target hardware (e.g., if an application seeks to calculate an odd number of

values using vector units). In this case, the programmer may opt for a small amount of redundant

computation, which will create a write-after-write race.

A final example is a parallel breadth-first search of a graph where the search uses inexact criteria

(i.e., more than one vertex may meet the search criteria). The threads race to write an acceptable

vertex to a shared memory location allocated by the ancestor who initiated the search. It does not

matter which thread “wins” the race because they are all writing back values which meet the search

criteria.This example highlights that “benign” data races may include write-after-write races with

different values.

These examples contain data races, but are nevertheless disentangled. If desired, these algo-

rithms could be made entirely data-race-free and deterministic by adding an explicit deduplication

step. However, this would introduce additional memory pressure and decrease efficiency because

the deduplication results would need to be written to memory. Instead, disentanglement trades a

small amount of non-determinism for fewer allocations and improved performance.
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2.2 Disabling Cache Coherence for Disentangled Programs

2.2.1 Data Hazards

Disabling coherence exploits the absence or irrelevance of data hazards between regions of concur-

rent computation. Data hazards exist when two hardware threads interact with a shared memory

address and at least one thread writes to the address. When this occurs, the hardware must or-

der the reads/writes to achieve correctness with respect to the consistency model.1 Consequently,

execution pauses, and overall progress is slowed. Of the three varieties of data hazards (Read-

After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW)), WARD reasons

about RAW and WAW. True WAR hazards are prevented by WARDen’s reconciliation process

(§2.6.2).

2.2.1.1 Read-after-Write(RAW)

A read-after-write data hazard occurs when one hardware thread attempts to read an address writ-

ten by another thread. If a RAW hazard is not executed in the correct order, the reading thread

may receive stale data, resulting in incorrect program execution. To ensure correctness, the cache

coherence protocol handles RAW hazards according to the memory consistency model by halting

execution on the reading thread until the written data becomes available to it. Event 1 in Figure 2.2

shows an example, where thread j reads value, which is written by thread i. In the absence of the

coherence protocol, thread j would read the value 0 instead of the value 1.

1I assume Total Store Order (TSO) [157].
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2.2.1.2 Write-after-Write(WAW)

A Write-After-Write (WAW) data hazard occurs when two hardware threads write to the same

memory address in a specific order. If the order between writes is not enforced, then the memory

address may contain the wrong value, leading to incorrect program behavior. To ensure correctness,

the coherence protocol orders the writes according to the memory consistency model, by stalling

out-of-order writes as needed. Event 2 in Figure 2.2 shows an example WAW hazard, where

thread j writes to value after thread i. In the absence of the coherence protocol, value would

equal 1 at the end of execution when it should equal to 2.

2.2.2 Drawbacks of Cache Coherence

Cache coherence traditionally suffers from inefficiencies. One pitfall is false sharing, which per-

sists as a challenge despite being studied for more than 25 years [223]. Chabbi et al. [48] developed

a false sharing detection tool in 2018 that found false sharing even in benchmarks from the PAR-

SEC suite. These findings show how difficult eliminating false sharing from programs can be.

Cache coherence protocols also suffer slowdowns due to true sharing. Current protocols ad-

dress all true sharing events equally and reactively. However, some true sharing conflicts, such

as benign WAW races found in disentangled programs, do not require fine-grained coherence. In

addition, proactively flushing private caches can significantly improve performance (8–28%) [82].

WARDen improves both false sharing and true sharing scenarios to minimize the drawbacks of

cache coherence for disentangled programs.
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2.3 Opportunity for Optimization

HLPLs’ disciplined memory management enables new advancements to overcome the bottlenecks

of cache coherence. Previous works addressed some drawbacks of cache coherence for some

programs using a property called data-race-freedom (DRF) [32, 57, 191, 190]. DRF prohibits

concurrent accesses to data values (i.e., not synchronization primitives) if at least one access is a

write. This property is more restrictive than disentanglement because it disallows benign WAW

dependencies.

DRF must be enforced on an individual basis for each program. This burden typically falls on

the programmer through manual annotation [32, 57, 191]. Requiring the programmer to carefully

annotate the memory behavior of a high-level program defeats the purpose of a memory-managed

language, and it clearly violates the “transparent optimization” focus of this thesis.

Disentanglement, on the other hand, is embedded in the language definition. The language run-

time ensures that all programs exhibit the property without programmer involvement. By targeting

a broader and language-enforced property, WARDen provides a completely transparent improve-

ment for programmers using HLPLs.

2.4 WARD Property

I now formally define the WARD property and provide examples of how the definition applies to

programs, both generally and in a high-level fork-join language.

2.4.1 WARD Definition

I define the WARD property for a memory location M. M displays the WARD property when two

conditions hold for all hardware threads. For any two hardware threads i and j:



44

*val = 1;

*val++;

Core i Core j

SYNC

Time

EVENT 1   RAW - Not WARD

EVENT 3   WAW Apathy - WARD

*val = 1;

*val = 2;

Core i Core j

SYNC

EVENT 2   WAW - Not WARD

*val = 1; *val = 2;
Core i Core j

SYNC

Figure 2.2: Examples of Non-WARD (Events 1, 2) and WARD regions (Event 3).

1. There exist no execution orders which include RAW dependencies between i and j at M.

2. Any possible WAW dependencies betweeen i and j at M may be resolved in any order.

If these conditions are true for all possible combinations of i and j, then M has the WARD property.

Because the WARD property may exist for a specific set of memory locations and/or for a

limited amount of time, we refer to the WARD property in terms of regions. A WARD region r is

constrained in memory space and time such that:

r =
(
{M }, (ts, te)

)
(2.1)

During the time interval from ts to te, the set of addresses {M } have the WARD property.
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2.4.2 General WARD Example

WARD can be understood by observing the example in Figure 2.2. Note that the ”sync” line in

the figure refers to natural synchronization points such as barriers and fork-join points from the

fork-join model. We see that each event includes two cores (analogous to the hardware threads in

the WARD definition), which both operate on the same variable.

In Event 1, hardware thread i writes to the shared variable val. After synchronization, hardware

thread j reads and subsequently writes to val. When this situation occurs, a RAW dependency exists

at val. Therefore, the WARD property does not exist by condition 1 of the definition.

In Event 2, i writes to val, then j writes to val. After synchronization, hardware thread j writes

a new value to val. When this situation occurs, a WAW dependency exists at val. The program

requires hardware thread j’s final value to persist via the memory fence. The WAW is not apathetic,

so the WARD property does not exist by condition 2.

In Event 3, i and j again both write to val. We observe that are no RAW dependencies between

i and j at val because val is never read during the event. On the other hand, there is a WAW

dependency. However, the program does not provide explicit ordering, so it is safe to resolve the

WAW dependency in either order and maintain correctness. Event 3 meets both conditions of the

WARD definition, and thus val holds the WARD property for the duration of Event 3.

In see the WARD property in action, Figure 2.3 provides an example of how it applies to high-

level parallel languages. The pseudocode is for a prime sieve computation that is a simplified

version of the primes benchmark included later in WARDen’s performance evaluation. It defines

a function prime sieve upto which outputs an array of booleans, flags, to mark which integers up

to N are prime. For large enough N , the function first computes all primes up to b
√
Nc via a

recursive call. Then, for each integer p less than b
√
Nc, if p is prime, it marks every multiple of p

as composite. When this process completes, all flags will be correct up to N .
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1 // compute all primes less−or−equal to N
2 // output: array of flags, p is prime if flags[p] is true
3 def prime sieve upto(N):
4 bool flags[] = // size N + 1, all initially true
5 flags[0] = false
6 if N ≥ 1:
7 flags[1] = false
8 if N ≥ 2:

9 bool sqrtflags[] = prime sieve upto(b
√
Nc)

10 parallelfor p in range(0, b
√
Nc):

11 if sqrtflags[p]:
12 // p is prime, mark multiples as not prime
13 parallelfor m in range(2, bN/pc):
14 flags[p*m] = false
15 return flags flags is a WARD region
16

Figure 2.3: WARD example: Prime Sieve.
Throughout execution, all instances of flags are WARD regions.

In this example, the flags array is a WARD region. The only races on the flags array are write-

write races at indices which are multiples of two or more primes, but the same value (the boolean

false) is always written at each location. Therefore, the writes may be resolved in any order.

Consequently, the flags array satisfies both conditions of the WARD definition.

2.5 Transparently Detecting WARD Regions

I now describe how WARD regions can be automatically detected in HLPL programs without

programmer annotation or compiler analysis. These results are specifically relevant for MPL [155,

231, 7], a compiler for the Parallel ML language that I focused on for this project.

2.5.1 Conservative Scheduling

For the purposes of connecting logical parallelism (i.e., the fork-join structure) and actual paral-

lelism on the hardware, I assume that the scheduler does not over-parallelize. Specifically, if two
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instructions occur concurrently on two hardware threads during execution, then the instructions are

logically in parallel according to the fork-join structure of the program. All user-level thread sched-

ulers that I am aware of, including those used in languages and systems such as Cilk, OpenMP,

and MPL, follow this assumption. The standard retirement process in an out-of-order superscaler

core then assures that effects become visible as the scheduler intends.

2.5.2 Disentanglement⇒WARD

Through the lens of disentanglement and the heap hierarchy (§2.1.2), I observe that at each leaf

heap, all data is entirely local to one thread. Therefore, all leaf heaps are WARD regions in disen-

tangled programs. This is a critical point because at every moment throughout execution, approxi-

mately half of all heaps are leaves, even as the hierarchy grows and shrinks due to forks and joins.

(Leaf heaps may become internal due a fork, but then later become a leaf again due to a join.)

Note that internal heaps may also be or contain WARD regions, but I do not leverage them.

From disentanglement alone, I cannot ensure that the data at internal heaps is WARD. Disentan-

glement allows for communication through ancestor (i.e., internal) heaps, which may violate the

WARD property.

Despite this conservative assumption, my approach still encompasses many memory accesses,

including significant benign WAW races. Allocations occur at leaf heaps, so I ensure that all newly-

allocated data occurs in regions that are WARD in disentangled programs. For programs that

utilize considerable immutable data, WARD also covers all memory writes which initialize new

immutable objects. Specifically regarding WAWs, significant races can occur from the language

runtime interacting with application memory.
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2.5.3 Disentanglement by Construction in MPL

The MPL compiler directly produces x64 executables (no JIT) linked with a runtime system. To

ensure disentanglement by construction, MPL offers a standard library consisting of a number of

datatypes, including sequences, sets, dictionaries, etc. The library code is implemented under-the-

hood via efficient data structures and algorithms, utilizing in-place updates where crucial for effi-

ciency. This approach allows programmers to write efficient parallel algorithms without needing

to reason about either race conditions or disentanglement. The resulting programs are disentangled

by construction.

2.5.3.1 Automatically Exploiting WARD with MPL

In MPL, the runtime system performs task scheduling and automatic memory management. It

already exploits disentanglement for improved parallel memory management (especially parallel

GC). Again, during execution, all leaf heaps are WARD regions. To take advantage of these WARD

regions afforded by disentanglement, I modified two parts of MPL’s runtime system: the memory

manager and scheduler.

MPL’s memory manager implements heaps as linked lists of pages, where allocations are per-

formed within each page via bump-allocation. When a page is exhausted, a fresh page is allocated

and the current heap is extended. These pages are always allocated by leaf threads; therefore,

whenever a new page is allocated to extend a leaf heap, the page is marked as a WARD region.

Pages are later un-marked by the scheduler (which is a standard work-stealing scheduler [30])

at forks, which cause leaf heaps to become internal. At each fork in the program, the scheduler

pushes one or more new child tasks onto its work queue and begins working on one of the children

with a fresh heap. The scheduler unmarks WARD pages of the current heap before each fork.
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2.5.4 Software Engineering Effort

The modifications to MPL are invisible to the application programmer. Also, the implementation

effort is minor because much of the logic necessary already exists in the memory management of

the language run-time. The total implementation changes to MPL involved adding less than 100

lines of new code.

2.6 WARDen Cache Coherence Protocol

Next, I describe the WARDen cache coherence protocol. WARDen augments a standard MESI

(Modified, Exclusive, Shared, Invalid) [157] directory-based protocol with a WARD state W. Fig-

ure 2.4 shows the updated directory controller FSA. Cache blocks enter the WARD state when their

addresses are contained within WARD regions. When a WARD region is removed, the hardware

reconciliation process returns the associated cache blocks to the MESI states. In this dissertation,

I discuss coherence messages as defined by Nagarajan, et al. [157].

2.6.1 The WARD Coherence State

To begin, the directory tracks all active WARD regions. WARD regions are therefore defined

globally (i.e., WARD regions cannot exist for some cores but not others). WARD region members

transition to the new WARD state when they enter the directory or upon the first sharing event (i.e.,

a request from a second core). The directory effectively disables coherence for cache blocks in the

WARD state. In practice, this means that read and write requests are fulfilled without downgrading

or invalidating the same block from other caches.

Shared caches (i.e., caches that are used by multiple cores, such as the last-level cache (LLC))

must keep track of the active WARD regions. Using this information, they silently handle any
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upstream requests from private caches. Similar to the directory, shared caches furnish values in the

WARD state without inhibiting the use of other copies. For example, consider a cache hierarchy

with private L1 caches and a shared L2. If the L1 cache of core A (L1-A) requests write (or read)

access to a cache block currently owned by the L1 of core B (L1-B), the request would flow through

L2. If the block is not a WARD region member, L2 would invalidate (or downgrade) the block in

L1-B. If the block is in a WARD region, L2 would immediately approve L1-A’s request without

bothering L1-B.

When a shared cache receives a GetS (read request) for a WARD block, it returns an exclusive

copy to the requester and hence avoids subsequent upgrade requests even if the same block is

concurrently accessed by other cores (e.g., due to false sharing). Thus, WARDen pretends as if the

block is private to each core and avoids unnecessary data movement. As a result, private caches

can operate as previously defined by the standard cache coherence protocol, and their behavior

need not be modified. Leaving private caches unaltered avoids complexity and allows individual

cores to operate as quickly as possible. From their perspective, all cache blocks in WARD regions

are unused by others.

2.6.2 Reconciliation

When a WARD region is removed, reconciliation merges concurrent updates to cache lines and

brings the system to a coherent state. During reconciliation, all WARD cache blocks are placed in

the proper MESI state across all cores.

Next, I describe the reconciliation process using three categories: no sharing, false sharing, and

true sharing. Note that the directory tracks which cores are sharing each block, and mergers are

facilitated by sectored caches (§2.7).

No Sharing: If only one core is holding a block, it has no sharing. Blocks with no sharing
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can be instantly converted to the Exclusive state. Program correctness is guaranteed in this case

because coherence is fundamentally unnecessary for cache blocks that are not shared.

False Sharing: If a block has multiple sharers that modify distinct sectors, it has false sharing.

Blocks with false sharing are merged and set to the Shared state. These blocks were shared by

multiple cores, but the individual memory locations within them were not. Therefore, each location

was written by at most one hardware thread, and that thread’s local value is the most up-to-date.

To reconcile these blocks, the protocol sets the global value of each location to the local value from

the hardware thread that wrote it. Memory locations that were never written are already consistent.

True Sharing: If a block has multiple sharers that modify the same sector, it has true sharing.

True sharing occurs when there is a data hazard between separate cores. WARD property guaran-

tees that no RAW hazards will occur, so this form of true sharing is irrelevant. Also, by the WARD

property, WAW hazards can be resolved in any order. Thus, reconciliation can merge these lines

by convenience (e.g., pick the value processed last by the directory).

Note the reconciliation for false and true sharing use the same mechanism. Their distinction is

only for understanding.

2.6.3 Addressing Drawbacks of Cache Coherence

In §2.2.2, I described inefficiencies in modern coherence protocols. First is false sharing, which

WARDen addresses through the W state. While a cache block maintains state W, loads/stores to the

same cache line by other hardware threads are ignored, so false sharing does not lead to coherence

traffic.

WARDen presents two improvements for true sharing scenarios. As with false sharing, the W

state avoids coherence traffic. Benign WAW hazards are handled by reconciliation, resulting in a

one-time cost, which can be overlapped with computation when eviction occurs before the WARD
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region ends. Additionally, MPL exposes a less obvious software optimization by unmarking pages

at forks. Just before forking, a thread writes information required by the new child thread to execute

the forked function (e.g., function pointer, input arguments, etc.) into its heap. When the scheduler

unmarks these pages, the corresponding cache lines are effectively flushed from the private caches

to a shared cache via reconciliation. The hardware-based reconciliation delay is overlapped with

the software-based thread creation delay. Then, the newly-created thread immediately accesses

these cache lines faster because it is avoiding downgrades to the previous owner’s private caches.

All of these optimizations improve application performance by avoiding invalidations (false

sharing, unordered WAWs) and downgrades (false sharing, proactive evictions).

2.7 WARDen System

The WARDen system is my proposed implementation conjoining the WARDen protocol with an

HLPL implementation. In this section, I describe the necessary mechanisms to implement the

system, and how I simulate it using the Sniper architectural simulator [43].

2.7.1 Proposed Hardware Implementation

Implementing the WARDen system requires “Add/Remove Region” instructions, sectored caches,

reconciliation logic, and WARD region storage. WARDen coherence protocol and Parallel ML

runtime communicate using two new instructions. The runtime uses these instructions to signal

the hardware when a WARD region begins/ends. The addition of two new instructions will have

minimal impact.

Sectored caches are necessary for reconciliation to track which memory locations within a

cache block are mutated. Sectored caches include additional bits that to track writes at a granularity

smaller than the cache block size.
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In this proposed implementation, WARDen requires byte sectoring to match the smallest gran-

ularity in software. This approach adds one bit for every eight data bits. Caches already include

substantial metadata including tag bits, coherence state bits, sharer bitmasks in the LLC, and the

overhead of SECDED codes for error detection/correction. Using CACTI 7.0 [19], I estimated

that byte sectoring on 64-byte cache blocks adds a cache area overhead of 7.9%. I believe our

average speedup (1.46x) is far greater than could be gained using the added area less cleverly (e.g.,

increasing cache size).

The proposed reconciliation logic is as follows. All WARD cache blocks are flushed (written

back as needed and invalidated) from the private caches, and the LLC and directory process re-

quests in the order they arrive. Any sector of a flushed cache block with the write flag set is written

back to the shared cache. For the no-sharing and false-sharing cases, no two local copies of a cache

block will have the write flag set for the same sector. For the true sharing case, the final value of

each sector is taken from whichever cache block is processed last by the LLC; the WARD property

guarantees the correctness of this random process.

In practice, WARD regions usually persist long enough to trivialize the reconciliation delay.

During evaluation, our prototype reconciled only one block per 50,000 cycles. Therefore, the

WARD property is better considered through the lens of coarse-grained data parallelism where

regions are larger in time. Also, optimizations outside the scope of this work, such as reconciling

blocks in parallel using a multi-banked directory design, could reduce the penalty. For all these

reasons, reconciliation can implemented with reasonable overhead.2

Lastly, all directories and shared caches must include storage to track active WARD regions.

Regions can be stored with 2 pointers (16 bytes) that indicate their beginning and end. To enable

efficient lookups, the simulator models the storage as fully associative caches implemented using

2Due to this minimal overhead, the simulator estimates the reconciliation overhead cost by performing a cache
flush.
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CAM-like structures.

To perform a lookup, the system uses the CAM’s per-bit equality comparator to determine the

most significant bit that differs from between the region boundary and the address. Then, it checks

the value of the differing bit. If the address bit is 1, the address is greater than the region boundary.

It follows that if the address bit is 0, the address is less than the region boundary. To pass the check,

an address must be greater than the lower bound and less than the upper bound.

This logic will require slightly more area than a standard CAM, but it is substantially simpler

than the more complicated TCAM since it is not comparing the results across non-paired entries.

If an address is somehow found in more than one region, it is clearly safe to just mark it as WARD.

Again using CACTI, supporting 1024 simultaneous regions would require less than 0.05%

additional area. This design allows WARD regions to exist for unlimited periods of time, only

bounded by the software’s directives.

Overall, these results indicate that WARDen is feasible.

2.7.2 Interoperability

WARDen and its proposed implementation are designed to maintain interoperability with pre-

existing/non-HLPL programs and space/time-shared multiprocessor systems. Non-WARDen pro-

grams will not signal WARD regions to the hardware, and thus all their coherence traffic will be

handled according to the standard MESI protocol. When multiple WARDen programs are running

simultaneously, each will signal their own WARD regions and remain oblivious to each other’s re-

gions. HLPL programs use a single process with many threads, avoiding any interprocess memory

regions.

Our WARDen system is also capable handling more complex system interactions. To illus-

trate, consider context switching. If a WARDen program is context-switched out, reconciliation is
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1 /* Ran on two separate cores (myself and partner) */
2 while (iterations--) {
3 while (buf != partnerID) ;
4 buf = myID; }
5

Figure 2.5: True Sharing Microbenchmark Kernel.

Table 2.1: Validation of Sniper Model (Latencies in Cycles).

Scenario Real HW Latency Simulated Latency
Same core 8.738 11.21

Diff. core, same socket 479.68 286.01
Diff. core, diff. socket 1163.23 1213.59

initiated. Applying reconciliation will not noticeably increase the context switch delay. Reconcili-

ation is handled by the directory, meaning a processor can initiate reconciliation and immediately

continue execution on the different workload unless it needs to access the memory region being

reconciled, which should rarely/never happen. Reconciliation is also completed per-cache-block,

so if the new workload accesses a few of the same addresses (e.g., a small false sharing event),

it does not have to wait for the whole WARD region to be reconciled. I cannot cover all possible

system interactions here, but in general, reconciliation enables safe and efficient interoperability.

2.7.3 Simulated Prototype

To project the performance improvement and energy savings of the WARDen system, I imple-

mented it within the Sniper multicore simulator [42, 43]. I employed the latest version of Sniper [43],

which uses an interval simulation technique capable of modeling fine-grained coherence events. I

show that Sniper correctly models the latencies of data movement using a true sharing microbench-

mark. The kernel of this microbenchmark is in Figure 2.5.

I ran the microbenchmark on a test system with two Intel Xeon Gold 6126 processors in sepa-
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Table 2.2: Simulated System Specifications.

Parameter Value Parameter Value
L1 Size 32 KB L1/L2 Associativity 8
L2 Size 256 KB L3 Associativity 20

L3 Size (per core) 2.5 MB L1/L2/L3 latencies 6-16-71 cycles
Cache Block Size 64 B Frequency 3.3 GHz
Cores per Socket 12 Intersocket latencies vary, see text

rate sockets. Each processor has an L1-L2-L3 (latency in cycles: 6-16-71) cache hierarchy, where

L1 and L2 are private and L3 is shared. I configured Sniper identically to match this system. I

evaluated the true sharing microbenchmark in three scenarios, in which the competing hardware

threads are on (1) the same core, (2) different cores but the same socket, and (3) different cores and

different sockets. I measured the cycles per iteration over 100 million iterations of the benchmark.

I ran each scenario 10 times and report the measured averages for real and simulated hardware

in Table 2.1. Both the real hardware and simulated latencies align closely. While the simulator

latencies are not identical to that of real hardware, they allow for accurate relative comparisons.

Next, I proceed to evaluate WARDen on larger scale benchmarks.

2.8 Evaluation

I compared the performance and energy of standard MPL binaries with the MESI cache coher-

ence protocol versus the WARDen protocol using Sniper and measured energy consumption using

the McPAT [139] power model included with Sniper. Table 2.2 shows the configuration of the

machine and model. For my evaluation, I studied one and two socket versions and likely future

hardware: many-socket and disaggregated systems. As a whole, these results show how WARDen

can transparently improve application performance on a wide variety of modern systems.
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Figure 2.6: WARDen Single Socket Results.

2.8.1 Evaluation Methodology

I evaluated the combination of MPL and WARDen using the PBBS benchmark suite [204]. PBBS

is a well-cited suite that includes benchmarks from many problem domains, including graph anal-

ysis, numerical algorithms, text/image/audio processing, computational geometry, and computer

graphics. These benchmarks have been ported to Parallel ML and compiled using MPL, ensuring

disentanglement. Many of these benchmarks are ported from state-of-the-art C/C++ benchmarks

in the PBBS benchmark suite [204], and all are highly optimized.

I tuned the benchmark input sizes so each executes without simulation in .1-.5 seconds, result-

ing in execution times on the simulator between .5-4 hours. I chose these times to feasibly explore

multiple configurations.

2.8.2 Modern Hardware

2.8.2.1 Single socket

First is a single socket version of the configuration shown in Table 2.2. As shown in Figure 2.6(a),

WARDen produces speedups of 1–1.8x, with a mean speedup of 1.24x. Figure 2.6(b) shows total

processor and interconnect energy gains. There is more variation in these, but the averages are

17.4% and 17.3%, respectively. Total processor energy decreases with WARDen in large part be-
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Figure 2.7: WARDen Single Socket Results.

cause execution time decreases. Network energy decreases due to the smaller number of coherence

messages and data transfers. The performance/power overhead of tracking/reconciling WARD re-

gions negatively impacts the results for benchmarks which benefit minimally from WARDen (e.g.,

make array).

2.8.2.2 Dual socket

Next, I show how WARDen scales to a dual socket system with two of the single-socket processors.

Figure 2.7(a) shows that WARDen produces speedups of 1–2.1x with a mean of 1.46x. These

speedups are higher than those from the single socket case, suggesting that the benefits of WARDen

scale with machine size. There is also more separation between benchmarks that benefit from

WARDen (e.g., palindrome) and those who do not (e.g., dedup).

As shown in Figure 2.7(b), energy savings increase on the dual socket system compared to the

single socket system. For this case, interconnect energy savings, with a mean of 52.9%, outpace

the total energy reduction, with a mean of 23.1%, and in some cases, they are the sole driving

factor in the cumulative decrease. This result is expected because coherence messages are now

passed between sockets, therefore consuming far more energy in the network. WARDen is able

to eliminate many of these messages. Across the less-accelerated benchmarks, we do not see a

negative effect greater than a 5% power increase.
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Figure 2.8: Dual socket speedup w/ Reduction in Invalidations & Downgrades.

2.8.2.3 Analysis

To show that the improvements to cache coherence generate the observed speedups, I studied the

dual socket results in greater detail. For all the benchmarks except tokens, WARDen recognizes the

vast majority (90%+) of memory accesses as occurring in a WARD region. There is no correlation

with the performance results because many accesses are to private variables for which there will

be no coherence traffic anyway. To understand the effect of WARDen, I instead focused on the

memory accesses that would incur costly downgrades or invalidations with a standard coherence

protocol.

Figure 2.8 compares the dual-socket speedups with the reduction in invalidations and down-

grades, counting the number of invalidations/downgrades avoided per 1000 instructions executed.

Note that invalidations and downgrades are counted per cache, so a single execution may cause

many invalidations or downgrades throughout the cache hierarchy. Figure 2.8 shows a positive

correlation between reducing costly memory events and speedup. For many benchmarks, WAR-

Den avoids invalidations and downgrades, which in turn accelerates performance. Conversely,

benchmarks with small reductions of these events show little speedup.
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Figure 2.9: Percent of Reduction by Invalidations and Downgrades.

A few measurements in Figure 2.8 appear anomalous. Three benchmarks (nqueens, ray, and

suffix array) show significant speedups, yet have relatively small reductions in coherence events.

Meanwhile, fib, msort, primes, and quickhull underperform given what might be expected given

their relatively large reductions in coherence events.

To dive deeper, Figure 2.9 shows the breakdown of invalidations and downgrades by percent-

age. Downgrades are generally more important than invalidations for application performance

because they affect load operations. Loads are blocking operations that pause dependent com-

putation. In contrast, invalidations are caused by store operations, which are injected into the

processor’s store buffer and commit without waiting for their completion in the memory hierarchy.

Unless the store buffer is full, which is relatively rare, store latency (and hence invalidation la-

tency) does not impact execution. Figure 2.9 shows that Nqueens, ray, and suffix ray mostly avoid

downgrades (77.7%, 86.4%, and 98.3%, respectively). Contrast these results with a more subtle

outlier, fib. Fib experiences a significant reduction in negative coherence events but does not see

any appreciable speedup. This likely occurs because fib has the lowest percentage of downgrades

out of all benchmarks (2.65%).

Now, I explain the results for msort, primes, and quickhull. All three mostly avoid downgrades,

so I would expect more substantial speedups. However, the performance of these benchmarks is
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Figure 2.10: Percentage IPC improvement.

not bound by coherence events. To understand these benchmarks, I plot the percent IPC improve-

ment generated by WARDen in Figure 2.10. IPC helps us to understand the application’s ability

to continue executing instructions despite coherence delays. Benchmarks with low IPC improve-

ments do not take advantage of the faster memory accesses provided by WARDen, indicating their

speedup should be lower. Surely enough, all of msort, primes, and quickhull show minimal IPC

improvement from avoiding downgrades and invalidations.

Perhaps the most interesting measurement in Figure 2.10 is ray, which shows an IPC reduction

despite its large speedup. I believe this IPC result indicates an improvement to synchronization de-

lays. The PBBS benchmark suite uses busy-waiting synchronization primitives implemented using

compare and swap atomics. Busy waiting involves executing many cheap read/write instructions.

WARDen’s improvements help individual threads reach synchronization points more quickly and

evenly, eliminating fast waiting instructions, and thus lowering the IPC despite improving appli-

cation performance. ray enjoys a 49.5% reduction in load instructions executed that justifies this

claim. This reduction of instructions executed also further supports the reported speedup.
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Figure 2.11: Performance and Energy Improvements on Disaggregated Hardware.

2.8.3 Future Machines

2.8.3.1 Many Sockets

In the future, systems with many sockets will become more commonplace. Programs written in

HLPLs are a great candidate to run on such machines because they allow expression of algorithmic

parallelism, making readily available the higher levels of parallelism such machines require. In

this case, interconnect latencies (like those in Table 2.1) will continue to rise. The advantages of

WARDen will become even more prevalent in such a situation. To better understand why, consider

another likely future hardware scheme: disaggregation.

2.8.3.2 Disaggregated

I modeled a 2 node, disaggregated system, with a remote access time of 1 µs. This time is conser-

vative, outstripping the performance of state of the art systems [41, 93]. For this study, I included

the most promising benchmarks from the previous section.

Figure 2.11 shows that benchmark speedup improves dramatically, to about a mean of 3.8×,

on the disaggregated system. As seen in Figure 2.11, network energy savings improves to a mean
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of ∼77.1% and processor energy savings improves to a mean of ∼49.5%. This result makes sense

because the disaggregated system has a L3 miss penalty more than 3× greater than the standard

dual socket system. Coherence downgrades and flushes are therefore more costly, which in turn

makes WARDen more valuable.

A subtle result of this experiment is that disaggregation appears to widen the performance-

improvement gap between benchmarks that drastically benefit from WARDen and those with more

middling results. Grep was the weakest performer of the selected benchmarks in the experiments

simulating standard hardware, and its speedup did not grow nearly as much as the others in the

disaggregated case.

disaggregated systems, which have far less consensus on how to implement shared memory,

are a great subject for further study.

2.9 WARD in Low-level Parallel Programs

While WARDen was developed in the context of high-level parallel languages, it may also be useful

more generally because the WARD property occurs in lower-level programs as well. I contributed

to a tool named CARMOT that analyzes the hot loops of a program that has been lowered to

LLVM [66]. I applied CARMOT to popular low-level benchmark suites, including NAS 3, SPEC

’17 and PARSEC 3.0. Our tool conservatively determined that 96% of the variables in the hot

loops of these benchmarks displayed the WARD property, suggesting low-level codes could also

benefit from WARDen. Transparently recognizing WARD regions in these programs is an exciting

avenue for future work.
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2.10 Conclusion

Lower-level parallel languages have been implicitly and explicitly co-designed with hardware to

varying degrees for decades. HLPLs present the opportunity to explore new co-design opportuni-

ties. WARDen shows that it is possible to transparently optimize shared memory communication

(via cache coherence) for HLPLs. WARDen was published at the CGO’23 conference [238]. For

interested readers, the artifact for this work is available online [237].
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CHAPTER 3

AUTOTUNING COLLECTIVE ALGORITHM SELECTION

My work to accelerate shared-memory systems (WARDen) proved it is possible to transparently

improve communication for high-performance applications. However, many programs require

far more parallelism than is possible in a single shared memory domain. These applications run

on massive distributed memory systems like supercomputers. For these applications, I focused on

optimizing the Message Passing Interface (MPI), which is the de facto standard for communication

in high-performance distributed applications. Specifically, I studied the collective operations (i.e.,

collectives) in MPI, which are its most popular primitive.

3.1 Collective Algorithm Selection

3.1.1 Importance

Due to their popularity, collectives represent more than a quarter of overall execution time of ap-

plications on supercomputers [60], so improving collective performance will, in turn, improve

application performance. However, doing so is a significant challenge. Unlike point-to-point com-

munication, collective’s higher-level specification conceals the actual communications occurring,

thus creating uncertainty in their performance. MPI implementations include multiple implemen-

tations (i.e., algorithms) for the same collective. The best algorithm for a given collective is highly

dependent on the situation, and using the wrong algorithm can significantly hinder performance.
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Table 3.1: Collective Performance Variables.

Type of Variable Examples
Programmatic Message Size

Number of Processes (N)
Processes per Node (PPN)

Non-Programmatic Library Versions
Node Topology
CPU Performance
Network Bandwidth/Latency/Congestion

3.1.2 Challenge

Collective algorithm selection is challenging due to the quantity and dynamicity of influential

factors. I separate these factors into two categories shown in Table 3.1. First are programmatic

variables that are manually set in software. The programmatic variables are message size, number

of processes (N), and processes per node (PPN). The other category is non-programmatic variables,

which are innate to the hardware and software outside the target application. All of these factors in

both categories must be weighed when selecting the optimal algorithm for a given collective; the

wrong choice can result in a slowdown by a factor of two or greater.

To illustrate the complexity of algorithm selection, I present two algorithms for MPI Bcast in

Figure 3.1. Figure 3.1a is a serial broadcast: root node 1 sends the message to nodes 2, 3, and 4 in

order. Figure 3.1b shows a binomial tree implementation where child nodes forward the message

in parallel. In this case, node 2 can send the message to node 4 while node 1 sends the message to

node 3. It may seem like the tree algorithm is always the superior choice. However, for very small

message sizes, node 1 may be able to push all of its messages into the network before node 2 even

receives the information. In this case, the serial implementation will perform faster. In other cases,

yet more algorithms must be considered. For large message sizes, an algorithm that performs a

scatter followed by an allgather has been shown to be superior [216].
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Figure 3.1: Example MPI Bcast Algorithms. The Tree algorithm overlaps the 1→3 commu-
nication with the 2→4 communication. The correct algorithm to use depends on a multitude of
factors.

It is clear that picking the optimal algorithm requires an inordinate amount of expert knowl-

edge. To alleviate this burden from the application developer, a transparent solution is necessary.

3.1.3 Existing Transparent Approaches

There are many proposed methods to transparently perform collective algorithm selection. To

select the correct algorithms, the most popular open source implementations of the MPI standard—

Open MPI [91], MVAPICH [168], and MPICH [154]—use heuristics. I experimented with MPICH

because it serves as the basis of many popular production MPI libraries. The most prominent

example is Cray MPI, which is the primary MPI implementation on the supercomputers studied in

this work, including Oak Ridge National Laboratory’s Frontier, the most powerful supercomputer

in the world. In common with the other implementations, MPICH’s heuristics are outdated and

inaccurate. In 2020, Hunold et al. [109] found that optimized selections can accelerate collectives

by 35–40% compared with the default heuristic approach.

Autotuners improve upon the existing heuristics by using either analytical calculations or re-
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sults from empirical evidence (i.e., benchmarking the candidate algorithms and picking the best).

Much of this work has focused on analytical models that can project algorithm performance [225,

77, 142]. These models show varying performance results, and they have failed to gain widespread

adoption because they are difficult to implement, maintain, and expand for new algorithms. Other

tools such as Intel’s MPITune and Open MPI’s OPTO [47] use exhaustive benchmarking to find the

best algorithms. This strategy maximizes accuracy, but it requires so much data (and thus machine

time) that it can only be deployed to tune individual scenarios on large scale systems.

Machine learning (ML) promises the best of worlds. Hunold et al. showed that a random forest

ML model can improve upon exhaustive approaches by learning to predict scenarios that have

not been benchmarked [111], lessening the benchmarking overhead. They also have an inherent

advantage over analytical models because it can learn patterns in the data caused by factors that

are difficult to model analytically, such as real-time and/or machine-specific influences.

3.1.4 Limitations of ML Approaches

While ML has the potential to improve collective algorithm selection, the state-of-the-art ML sys-

tem [109] is not ready for production use. To begin, it is difficult for a prospective user to compare

ML autotuners and other existing approaches because there is no framework to quantify perfor-

mance differences. Also, the state-of-the-art ML autotuner still requires an intractable amount of

benchmarking data for training. The evaluation in [109] uses an ad-hoc method to generate training

and test sets with a small number of nodes (up to 48). The proposed method is a strong proof of

concept, but it does not generalize to encompass the performance of an entire system. The standard

approach would collect data for the entire feature space, then randomly split the data into training

and test sets. This process seems straightforward, but collecting this data for a larger system is

intractable. For example, on 512 nodes on Argonne National Laboratory’s Theta supercomputer,
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data collection alone would take approximately 75,000 core hours, which is over 6 days of ma-

chine time. The cost of data collection is so large dominates the machine learning inferencing

and prediction costs, rendering them both negligible, and invalidating ML autotuners as a practical

solution.

In my thesis research, I initially set out to address these challenges: 1.) design new statistics to

properly quantify ML autotuner performance, and 2.) make them practical for large-scale systems.

3.2 Quantifying Performance

The researchers in [109] evaluate their work by benchmarking every algorithm for their test data

points. They use this data to simulate the performance of selections by the MPI library’s default

method, their ML autotuner, and an oracle that always selects the best algorithm. They show some-

times significant (1.3-1.5x) speedup over the default selections. However, they do not comprehen-

sively compare to the oracle. The omission of this comparison makes it difficult to understand the

autotuner’s actual performance.

Average speedup over the default (i.e., Average Speedup) does not paint the whole picture with

respect to applications. For example, programs use only a small fraction of the feature space.

Average speedup could cover the weaknesses of a high-variation autotuner, which makes some

very good selections and some very bad selections. If an unlucky application only uses scenarios

with bad selections, they could actually suffer from the autotuner.

To better quantify autotuner performance, I designed the set of metrics in Table 3.2.

3.2.1 Metrics

Each metric encapsulates an important dimension of autotuner performance. First is R2 Score, a

generic value that represents ML model fitness. An R2 Score close to one means the individual
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Table 3.2: New Autotuner Performance Metrics.

Metric Definition Range of Values

R2 Score
General statistic describing how well
the model fits the data

[0,1] (closer to 1 is better)

Average Selected Algo-
rithm Slowdown (Aver-
age Slowdown)

Slowdown of the selected algorithm
compared to the optimal/oracle algo-
rithm averaged across all feature sets

[1,∞] (closer to 1 is better)

Classification Accuracy
Proportion of feature sets where the
ML model accurately predicts the
fastest algorithm

[0,1] (closer to 1 is better)

Significant Mistake Pro-
portion

Proportion of feature sets where the
predicted algorithm is more than 10%
slower than the fastest algorithm

[0,1] (closer to 0 is better)

regression models capture the trends in the dataset. This metric is useful because it indicates how

the model may perform on untested scenarios or more difficult areas of the feature space.

The most commonly used metric is Average Selected Algorithm Slowdown, or Algorithm

Slowdown for short. Average Slowdown represents the expected inefficiency of the autotuner’s

selections compared to optimal. This metric is most useful when making a comparison between

autotuners because it represents the performance of selected collective algorithms across the entire

feature space.

The next metric is Classification Accuracy, which represents the chance that a selection will

be the optimal algorithm. This metric is useful to measure model performance in the presence

of outliers. For example, a model may perform very poorly for edge cases that go unused in

applications. This model would have a poor Average Slowdown, but the Classification Accuracy

would more fairly represent its high performance.

Lastly, I include Significant Mistake Proportion to represent the chance that a selected algo-

rithm will be significantly (> 10%) slower than the optimal selection. Significant Mistake Pro-

portion is a valuable statistic to decide whether an autotuner is “good enough” for users because
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it shows the chance a selected algorithm will perform noticeably worse than it should. Because

applications only use a small fraction of the feature space, a small Significant Mistake Proportion

guarantees that they will see near-optimal performance from the autotuner. It is important to note

that 10% is an arbitrary value and can easily be changed.

These metrics provide a much better understanding of autotuner performance than Average

Speedup. I completely omit Average Speedup because default selection is much better on some

hardware systems than others. Attempting to compare autotuners from separate sources based on

Average Speedup can be actively misleading because it depends more on the difference in default

performance. Instead, my metrics should be applied separately to an autotuner and the default and

then compared.

3.2.2 Previous Work Re-Evaluation

To illustrate the usefulness of my metric set, I re-implemented the existing work in [109]. I ex-

haustively benchmarked the standard collectives for all power of two feature values up to 64 nodes,

32 process per node, and 1 MB messages. I selected 64 nodes because it is the closest power of

two greater than the 48 nodes used for evaluation in [109]. Then, I trained the ML autotuner using

randomly selected training data. The test set includes all of the collected data points. I used the

RandomForestRegressor from the scikit-learn package [172] as the ML model. Because I bench-

marked every algorithm in MPICH for every feature set, I knew which algorithm is optimal in

every scenario. I then calculated the new metrics using the autotuner’s selections and the optimal

selections. For comparison, I also simulated the selections MPICH would make by default and

found an Average Slowdown of 1.3. This means that there is headroom to improve on the MPICH

selections and speed up collectives by 23.1%.

I performed these experiments on the Bebop cluster at Argonne National Laboratory. I used
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Figure 3.2: Previous State-of-the-Art Autotuner Performance. Shown as a function of training
set constriction.

a 64-node subset of the 664 standard nodes. Each node contains an Intel Xeon-E5-2694v4 with

36 cores (I used up to 32 cores) and 128GB of DDR4 memory. The results of this evaluation are

summarized in Figure 3.2. I repeated the experiment with smaller training sets to understand how

the ML autotuner performs when I train it with more realistic amounts of data. The left side of

the graph confirms the results from the previous work: the ML autotuner performs exceptionally

well with copious training data. With an Average Slowdown near 1 and a Significant Mistake

Proportion near 0, applications would enjoy near optimal collective performance. However, the

picture becomes increasingly tainted as I move to the right in the table. The results stay stable for

50%, steadily deteriorate at 20/10%, and completely collapse at 1%. 10% is the upper limit of what

may be feasible on a larger scale system (1.82 machine hours). With 10% of the feature space for

training, an Average Slowdown of 1.10 is substantially sub-optimal, and a 0.12 Significant Mistake

Proportions means many applications would see noticeable performance deterioration.

I conclude that when trained with a realistically sized training set, the state of the art provides
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little practical value. These results showcase the need to reduce the amount of data required to

train an accurate ML autotuner.

3.3 Minimizing Data Collection w/ the FACT Approach

To reduce the necessary training data to create a useful ML autotuner, I created the FACT method-

ology. FACT is an acronym of its four steps: Feature Scaling, Active Learning, Converge, Tune

Hyperparameters. FACT builds upon the existing state of the art [109] (i.e., training a random

forest model using microbenchmark results) with several advancement that together reduce the

training data needed for a useful model by 6.88x. Below, I describe each component.

3.3.1 Feature Scaling

Data preprocessing is a ubiquitous step in machine learning applications. Preprocessing allows the

developer to use domain knowledge to help expose data patterns to the ML models, greatly im-

proving model accuracy. More specifically, the developer processes the data to eliminate anomalies

that may mislead the learner. One of the most common preprocessing steps is feature scaling. Fea-

ture scaling is vital for collective autotuners because some regression models typically treat larger

feature values as more important by construction. In algorithm selection, message size has a much

bigger range than number of nodes or processes per node, but the model should treat them all

equally.

To reduce our feature ranges equitably, I apply log2 scaler to the values. I then add one to avoid

feature values of zero, which are also known to confuse some models. Through this feature scaling

approach, value ranges become much more similar. Table 3.3 summarizes the ranges before and

after scaling.

Scaling the input values has a straightforward solution, but the output values present a more
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Table 3.3: FACT Feature Ranges.

Range Scaled Range
N [1,512] [1,10]

PPN [1,32] [1,6]
MSG SIZE [1, 1MB] [1,21]

complicated case. The range of output values is quite large, from a few microseconds for small

inputs to a full second or more for large inputs. In this scenario, a regression model may treat

outputs for small feature values as essentially the same. However, our metrics normalize the output

values for each feature set to the optimal algorithm. A difference of a couple of microseconds may

be a significant slowdown/speedup for small feature values, and the model must maintain this

information.

The most common approaches for scaling are standardization and normalization. In short,

standardization assumes the data fits a normal distribution and re-scales it to a mean of 0 and a

standard deviation of 1. Normalization is a uniform scaling technique that compresses the data

into the range [0,1] without affecting the shape of its distribution. Another approach to consider

is copying the metrics and scaling each output to the value of the fastest algorithm. I refer to

this technique as algorithm scaling. Finally, an additional log10 scaler to algorithm scaling could

further improve performance by matching the scaling pattern already applied to the inputs.

To evaluate these options, I repeated the experiments from Figure 3.2 with input scaling and

each of the output scaling options applied. The results are shown in Figure 3.3. To summarize, my

custom solution applying log10 with algorithm scaling outperforms the competitors. To understand

why, consider the pitfalls of each option. Standardization performs poorly because it assumes

that the data fits a normal distribution, which is not true for this data set. Normalization fails

because the input scaling complicates the input-output relationship by artificially introducing an

exponential component, and normalization passes this complexity on to the ML model. Given the
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Figure 3.3: Preprocessing Techniques Comparison. Algorithm Scaling w/ Log produces the best
(lowest) Average Slowdown every training set size.

weaknesses of the other preprocessing schemes, the custom solution using algorithm scaling with

an additional log10 scaler is the clear winner. It performs well because it scales the output to make

relative differences in performance more important, and it also eliminates the exponential relation

introduced by the input scaling technique.

By combining the custom feature scaling techniques, model performance significantly im-

proves. Figure 3.4 compares the new preprocessing to the original solution, which did not pre-

process the data; expectedly, all metrics improve. With a feasible amount of training data (1% of

the feature set), Average Slowdown decreases by 35.7%. Meanwhile, Significant Mistake Propor-

tion decreases by 14%. Interestingly, Classification Accuracy only sees a relatively modest uplift

(4.3%). Considering the trends across statistics, preprocessing improves the model not by making

more correct selections, but by making smaller mistakes when it does miss-select.
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Figure 3.4: Benefit of Custom Preprocessing. Preprocessing creates significant improvement
across all metrics.

3.3.2 Active Learning

Active learning is a type of machine learning where the learner interactively queries the data

set [199]. It is an iterative process that begins with a set of unlabeled data. In each iteration,

the learner chooses data points to be labeled by an oracle and adds them to its training set. Then

the process repeats, and the model selects new points. Training continues until the model accuracy

converges or a time limit is reached. Active learning is typically used for ML applications where

data labeling is a challenging or time consuming task. Typical use cases include situations that

require human intervention (e.g., text/speech/image recognition), but the same description applies

to algorithm selection.

For point selection, I used the most common strategy: uncertainty sampling [136]. This algo-

rithm queries data points that it is most uncertain how to label. However, the random forest model
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does not report prediction uncertainty. To estimate uncertainty, I fit a Gaussian process surrogate

model [17] to report features values at which it is most uncertain.

To use active learning to train a collective autotuner, I specified an unlabeled data space using

the input features and their scaled ranges. During each iteration, I looked up the execution times

of the chosen points using the exhaustive benchmark results to simulate data collection. After each

iteration, I tested model accuracy to check if I had met the convergence criteria. To approximate

performance indistinguishable from the oracle, I used a convergence criteria of Average Slowdown

below 1.03 and Significant Mistake Proportion below .05.

3.3.3 Hyperparameter Tuning

Hyperparameter tuning is a process where the parameters of the learning model (hyperparameters)

are optimized. All of the most common learners have many hyperparameters, and using the optimal

values can greatly improve model accuracy. For example, hyperparameters of the random forest

model include the number of decision trees and the max depth of the trees.

In theory, hyperparameter tuning should be performed every time a regression model is trained,

so as to maximize accuracy. However, similar to data set collection, searching the hyperparameter

space is time consuming. To perform hyperparameter tuning during the active learning iterations

before testing for convergence, data collection would have to pause while the model retrains with

many combinations of hyperparameter values. In my experience, collecting more data improved

model accuracy far quicker than hyperparameter tuning. For this reason, I include hyperparameter

tuning as a postprocessing step in the FACT methodology. This way, it can be performed offline

or on a single node, not expending the data collection resources. Active learning instead uses fixed

hyperparameter values that are derived from previous offline tunings.

It is best to think of hyperparameter tuning as an optional step to squeeze the last bit of accuracy
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Figure 3.5: DeepHyper System Diagram. [18]

out of the model after data collection. This step is most valuable when the user only has a fixed

amount of time to collect training data. In this case, the active learning process may not converge,

resulting in inaccurate models. Hyperparameter tuning can bridge the gap and produce a model

with converged-level accuracy. It is through this lens I later evaluate hyperparameter tuning.

3.3.4 Implementation

I created an initial prototype of the FACT methodology that integrates the main three ideas from

this section.

The prototype performs data collection using the Ohio State University (OSU) microbench-

mark suite [166]. The OSU benchmarks are a widely accepted suite for benchmarking MPI collec-

tives. Once the data is collected, it is preprocessed and used to train the RandomForestRegressor

from the scikit-learn Python package [172].
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For active learning, the prototype employs a special instance of the DeepHyper tool [16, 18].

DeepHyper is primarily an automatic hyperparameter tuning tool. It works by iterating through

hyperparameter configurations, training an underlying (surrogate) model. The surrogate model

maps the hyperparameter configurations to a result statistic defined by the user (e.g., classification

accuracy or R2 score). DeepHyper balances two modes: exploration and exploitation. During the

exploration phase, it queries the surrogate for the hyperparameter values with the most uncertainty.

It then trains the target model with those values, tests its performance based on the user-defined

metric, and uses the results to retrain the surrogate model. The “exploitation” phase then uses the

surrogate model to predict which hyperparameter values will maximize the performance of the

target model. Figure 3.5 illustrates DeepHyper’s inner workings.

Exploration phase of DeepHyper is very similar to the active learning process. The prototype

uses DeepHyper’s framework for active learning as follows:

• I set my autotuner’s random forest model as the target model (DeepHyper’s surrogate model

is a Gaussian process).

• I set DeepHyper’s β value to ∞, which forces DeepHyper to always stay in exploration

mode.

• I define DeepHyper’s performance criteria as the execution time of the collective algorithm.

• I specify the input features (N, PPN, message size) as the hyperparameters for DeepHyper

to optimize.

• To train the target model, I instruct DeepHyper to run the selected microbenchmark and

report the execution time.
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By manipulating DeepHyper, I implemented a custom active learning method with much less de-

velopment effort than an ad-hoc approach.

For hyperparameter tuning, the prototype applies DeepHyper for its intended purpose. It tunes

the following hyperparameters for the random forest model: number of trees, split criterion, max

tree depth, and minimum number of samples to split a node.

3.4 FACT Evaluation

I now compare FACT’s performance against the existing work and showcase its potential benefits

at large-scale. By reducing the data collection time, especially on larger scale machines, FACT

makes ML-based collective algorithm autotuner more feasible on exascale systems.

In the FACT prototype, data collection and machine learning techniques are separate. To eval-

uate it, I simulated the iterative process of collecting data, looking up the benchmark results from

the previously collected exhaustive results.

3.4.1 Existing Work Comparison

For comparison, I recreated Figure 3.2 using the FACT prototype. Again, I used a 64 node subset

of the Argonne Bebop cluster, each containing an Intel Xeon-E5-2694v4 with 36 cores (I used up

to 32 cores) and 128GB of DDR4 memory. The result is shown in Figure 3.6.

Given the exact same exhaustive dataset, the FACT-based approach greatly improves perfor-

mance with smaller training sets. For training sets between 50% and 1% of the feature space,

Average Slowdown decreased by 33-68% compared the previous state of the art. Classification

Accuracy (3-13%) and Significant Mistake Proportion (32-55%) also saw substantial improve-

ments.

By improving autotuner performance with small training sets, FACT minimizes data collection
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Figure 3.6:
FACT Prototype Performance.FACT Prototype Performance. A FACT-based approach greatly

improves autotuner performance with smaller training sets.

time. I again apply “near-optimal” convergence criteria: Average Slowdown below 1.03 and Sig-

nificant Mistake Proportion below .05 The FACT prototype reaches the criteria with a training set

of roughly 10% of the feature space, while the existing work requires roughly 50% of the feature

space. It takes 2.58 machine hours to collect the 50%, randomly selected training set. The 10%,

active learning training set takes .375 machine hours to collect. The 6.88x reduction is more than

expected based on the set size decrease (5x).

Active learning improves data collection time even more than the training set size suggests be-

cause it is naturally biased towards smaller feature values. Smaller feature sets have more variation

and symbiotically take less time to collect. It follows that the surrogate model assigns greater un-

certainty values in this range, therefore choosing these points instead of larger feature values. This

effect is even greater with the smallest training sets. When both methods use 1% of the feature

space, the active learner collects its data in 7.2x less time (.05 hours compared to .36 hours). Full
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Figure 3.7: FACT vs. State of the Art: 64 Node Data Collection Time for All Collectives.
Training sets with green labels result in ML models that meet the convergence criteria, while those
with red labels do not. On average, FACT reduced data collection time by an average of 1.14x for
training sets of the same size.

results for data collection time are shown in Figure 3.7.

3.4.2 Towards Exascale Systems

To understand how the FACT prototype scales with machine size, I also applied it to a larger scale

test system. I used a 512-node subset of the 4,392 node Theta supercomputer at Argonne. Each

node is comprised of an Intel Xeon Phi 7230 with 64 cores (I again used up to 32 cores) and 192

GB of DDR4 memory. At larger scale, it is impractical to collect exhaustive data for all collectives

as in Section 3.2. I instead collected data for one of the most popular collectives: MPI Bcast [60].
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Figure 3.8: 512 Node Data Collection Time for MPI Bcast. Training sets with green labels result
in ML models that meet the convergence criteria, while those with red labels do not. On average,
FACT reduced data collection time by an average of 1.31x for training sets of the same size.

Using large scale MPI Bcast data, I plot the data collection time for each training set size in Fig-

ure 3.8. Note that this figure only shows the data collection time for MPI Bcast, while Figure 3.7

shows the data collection time for all standard, non-blocking collectives. I used MPI Bcast’s in-

crease in data collection time from 64 to 512 nodes times cumulative results up to 64 nodes on

Theta to calculate the machine/core hour estimates stated in the introduction.

On the 512 node production scale machine, the benefits of FACT are amplified. Assuming

the convergence criteria are met with the same amounts of data as the previous experiment, FACT

requires 6.83x less training time (6.01 hours to .88 hours). Even on larger systems, FACT continues

to greatly decrease data collection time.
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Figure 3.9: Example Convergence Graph. The user runs out of data collection time when they
are only halfway to convergence.

3.4.3 Hyperparameter Tuning

To understand the benefits of hyperparameter tuning, again consider the scenario where the user

does not have enough machine time to generate a converged model. For this experiment, the

convergence criteria is when the model has an average slowdown less than 1.02.

I represent the convergence in Figure 3.9, which shows how Average Slowdown decreases as

the active learner adds points to the training set. This data is generated from MPI Reduce Scatter

from the 64 node testcase. I chose MPI Reduce Scatter because it is the slowest collective op-

erations to converge, making it the most likely to require hyperparameter tuning. The first line

indicates where the user ran out of data collection time (22.2 machine minutes), and the second

line represents the model convergence point if they had been able to continue training (36 machine

minutes).

I ran DeepHyper’s hyperparameter tuning routine to automatically generate a better random
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Table 3.4: Hyperparameter Tuning Iterations

Iteration Average Slowdown
1 1.04
2 1.057
... ...
20 1.019

forest configuration for the training set that minimizes average slowdown. The results of the most

important iterations are shown in Table 3.4. The tuning process produces an ML model that reduces

the average slowdown by 2x, getting under the convergence target in less than two-thirds the data

collection time.

Note that for this experiment, DeepHyper ran for around 15 minutes to find performant hy-

perparameter values. Attempting to introduce this process into active learning would increase the

overall time by 15 minutes times the number of training points collected. In the scenario with lim-

ited collection time, attempting to run hyperparameter tuning during active learning would inhibit

so much data collection that the model would never converge, regardless of the hyperparameter

values.

3.5 Conclusions from FACT

The FACT approach can generate an ML-based autotuner with performance equal to the state of

the art while reducing the training data collection time, making ML-based autotuners more feasible

on exascale supercomputers. Overall, FACT’s 6.88x expected reduction in data collection time

reduces my original estimate for a large-scale autotuner on Theta from 6 days of machine time to

1 day. This result is highly promising, but it clear that there a ways to go.
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3.6 Remaining Challenges

The FACT approach is a significant step toward practical ML autotuners for large-scale, production

supercomputers. However, there are still many remaining challenges that were revealed during the

evaluation process.

3.6.1 Training Point Selection

Despite its focus on the challenge, FACT’s primary bottleneck remains training data collection. To

understand why, re-consider FACT’s use of DeepHyper [18]. During the iterative training process,

FACT queries DeepHyper to select new training points to collect. DeepHyper selects the next point

based on its surrogate model. Then, DeepHyper benchmarks the point and reports the result. FACT

uses the data to train its own ML model, which is eventually used to make algorithm selections.

FACT implements this indirect approach because its own ML model, comprising random forest

regressors, does not have a straightforward way to select points to benchmark. However, by relying

on DeepHyper, FACT’s training point selections are specific to the target environment but not to

the FACT ML model, resulting in suboptimal selections. In addition, FACT must run an entire

additional application (DeepHyper).

3.6.2 Non-Power-of-Two Points

FACT assumes that all feature values are power-of-two (P2). In practice, these values do not al-

ways meet this assumption. Incorporating non-power-of-two (non-P2) values greatly increases the

search space for training, requiring many more training points and ballooning the overall collection

time.

In simulation, non-P2 values can easily be avoided; but in production, any feature values may
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Figure 3.10: Percentage of Non-Power-of-Two Message Sizes in HPC Applications. 15.7%
of collective calls use non-power-of-two message sizes, so we must consider their performance.
1024-node trace data is unavailable for ParaDis.

be used by applications. The “number of nodes” feature value is frequently non-P2 because non-P2

job sizes are common on Theta. The job scheduler may prioritize non-P2 node counts to maximize

utilization. On the other hand, “processes per node” will rarely be non-P2 for Theta, which has 64

hardware threads per node. For systems with non-P2 hardware threads, training can use fractions

of their thread count, ignoring P2 versus non-P2.

The last feature value, “message size,” is less clear-cut. Messages use datatypes such as char

and int, which have P2 bytes. However, an application may send a non-P2 count of a datatype,

making the overall message size non-P2. To study the behavior of applications, I profiled traces

from Lawrence Livermore National Laboratory [227]. Figure 3.10 shows that 15.7% of message

sizes across four applications are non-P2. For each application, the percentage is nearly the same

for both small- and large-scale jobs (1,024-node trace data is unavailable for ParaDis). Because

a significant portion of application collective calls use non-P2 message sizes, ML autotuner must

perform well for these values.

To understand its performance for non-P2 nodes and messages sizes, I reevaluated FACT using

non-P2 test datasets for MPI Bcast. I chose MPI Bcast because two of its algorithms (binomial,
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scatter recursive doubling allgather) favor P2 feature values, while the third (scatter ring allgather)

does not, making it the most interesting collective to study here.

I collected three new datasets on 64 nodes on Bebop like the FACT evaluation. One dataset uses

all P2 values just like FACT’s original evaluation. The other two datasets include only randomly

selected non-P2 numbers of nodes and message sizes, respectively. I trained the FACT prototype

(which uses only P2 points for training data) and tested it separately on all three new test sets.

The results are shown in Figure 3.11. The FACT methodology produces an ML model with

significantly inferior performance for non-P2 test points. For the “All P2” test set, FACT with

plentiful training data at 80% performs almost optimally, then slowly deteriorates to the right.

“Non-P2 Nodes” has the correct shape, while its average slowdown is always higher than the “All

P2” results. This trend appears because of the higher performance variability of MPI Bcast

algorithms for non-P2 node counts. The ML model is learning the performance patterns at the

same rate as the “All P2” set; it just gets punished more severely for incorrect selections.

“Non-P2 Message Size” shows a significant average slowdown across the entire graph. The

model does not optimize performance for this test set, even with large (>80%) amounts of training
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data. The reason is that the model fails to learn the trends in the data. Therefore, it is best to focus

on non-P2 message sizes, where the model shows the least ability to learn the performance trends.

3.6.3 Model Testing

In each iteration of active learning, the ML model is measured to check whether the overall perfor-

mance has “converged.” For convergence testing, FACT uses metrics such as Average Slowdown

to measure the model’s prediction quality. To calculate Average Slowdown, FACT needs addi-

tional points to test, aptly called the “test set.” Previous simulated experiments ignore the test data

collection time. In production, test data points are benchmarked like training points, but the results

must be kept separate. Test points consume critical data collection time but cannot be used to train

or improve the model.

FACT reduced the required training set size to ∼1% of the feature space. However, the testing

set size needs to cover 20% of the feature space for machine learning methods to work correctly.

Consequently, the time to collect test data dwarfs the time to collect training data, drastically

inflating the overall data collection time. In Figure 3.12, I plot the data collection time of a 20%

test set compared with the training data collection time. I normalize the values to the training data

collection time for each collective. Each collective requires 6–11x more time to collect test data
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than training data. FACT’s 1-day training time estimate completely ignores test data collection, so

this component has the potential to consume a week or more of machine time in production, which

is far too large.

3.6.4 Data Collection

FACT, like the previous works, collects all data points sequentially. This process is important

because HPC networks may route packets indirectly to increase the effective bandwidth between

nodes. This policy can create unexpected network congestion between communications, which

must be avoided in order to accurately measure collective performance. While safe, a sequential

collection strategy is very inefficient, particularly for larger machines.

3.7 ACCLAiM: A Production-Capable Autotuner

To address the significant challenges from the FACT prototype, I developed a new autotuner named

ACCLAiM (Advancing Collective Communication (L) Autotuning using Machine Learning).

Figure 3.13 shows how ACCLAiM’s approach fundamentally differs from all previous work on

the topic. Instead of just using simulation results to theoretically show improvements, ACCLAiM

seeks to build upon FACT to achieve a production-capable ML autotuner for collective algorithm

selection.

Broadly, ACCLAiM further reduces training time by minimizing the number of training points

collected and maximizing hardware utilization. ACCLAiM is the first ML autotuner prototype that

is practical to run on large-scale production supercomputers.
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Figure 3.13: ACCLAiM User Model Comparison. Previous works use offline simulation to show
the promise of ML collective autotuners. ACCLAiM aims to make these autotuners practical for
applications on large-scale production supercomputers.

3.8 ACCLAiM Improvements

This section describes ACCLAiM’s improvements that address each of remaining challenges from

FACT.

3.8.1 Training Point Selection Improvements

As described in Section 3.6.1, the FACT approach generates training point selections using a sec-

ond, separate ML model. To simplify the process, ACCLAiM uses jackknife variance calculations

to derive training points from a single ML model.

The jackknife technique calculates summary values through resampling [71]. Consider an

example where the objective is to find the variance of n values. The values are p = (p1, p2, ..., pn),

where pi is the ith value. Let xp equal the mean of p. A jackknife works by creating jackknife

samples. For a jackknife with n values, there are n jackknife samples. The ith jackknife sample

equals the mean of pwith pi removed. By removing single values, the jackknife generates n unique

samples. Let x be the means of the jackknife samples, where x = (x1, x2, ..., xn) and xi is the mean
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of p with pi removed. Then the variance (σ2) is calculated as

σ2 =

∑n
i=1 (xp − xi)2

n− 1

ACCLAiM uses the jackknife technique on the random forest model to calculate the variance

of potential training points. Applying the jackknife technique to a random forest regressor was first

proposed by Wager et al. [226]. Random forest is an ensemble machine learning model, meaning

its predictions are the average of an ensemble of individual ML models. Random forests consist

of decision trees. ACCLAiM applies the jackknife technique as follows:

1. Let n = the number of decision trees in the random forest.

2. Let p = the set of predictions from the decision trees. pi is the prediction from the ith

decision tree in the forest.

3. Let xp = the mean of p.

4. Calculate xi by removing each pi one a time.

5. Input xp and xi into the jackknife variance equation.

ACCLAiM repeats this process for every possible training point. Then, it selects the point with

highest variance as the next training point. By selecting points with high variance, ACCLAiM

provides its ML model with data that fills gaps in its understanding, minimizing the number of

points required to train a well-formed model. ACCLAiM only considers P2 feature values only

when using jackknife to limit the number of calculations.
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3.8.2 Non-Power-of-Two Point Improvements

To address non-P2 points from Section 3.6.2, ACCLAiM incorporates an extra step in the training

point selection. Every fifth training point, instead of choosing the exact point with the highest

variance, it instead selects a point with a random non-P2 message size where the selected message

size is the closest P2 value. For example, if the highest variance point has a message size equal to 8,

ACCLAiM would select a new message size between 6 and 12 that is not 8. The non-P2 frequency

was experimentally determined that it best balances P2 and non-P2 performance (Section 3.10.2).

By incorporating non-P2 variants, the ML model learns to accurately predict non-P2 points without

additional data collection time.

3.8.3 Model Testing Improvements

As described in Section 3.6.3, previous approaches like FACT calculate metrics using a costly set

of test points. ACCLAiM needs to estimate model performance without a test set, which means it

cannot calculate any traditional performance metrics. It instead needs a quantity that is measurable

during training with minimal overhead and correlates with model performance. To achieve this,

ACCLAiM reapplies the jackknife technique, summing the variance of every point.

To test whether this variance measure correlates with model performance, I performed a sim-

ulated experiment tracking both FACT’s standard convergence metric (Average Slowdown) and

variance. Figure 3.14 shows that variance correlates with Average Slowdown. Both metrics trend

downward over the same time interval. At around 400 seconds, the spike in Average Slowdown

is matched with a spike in variance. This event indicates that variance is capable of mimicking

fine-grain changes in performance. With these observations in hand, I designed ACCLAiM with

cumulative variance as a proxy for Average Slowdown and therefore its convergence criterion. I

provide further evaluation of this technique in Section 3.10.3.
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Figure 3.14: Variance and Average Slowdown as a Function of Training Time. Average Slow-
down converges as variance converges.

3.8.4 Data Collection Improvements

As described in Section 3.6.4, previous approaches collect training data points sequentially to avoid

potential network congestion. To enable parallel data collection, ACCLAiM leverages the network

topology.

Figure 3.15 shows a simplified version of the Dragonfly topology, which is a popular topol-

ogy for modern supercomputers, including Theta and Frontier. Nodes are numbered sequentially

within a rack and across racks. This Dragonfly example has three layers1. The first layer connects

nodes within a rack. Layer two pairs every two racks. The third layer connects the rack pairs.

Network congestion will occur if benchmarks share a single instance of a layer. For example, two

benchmarks cannot run on nodes in a single rack. Similarly, if a run is using nodes on both rack 0

and rack 1, another benchmark cannot use any remaining nodes on those racks.

ACCLAiM uses a greedy algorithm to run many benchmarks in parallel. Instead of selecting

a single training point, ACCLAiM generates a list of potential training points sorted by variance.

1Theta uses a 3-layer Dragonfly, while Frontier’s Dragonfly has only 2, skipping the “rack-pair” layer.
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Figure 3.15: Simplified Dragonfly Topology. This topology is a simplified version of the design
found on many supercomputers, such as Argonnne’s Theta and Oak Ridge’s Frontier. Jobs must
be scheduled to minimize network congestion in the first two layers.

Then, it generates a “schedule,” assigning benchmarks to run on disparate nodes in parallel. The

algorithm works as follows:

1. Select the highest-variance uncollected point p, which requires n nodes.

2. Attempt to schedule p on the next n “unused” sequential nodes.

3. If n can fit in the eligible nodes, schedule p on the next n “unused” nodes, mark those nodes

and any remaining nodes in the same racks as “used,” and repeat.

4. If n cannot fit, exit and run all scheduled benchmarks in parallel.

This algorithm avoids network congestion by disallowing different benchmarks to run in the same

rack and scheduling on sequential nodes. By disallowing shared racks, this algorithm prevents

congestion on the first network layer. Scheduling on sequential nodes prevents congestion on the

second network layer because multi-rack benchmark runs cannot simultaneously schedule across

the same racks. If a run needs nodes on another rack, it must first fill its original rack, preventing

a second run from also being scheduled across those racks.
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If two runs schedule across multiple rack pairs and the first run ends within the same pair as the

second run begins, the third network layer may see slight congestion. However, because the third

network layer is implemented using direct, high-bandwidth connections, incidental congestion is

relatively low. Also, when designing for an active production environment, congestion in the third

layer is already expected from other applications. Third-layer congestion is mitigated by measuring

each collected point multiple times.

3.9 ACCLAiM Implementation

Here I describe how a user interacts with ACCLAiM and its implementation details. To fully ac-

count for dynamic non-programmatic variables, ACCLAiM uses a unique “allocation-time” train-

ing approach, meaning that it trains once a job is scheduled onto a partition but prior to application

execution. Because ACCLAiM retrains for every job, training consumes execution time during

a job’s allocation. Figure 3.13(b) shows how ACCLAiM is designed to be used in a production

environment.

3.9.1 User Input

The user submits a job to the HPC system through ACCLAiM. The only additional information

required is a list of collectives predominantly used in the application. This collective list should be

common knowledge for highly optimized applications. If not, users can provide a conservative list

including every collective that might require autotuning or use a tool such as Intel’s APS [114].

3.9.2 Training

When a job is scheduled in the production environment, instead of immediately running the appli-

cation, ACCLAiM trains its ML model for the specified collectives. ACCLAiM adopts the basic
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training framework from FACT. To collect training points, ACCLAiM again uses the Ohio State

University microbenchmark suite [166]. For its random forest model, it again uses the Random-

ForestRegressor from the scikit-learn Python package [172]. ACCLAiM uses a single random

forest model per collective and enumerates “algorithm” as an additional feature.

3.9.3 Configuration File Generation

Once the models have converged, ACCLAiM generates an edited version of the default algorithm

selection .json file with its models’ selections. The .json file is a list of logic rules that

indicate which algorithm to select. An example rule is if(message size ≤ 32) {algorithm

= binomial}. The rule set must be “complete,” meaning that every possible input must resolve

to a selection. The rules also must be pruned such that no two consecutive rules resolve to the same

prediction. This step minimizes the selection delay during execution.

To create a list of rules, ACCLAiM collects its ML model’s algorithm selections for every P2

point. Naively, it could iterate through the selections and create a rule every time the selection value

changes. However, this method abandons the model’s non-P2 point selections. Instead, it iterates

through the ML model’s algorithm selections and detects when the selection changes. Below, I

describe the logic applied during this process. Point A is the last point with the old algorithm

selection. Point C is the first point with the new algorithm selection. Point B is the non-P2 point

halfway between A and C. I refer to the selected algorithm at each as “ALG-(Point)” (e.g., ALG-A

is the selection at A).

ACCLAiM generates rules based on the change in selected algorithm, as shown in Figure

3.16. It creates three rules: all values below A (inclusive) use ALG-A, all values between A

and C (exclusive) use ALG-B, and all values above C (inclusive) use ALG-C. These rules enable

unique selections for non-P2 points between A and C. Then, to optimize the rule set and minimize
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Figure 3.16: ACCLAiM’s Rule Creation Logic. ACCLAiM generates new rules in the configu-
ration file to communicate the ML model’s selections to the MPICH library. Each color represents
a different rule.

selection delay, ACCLAiM prunes these rules. If ALG-A = ALG-B, it merges the first two rules

into a single rule for all values less than C. If ALG-B = ALG-C, it merges the last two rules into a

single rule for all values greater than A.

3.9.4 Application Execution

ACCLAiM directs MPICH to the new .json file using an environment variable. Then, the appli-

cation proceeds and outputs its results, completing the job.

No previous work combined ML autotuning with job execution. ACCLAiM, on the other hand,

completes the entire process while remaining transparent to the user.

3.10 ACCLAiM Evaluation

To understand the impact of ACCLAiM’s improvements, I first compared with FACT. For all

comparative results, I used simulated experiments like those used to evaluate FACT originally.

Then, I studied ACCLAiM’s capabilities on Theta.

In both environments, I studied the performance of the four most popular collectives from
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Figure 3.17: ACCLAiM Training Point Selection Comparison. Cumulatively, ACCLAiM con-
verges in 2.25x less time than FACT.

Chunduri et al. [60]: allgather, allreduce, bcast, and reduce. Experiments that do not explicitly

separate the four collectives show aggregate values.

3.10.1 Training Point Selection: Up to 2.3x Faster

I began with the reduction in training point collection time created by our jackknife-based training

point selection methodology. I compared ACCLAiM’s selection approach vs. FACT’s previous

state of the art. Figure 3.17 shows Average Slowdown vs. training time graphs for each collective.
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Figure 3.19: ACCLAiM Convergence Speedup & Accuracy Using cumulative variance as a
proxy for average slowdown, ACCLAiM detects convergence 1.19x faster while avoiding a poten-
tial 6–11x slowdown caused by test set data collection.
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The x-axis represents training data collection time by summing the benchmark execution times.

Both training methodologies want to decrease their Average Slowdown as quickly as possible. The

graoh is marked when each training methodology reaches the convergence criterion, which is the

standard Average Slowdown< 1.03.

ACCLAiM converges for all four collectives in up to 2.3x less time than FACT. MPI Allgather

is the most expensive collective to tune and also ACCLAiM’s biggest win at 2.3x. FACT per-

forms slightly better for MPI Allreduce and MPI Bcast, by 1.37x and 1.46x, respectively. Both

methodologies converge almost instantly for MPI Reduce. Overall, ACCLAiM’s model-specific

selections create a significant reduction in training data collection time. The reported speedups do

not account for the additional acceleration from simplifying the point selection process by elimi-

nating DeepHyper. In practice, I expect even greater speedups.

For both Figure 3.17 and Figure 3.19 (which I explore in Section 3.10.3), a few visual oddities

are important to understand. First, all lines do not begin 0 on the x-axis. To evaluate model per-

formance, each autotuner requires at least one point for training. If the first training point takes a

significant amount of time to collect, a ”gap” may appear on the left side of the graph. This be-

havior is normal and expected; it just indicates that the first training point was expensive to collect.

Additionally, large flat sections appear in some graphs. Note that these graphs are discrete, since

there cannot be partially collected data points. The lines between points are included to indicate

trends. If a point takes a long time to collect and does not greatly affect the model’s understanding,

a flat section appears on the graph. However, these sections do not represent potential convergence,

just expensive point collection.
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3.10.2 Non-Power-of-Two Points: Now Modeled

Next I evaluated the effects of incorporating non-P2 points in our sampling process. I re-evaluated

the “All P2” and “Non-P2 Message Size” test datasets from Figure 3.11 incorporating various

amounts of non-P2 training data. Again, the figures constrict the amount of training data given

to the model from right to left on the graph. The amount of training data is a percentage of the

possible training points.

The goal is to maintain an Average Slowdown as close to 1.0 as possible with minimal training

data. I studied training sets with all P2 data, a 50-50 selection split, and ACCLAiM’s 80-20 data

selection split. Each training point includes the same total number of training points. Selecting

50% of the non-P2 points means that I removed half of the P2 points.

From Figure 3.18(b), a 50-50 split maximizes non-P2 performance. However, it sacrifices P2

performance, as shown in Figure 3.18(a). ACCLAiM’s 80-20 split preserves P2 performance while

significantly improving non-P2 performance. By selecting every fifth point as non-P2, ACCLAiM

maintains the “Goldilocks” performance balance.

3.10.3 Model Testing: Avoid 6–11x Test Set Collection Slowdown

Here I compared cumulative variance as a convergence criterion vs. Average Slowdown. The

variance convergence criterion is that four consecutive training iterations must have a difference

in variance less than 10−9. I selected this criterion from prior tuning experience while developing

ACCLAiM. It works well for both simulation and the production system (discussed in the next

section).

In Figure 3.19 I graph the cumulative variance values on the left vertical axis and Average

Slowdown from Figure 3.17 on the right vertical axis. The graph is marked when both metrics

meet their respective convergence criterion. An ideal variance convergence would occur at the
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same time as the Average Slowdown convergence because the goal is to precisely model Average

Slowdown. In these experiments, I accepted variance convergences close to the Average Slowdown

convergence point if both points produce ML models of nearly equal performance.

For all collectives, Figure 3.19 shows that the variance convergence criterion consistently pro-

duces trained models with low Average Slowdown. MPI Allreduce and MPI Reduce have variance

convergence points after the original average slowdown points, adding an extra 1.007x to the cu-

mulative training time for all collectives. However, the overall training time is actually reduced by

1.19x because of the other two collectives.

For MPI Allgather and MPI Bcast, the variance convergence point is before the average slow-

down point. In both cases, the model-tested variance has an average slowdown of 1.04. While this

value is above the average slowdown convergence criterion, this slight uncertainty is well worth the

trade-off of eliminating the testing set. Overall, ACCLAiM avoids the potential 6–11x slowdown

from Figure 3.12 without sacrificing convergence accuracy.

3.10.4 Data Collection: 1.4x Faster Using Parallelism

To evaluate our parallel data collection strategy, I simulated scheduling the simulation dataset

across four different theoretical topologies: all 64 nodes on a single rack, 32 nodes each on two

racks in a pair, 16 nodes each on four racks in two pairs, and single nodes on different racks all

from separate pairs (1-0-1-0...). The “separate pairs” topology represents the maximum parallelism

potential, so I henceforth refer to it as “Max Parallel.” These topologies represent a range of

situations from no/minimal parallelism (Single Rack, Single Rack Pair) to “Max Parallel.” The

results are shown in Figure 3.20.

Data collection is accelerated by up to 1.4x by running 1–4 benchmarks simultaneously. Even

for topologies with modest parallelism opportunities, there are significant speedups (∼1.3x).
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Figure 3.20: ACCLAiM’s Parallel Data Collection. ACCLAiM achieves a 1–1.4x speedup by
running 1–4 benchmarks in parallel.

An interesting data point occurs in Figure 3.20(a) for the “Max Parallel” topology forMPI Allgather.

Here, the parallelization speedup decreases compared with the other topologies. During schedul-

ing, “Max Parallel” enables a low-latency benchmark to run in parallel with a high-latency, suc-

ceeding benchmark. The high-latency benchmark is now unable to be parallelized with the next

benchmark, which also has a high latency. Running the two high-latency benchmarks sequentially

more than eliminates the original advantage. The other topologies disallow the first parallelism

opportunity, which coincidentally enables the second. This situation highlights the sub-optimal

nature of greedy algorithms.

3.10.5 Production Practicality: Benefits Typical Jobs on Theta

After evaluating ACCLAiM’s contributions individually, I applied at large-scale on Theta. For

these experiments, ACCLAiM selects algorithms up to 128 nodes, 16 processes per node, and 1

MB message size.

The training time is shown in Figure 3.21. In the larger-scale, production environment, AC-
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Figure 3.22: Minimum Application Runtime for Overall Acceleration from ACCLAiM. In
many cases, applications must run for only a few hours to recover ACCLAiM’s training time.

CLAiM converges in a matter of minutes, compared with the many hours estimated for FACT. I

cannot make a direct performance comparison because FACT is unable to function in this “real”

(not simulated) setting.

Finally, I consider ACCLAiM’s impact on application performance. Collective performance

is critical to the performance of many HPC applications [225, 60]. Previous works have pro-

vided examples of how autotuning collective algorithm selections can improve application perfor-

mance [176, 142].
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To assess the broader applicability for ACCLAiM, Figure 3.22 shows the minimum application

runtimes required to gain an overall speedup when using ACCLAiM. I present a range of applica-

tion speedups, which vary depending on the quality of the default selections and the percentage of

time the application spends on collective calls. Applications that run for more than a few hours and

are slowed even slightly by the default algorithm selections are great candidates for ACCLAiM.

For example, an application with a 1.01x speedup from improved algorithm selections only has to

run for 6.4–9.5 hours, which is well within the common duration for jobs on Theta. By showing

that ACCLAiM can accelerate applications with moderate runtimes, I demonstrate ACCLAiM’s

practicality for large-scale production systems.

3.11 Conclusion

Overall, FACT and ACCLAiM make collective algorithm selection autotuning feasible on large-

scale supercomputers. Together, they show how it is possible to transparently accelerate distributed

memory communication. FACT was published at the ExaMPI’21 workshop [234], and ACCLAiM

was published at the CLUSTER’22 conference [233]. Next, I describe my efforts to create new

algorithms that increase the potency of autotuning.
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CHAPTER 4

GENERALIZED COLLECTIVE ALGORITHMS

FACT and ACCLAiM can provide a significant, transparent improvement for MPI collectives on

modern hardware. However, they are ultimately restricted by the algorithms they have at their

disposal. The open-source implementations of the MPI standard including MPICH [154] (the

focus of my work) and Open MPI [91] implement a limited set of algorithms per collective.

For example, consider “MPI Allreduce”. “MPI Allreduce” is arguably the most important col-

lective operation; it makes up the largest percentage of workloads [60, 211] and is the linchpin for

ubiquitous applications like distributed data-parallel AI. For all messages and P2 process counts,

MPICH uses a single algorithm (recursive doubling) to implement “MPI Allreduce”. In this case,

it is impossible for algorithm selection to improve performance because there is not another option.

To increase collective algorithm tuning potential, I created an extensive set of “generalized”

(i.e., variable-radix) algorithms. Generalized algorithms support additional parameters that change

the algorithm’s behavior. For example, the “binary tree” algorithm (like in Figure 3.1b.)) can be

generalized to “k-nary tree”. Beyond algorithm selection, “k” parameter value can be tuned to

further improve performance.

Previous works have developed generalized collective algorithms, but the limited scope of their

initial designs limit their usefulness today. For example, they are limited to a specific network

topology [195], small message size allreduce [192], or intranode broadcast [193]. As a result,

generalized (i.e., variable-radix) algorithms appear very sparsely in current implementations of

MPI, sacrificing performance on modern HPC systems.

My generalized algorithms, on the other hand, are designed to broadly leverage the features
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Table 4.1: 10 New Generalized Collective Algorithms.

Base Kernel Generalized Ker-
nel

Collective Operations

Binomial K-nomial MPI Reduce, MPI Bcast, MPI Allgather,
MPI Allreduce

Recursive Dou-
bling

Recursive Multi-
plying

MPI Bcast, MPI Allgather, MPI Allreduce

Ring K-Ring MPI Bcast, MPI Allgather, MPI Allreduce

of the latest generation of supercomputers. I recognized that “exascale era” systems, including

Frontier, Argonne’s upcoming Aurora supercomputer, and Lawrence Livermore’s upcoming El

Capitan supercomputer (the three announced exascale supercomputer in the United States), among

others, share multiple critical network features. My algorithms match these features, maximizing

performance.

In this chapter, I describe the commonplace network features of exascale era supercomputers,

then describe my algorithms. To create my algorithms, I designed generalizations of three major

communication patterns (i.e., kernels): binomial (§4.2), recursive doubling (§4.3), and ring (§4.4)

inspired by my identified generalizations [193, 192, 101]. Applying the kernels to individual col-

lective operations, I implemented 10 algorithms for the four most common collective operations

(see Table 4.1). For each generalized algorithm, I created analytic models to develop intuition

regarding the optimal radix values. Then, I integrated the new algorithms into MPICH and ex-

perimented on Frontier and Polaris [180] (a pre-exascale system at Argonne). Compared to the

non-generalized versions, my generalized algorithms improve performance by 1–2.5x. Combined

with optimized algorithm selection, the advantage balloons to up to 4.6x.
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4.1 Commonalities of Exascale Networks

Exascale supercomputers combine multi-CPU/GPU nodes with high-bandwidth, high-performance

networks. Frontier and the next expected exascale supercomputers (e.g., Aurora, El Capitan) share

multiple features that impact collective performance. Here I list the relevant features and pinpoint

algorithm generalization techniques to leverage them.

4.1.1 Network Topology

Similar to the Theta system from ACCLAiM’s evaluation, exascale networks use the dragonfly

topology [128] Frontier, Aurora, and El Capitan specifically leverage a two-layer topology design

that was introduced relatively recently. Its fully connected groups and hierarchical design min-

imizes the latency between nodes at large scale. One advantage of dragonfly is that it uses high

radix virtual switches and global adaptive routing to ensure that there exists a shortest path between

any two nodes. Therefore, topology-aware generalized algorithms for traditional HPC intercon-

nects (e.g., torus, hypercube) that use non-minimal routing [195] will not be effective. Instead,

I designed minimal communication algorithms that leverage other hardware features (discussed

below).

4.1.2 Multi-Port Nodes & Message Buffering

In exascale supercomputers, high network bandwidth is necessary to support the computational

power of multi-CPU/GPU nodes. To meet this need, exascale networks assign subsets of GPUs

to dedicated network links. For example, each node on Frontier includes four 200 Gb/s links (one

per 2 GPUs). Furthermore, non-blocking send/receive primitives in software enable the buffering

of multiple messages simultaneously beyond the number of physical ports. Message buffering is
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critical to overlap the message submission latency of smaller messages.

Collective algorithms must employ multi-port functionality and message buffering to fully uti-

lize exascale systems. However, in popular communication patterns such as binomial tree and

recursive doubling, each process only communicates with one other process at a time, thus they

only buffer a single message to send through a single network port. To solve this challenge, I

developed two generalized algorithms, k-nomial and recursive multiplying.

Previous works have presented generalizations for limited circumstances, namely intranode

broadcast [193] and small message (<4kB) allreduce [192] I developed new generalized algo-

rithms inspired by these strategies to exploit multi-port networks and message buffering. I used

the variable radix of these algorithms to elegantly capture the interplay between hardware and

software to optimize for exascale systems.

4.1.3 Intranode Links

Applications on multi-GPU node-sytems may assign a separate MPI process to each GPU. For ex-

ample, applications on Frontier commonly use 8 MPI processes per node. These processes commu-

nicate via dedicated higher-bandwidth hardware links (e.g., NVLink, InfinityFabric) that provide

higher performance compared to the internode network. However, the predominant communica-

tion kernel for large (i.e., bandwidth-bound) message sizes, the ring kernel, does not differentiate

between link types, slowing the entire algorithm to match the slower connections.

To address this issue, I designed a generalized “k-ring” kernel. Previous work on a new re-

duction algorithm showed how a hierarchical strategy can better saturate a heterogeneous net-

work structure [101]. Combining this idea with the ring kernel, “k-ring” better utilizes the high-

bandwidth intranode links found on exascale systems.

In summary, by analysing the major factors for algorithm performance, I identified three promis-
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ing generalizations (k-nomial, recursive multiplying, and k-ring), which all expose their radix as

a tunable parameter. I proceed to explain each generalized kernel and use analytical models to

predict how changing the parameter values will affect performance.

4.2 Binomial Tree and K-nomial Tree Algorithms

In each algorithm section (§4.2, §4.3, and §4.4), I begin by describing the original communication

kernel, then describe my generalized version. The first communication kernel is the binomial tree

algorithm. Binomial is typically the optimal choice for small message sizes (<16KB), where the

limiting factor for performance is point-to-point latency. Binomial tree minimizes the effect of

latency by overlapping communications.

4.2.1 The Binomial Tree Algorithm

A binomial tree is a recursive tree structure where the sub-tree at each non-leaf node is the same as

the sub-tree at that node’s first child. Figure 4.1 shows an example binomial tree communication

for MPI Gather on 8 processes. The identical sub-trees are highlighted using red and blue, and the

first “round” of overlapped communications is highlighted in green.

4.2.2 Binomial Tree Algorithm Cost

I defined cost model of the binomial algorithm for the number of processes p. I used the common

(α, β) model [104]. In this model, the execution time of a point-to-point communication is τ = α+

β ∗ n. α (latency) represents the startup cost, β (bandwidth) is the per-byte cost, and n is message

size (bytes). Intuitively, α determines performance for small messages, while β ∗ n controls larger

messages. Collectives are composed of point-to-point messages between p processes, so I modeled

them by scaling the equation by (p). For example, a naive broadcast, where the root sends to every
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process sequentially, is thus τ = p(α+β ∗n). For the reduction collectives, I also included γ (per-

byte computation cost). Collective algorithms overlap point-to-point communications to reduce

the impact of α or β. Note that I used the same symbols/model in all analyses.

The costs of binomial tree algorithms for the simpler collectives are shown in (4.1). Note that

I include MPI Gather as a prerequisite for MPI Allgather.

T (n, p) =



log2(p)α + n log2(p)β Bcast

log2(p)α + n log2(p)β

+n log2(p)γ Reduce

log2(p)α + np−1
p
β Gather

(4.1)

Allgather and allreduce are implemented using a gather or reduce followed by a bcast, as shown

in (4.2).

T (n, p) =



log2(p)α + n(log2(p) +
p−1
p
)β Allgather

log2(p)α + n(log2(p) +
p−1
p
)β

+n log2(p)γ Allreduce

(4.2)

In these models, the recursive tree structure causes the latency overhead α to scale logarith-

mically with the number of processes, p. Hence, the algorithm performs well for latency-bound,

small message operations.
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Figure 4.1: Binomial Tree Algorithm for MPI Gather. The recursive structure allows all sub-
trees to be processed in parallel.

4.2.3 The K-nomial Tree Algorithm

The goal of the k-nomial generalization is to further reduce the latency penalty for small message

collectives. Thanks to overlapping communications, the latency cost of a basic binomial tree is the

latency of a point-to-point communication times the depth of the tree. Therefore, decreasing the

depth of the tree can reduce the overall communication latency.

Binomial trees have an assumed radix of 2, which I generalized to create the k-nomial tree

algorithm. Figure 4.2 shows a trinomial tree (k = 3), still with 8 processes. In a full k-nomial

tree, the sub-trees rooted at a non-leaf node is identical to the sub-tree at that node’s first (k − 1)

children. Notice how in Figure 4.1, the 8th node increases the depth of the tree. However, Figure

4.2 shows how a trinomial tree can hold up 9 nodes without increasing the depth.

Increasing the radix of k-nomial tree flattens the structure by overlapping communications

within a given level of the tree. In Figure 4.2, the messages from processes 1 and 2 to 0 (and 4+5

to 3) are executed simultaneously as highlighted by the green arrows. To overlap these messages, k-

nomial leverages multi-port/message buffering (§4.1.2), so that a single endpoint can send/receive

multiple messages simultaneously.
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Figure 4.2: Trinomial Tree Algorithm (k=3) for MPI Gather. Decreased tree depth increases
the parallelism per subtree.

4.2.4 K-nomial Tree Algorithm Cost

K-nomial tree algorithms change constants in the cost model, so tuning the parameter value con-

trols the impact of each term. The costs of the k-nomial tree algorithms are shown in (4.3).

T (n, p, k) =



logk(p)α + (k − 1)n logk(p)β Bcast

logk(p)α + (k − 1)n logk(p)β

+(k − 1)n logk(p)γ Reduce

logk(p)α

+(k − 1)n(logk(p) +
p−1
p
)β Allgather

logk(p)α

+(k − 1)n(logk(p) +
p−1
p
)β

+(k − 1)n logk(p)γ Allreduce

(4.3)
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Larger k values decrease the effect of latency (α) and increase the effect of the bandwidth

(β). For very small message sizes, bandwidth is a non-factor, so increasing k should improve

performance. Smaller k values should perform better for larger messages when bandwidth is the

limiting factor.

These models assume multiport and message buffering enable perfect overlapping of messages

with shared endpoints. The optimal k value and the performance gain from the k-nomial algorithm

are dependent on this assumption. An ideal overlapping would result in an optimal k value for very

small messages at or near p. However, it is possible that the physical number of network ports caps

the number of overlapping communications per endpoint, lowering the optimal k.

4.3 Recursive Doubling and Recursive Multiplying Algorithms

I now consider the recursive doubling algorithm, which performs best for small-to-medium mes-

sage sizes (1B-512kB). For these sizes, latency is again the dominant bottleneck. In current MPI

implementations, recursive doubling is commonly used for small-to-medium message sizes be-

cause it minimizes the number of sequential communication rounds.

4.3.1 The Recursive Doubling Algorithm

Recursive doubling is a pairwise exchange algorithm where during every round, each process is

assigned a peer with which to exchange information. As an example, consider Figure 4.3, which

depicts a recursive doubling allgather with 4 processes. In total, there are two communication

rounds. In the first round, processes exchange data with peers that are 20 = 1 apart. Peers are

formed from groups of size 20 = 1 between odd and even-numbered groups. In the second round,

processes in odd and even groups of size 21 = 2 exchange their accumulated data with peers that

are 21 = 2 apart. The amount of data exchanged doubles every round.
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Figure 4.3: Recursive Doubling for MPI Allgather.

4.3.2 Recursive Doubling Algorithm Cost

The cost models for the recursive doubling algorithm assuming a power-of-two number of nodes

are shown in (4.4).

T (n, p) =


α log2 p+ βnp−1

p
Allgather, Bcast

(log2 p) (α + (β + γ)n) Allreduce

(4.4)

The cost of round i is given by (4.5).

Ti(n, p) =


α + βn2i−1

p
Allgather, Bcast

α + (β + γ)n Allreduce

(4.5)

Like binomial, recursive doubling scales logarithmically with latency, making it a good choice

for smaller messages.
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4.3.3 The Recursive Multiplying Algorithm

Recursive doubling, by only doubling the amount of data sent in each round, can induce unneces-

sary latency with many rounds of small message sizes. My recursive multiplying kernel balances

the latency and bandwidth trade-off through the number/size of rounds.

Recursive multiplying introduces parameter k that controls the number of communication part-

ners each round. For each round i, every process exchanges data between k − 1 other processes

spaced a multiple of ki−1 apart, with the specific pairings chosen by dividing p processes into ki

groups.

Figure 4.4 shows an example recursive multiplying implementation of allgather with p = 9

processes and k = 3. Despite the added processes, the allgather still completes in just 2 rounds.

Sending more messages per round decreases the number of rounds, improving performance for

small-medium messages.

4.3.4 Recursive Multiplying Algorithm Cost

Recursive multiplying’s cost model in (4.6) is similar to (4.4) except for the recursive base k.

T (n, p, k) =



α logk p+ βnp−1
p

Allgather, Bcast

(logk p)

· (α + (β + γ) (k − 1)n) Allreduce

(4.6)
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Figure 4.4: Recursive Multiplying for MPI Allgather. Each round, processes exchange with two
other nodes using a power-of-3 offset.
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The parameter k increases the per-round cost of the recursive multiplying algorithm. The cost for

the ith round is now (4.7).

Ti(n, p, k) =


α + βn (k−1)ki−1

p
Allgather, Bcast

α + (β + γ)(k − 1)n Allreduce

(4.7)

The per-round bandwidth and computation costs increase to accommodate multiple messages per

round. The validity of this strategy once more depends on the overlapping capabilities of the

multiport network and message buffering (§4.1.2).

4.4 Ring and K-Ring Algorithms

Last is the ring kernel. Ring is used for larger messages, where the communication bottleneck

shifts to bandwidth. The ring algorithm provides a bandwidth-optimal implementation by using

neighbor-only communication.

4.4.1 The Ring Algorithm

In the ring algorithm, processes only communicate with their two neighboring processes. Each

round, every process receives new data from its left neighbor and forwards the received data from

the previous round to its right neighbor in a ring-like fashion. Figure 4.5 gives an example of the

ring algorithm used for the allgather collective with 6 processes.
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Figure 4.5: Ring algorithm for MPI Allgather. In each round, processes forward data to their
cyclic adjacent neighbors. Internode communications (in red) slow the entire algorithm.

4.4.2 Ring Algorithm Cost

We define the cost model for the ring algorithm for allgather, allreduce, and part of bcast in (4.8).

T (n, p) = (p− 1)Ti (4.8)

Given p processes, the ring algorithm will have (p − 1) rounds of communication, where the

single-round cost Ti is (4.9).

Ti(n, p) =


α + β n

p
Allgather, Bcast

α + β n
p
+ γ n

p
Allreduce

(4.9)

When compared to the recursive doubling algorithm, ring has a worse latency term (log→ lin-
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ear) and equivalent bandwidth term (both linear). Nonetheless, ring is preferred for large messages

in practice because the neighbor communication minimizes network hops and congestion, which

would limit bandwidth.

Given sufficiently large message sizes, the cost of the ring algorithm reduces roughly to (4.10),

which is independent of latency and the number of processes.

T (n) =


βn Allgather, Bcast

βn+ γn Allreduce

(4.10)

4.4.3 The K-Ring Algorithm

The classic ring algorithm is optimized for bandwidth, but it does not consider the extremely high-

bandwidth intranode links on modern supercomputers (§4.1.3). When applications use one MPI

process per GPU on exascale systems, the more powerful links create a discrepancy in communi-

cation cost between processes in the ring algorithm. This heterogeneity is unfavorable for the ring

algorithm which has an implicit barrier between rounds, so processes with intranode neighbors are

starved for data by the slower internode links.

To illustrate this challenge, reconsider the example in Figure 4.5. The processes in this example

are split across two nodes, demarcated by red and blue. Faster, intranode communications are

further labeled in green, and slower, internode communications are in red. Because every round

includes at least one slower communication, the entire round will perform at that inferior rate.

To reduce the impact this bottleneck, the generalized k-ring algorithm breaks the communica-

tion into multiple, smaller “rings.” k determines the size of the smaller ring groups; for p total

processes, there are p
k

groups. Every process has two pairs of left (receive) and right (send) neigh-
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Figure 4.6: K-Ring Algorithm for MPI Allgather. Two faster intranode rounds alternate with a
slower internode round.

bors, one within its group and one with another group. For the communication pattern, the k-ring

algorithm is carried out in a series of alternating intra-group communication rounds and a single

inter-group round using the two ring structures.

An example of the k-ring algorithm for MPI Allgather with 6 processes and group size k = 3 is

shown in Figure 4.6. In the first 2 rounds, processes within groups communicate in rings of size k.

Therefore, the third round is inter-group communication with processes passing data to their inter-

group neighbors. Following the third round, another two rounds of intra-group communication

complete the allgather.

The goal of the k-ring algorithm is to prevent bottleneck links from slowing the entire commu-

nication. Within the smaller rings, communication is faster and more consistent because processes

are likely to be physically closer (e.g., within the same node) in the system topology. Inter-ring

communication rounds are slower, but they are far less frequent (e.g., in Figure 4.6, there are 4

intra-ring rounds to only 1 inter-ring round).
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4.4.4 K-Ring Algorithm Cost

With the per-round cost Ti, the k-ring algorithm cost model is split into g(k − 1) intra-group and

(g− 1) inter-group communication rounds, where the number of groups is g = p
k
. The intra-group

and inter-group costs are shown in (4.11).


Tintra(n, p, k) = g(k − 1)Ti

Tinter(n, p, k) = (g − 1)Ti

(4.11)

Hence, the total cost is (4.12).

T (n, p, k) = Tintra + Tinter

= (p− 1)Ti

(4.12)

The advantage of k-ring is the reduction of data exchanged between groups. In the example

shown in Figure 4.6, given each partition of size φ, the total inter-group data sent and received by

Group 0 is 6φ. For the ring algorithm, the total inter-group data sent and received would be 10φ. To

generalize this idea for p nodes and an intra-ring group size of k, the amount of data sent/received

by a group for the k-ring algorithm is (4.13).

Dk-ring(n, p, k) = 2n
p− k
p

(4.13)

This formula reduced to the classic ring algorithm (k=1) is (4.14).

Dring(n, p) = 2n
p− 1

p
(4.14)
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Should there be bandwidth bottlenecks between groups of processes, the generalized ring algorithm

can be chosen with an appropriate group size k to reduce its effect.

Implementation of the k-ring algorithm for allgather and bcast are identical since bcast uses a

“scatter-allgather” algorithm. The implementation of allreduce is slightly different as the partitions

are offset by 1.

Given the difference between intranode and internode links on exscale systems, the best radix

value for k-ring should be the number of processes per node. However, there may be additional

bottlenecks between nodes that are farther apart. The k-ring algorithm provides the flexibility to

explore the realities of the intranode and internode topologies.

4.5 Performance Evaluation of Generalized Algorithm

I now describe how I integrated the new algorithms into MPICH, detail the experimental method-

ology to test their performance, and analyze the results.

4.5.1 MPI Library Integration

I implemented each new algorithm in the MPICH source code based on the non-generalized version

if it exists. Implementations range from 100–400 lines of code, with MPI Bcast being the longest

because of the multi-phase communication for recursive multiplying and k-ring. The largest burden

was ensuring correctness for the many corner cases induced by our generalizations (e.g., non-

uniform group sizes for the recursive multiplying and k-ring algorithms).

4.5.2 Experimental Methodology

To directly showcase the benefit on my generalized algorithms, I tested them on Frontier, the

world’s first exascale supercomputer, at Oak Ridge National Laboratory. Frontier contains 9,408
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compute nodes, each equipped with one 64-core AMD EPYC 7A53 CPU, four AMD MI250X

(eight logical GPUs), and 512 GB of DDR4 memory. The GPUs within each node are connected

to each other via Infinity Fabric and the network via 4x200 Gb/s links for a per-node bandwidth of

800 Gb/s.

I compared the algorithms to two baselines using the OSU microbenchmark suite [166]. First, I

compared each algorithm against the existing, non-generalized algorithm in MPICH [154], mean-

ing I tested k-nomial against MPICH’s binomial, etc. This practice isolates the improvement

gained by generalization.

Then, I compared against Cray MPI. For each case, I compared the best performing generalized

algorithm and parameter value against Cray MPI’s default selections. These experiments highlight

the total speedup from generalized algorithm and autotuned selections (e.g., ACCLAiM). Cray

MPI is the vendor-supported, state-of-the-art MPI implementation on Frontier. Therefore, these

values represent the speedup a user could experience due to the adoption of all my transparent

optimizations for distributed memory communication.

I ran all my experiments on Frontier in both 32-node and 128-node configurations. I tested

with both common programming models for the machine: 1 MPI process per node (PPN) (1 MPI

process per GPU) and 8 MPI PPN (MPI + X). I performed each experiment multiple times to ac-

count for runtime variance and selected representative trials for visualization and analysis. Overall,

I found the results to be very similar for both 32 nodes and 128 nodes and with 1 MPI process per

node and 8 processes per node. I proceed to focus on the 128 node with 1-PPN results and highlight

the scenarios where the results diverge.

Beyond the core set of results, I also include experiments using 1024 nodes on Frontier to mea-

sure how the performance improvements from generalization scale to leadership-class applications.

Due to limited resources and job length, I was only able to test the most promising configurations
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identified at smaller scale. Finally, I tested how the improvements translate to other exascale hard-

ware by using another system, Polaris. Polaris is a pre-exascale system, but it shares the hardware

commonalities from Section 4.1. Polaris contains 560 multi-GPU nodes connected by a dragonfly

network, each with one 32-physical-core AMD EPYC Milan 7543P, four NVIDIA A100 GPUs

fully connected with 600GB/s NVLink, 512GB of DDR4 memory, and two Slingshot network

ports via 64 GB/s PCIe Gen4 for internode communication.

4.5.3 Frontier Results

In this section, I analyze the core results from Frontier. To summarize the experiments, I selected

representative operations for each generalized kernel. For k-nomial, I chose MPI Reduce because

k-nomial is the only new generalized algorithm for MPI Reduce. For recursive multiplying, I show

results for MPI Allreduce because it is the most popular collective for exascale applications [211].

For the k-ring algorithms, I selected MPI Bcast because it is utilizes the MPI Allgather ring algo-

rithm, so I encapsulate both collectives and cover all four operations across these selections.

4.5.3.1 Generalized vs. Non-Generalized

In Figure 4.7, I plot the slowdown of the generalized implementation of each algorithm using the

default parameter value (k = 2, k = 2, and k = 1) versus the fixed-radix implementation in

MPICH. In this configuration, both algorithms are logically identical. These experiments ensure

that generalization does not sacrifice performance from MPICH’s low-level software tricks (e.g.,

bitwise operations) that require a fixed radix. In these graphs, a value of 1.0 means that the gen-

eralized and non-generalized algorithms have identical performance. Above 1.0 means that the

generalized version is slower, and below 1.0 means that the generalized version is faster.

Across all three plots,generalization has a minimal effect on the default radix performance.
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(a) K-nomial (MPI Reduce)
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(c) K-ring (MPI Bcast), 8 PPN

Figure 4.7: Message Size vs. Slowdown (Lower is Better), 128 Nodes w/ 1 or 8 Process(es) Per
Node on Frontier. Generalization does not result in slowdown.
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Figure 4.8: Parameter Value (K) vs. Latency (Lower is Better), 128 Nodes w/ 1 or 8 Pro-
cess(es) Per Node on Frontier. For all algorithms, the parameter value has a significant impact on
performance.
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Slowdowns do not exceed 1.06x, and the generalized algorithms slightly outperform the fixed-

radix version on average, thanks to their careful implementations and noise on the machine. With

the implementations proven effective, I used my algorithms with the default radix as a baseline in

future figures to further eliminate potential sources of variation.

4.5.3.2 Sensitivity to Parameter Value

Now, I describe how varying the parameter value affects performance. Figure 4.8 plots the param-

eter values on the x-axis and the latency on the y-axis in microseconds. I plot various message

sizes as separate lines on the graph.

I begin with k-nomial in Figure 4.8(a). For the k-nomial algorithm, software message buffer-

ing is the dominant performance feature, and the latency/bandwidth trade-off of the message size

determines the optimal parameter value. For very small messages (<128 bytes), large parameter

values (k=128, i.e., k = the number of processes) greatly outperform small parameter values. As

the message size increases, the optimal parameter value decreases. This smooth trend follows the

analytical model. Message buffering and multiport functionality overlaps many communications

and garner significant speedups, which I later quantify in Figure 4.9.

These results reveal that the network’s physical limitation of 4 network ports does not hamper

performance. This hardware restriction does not matter in this case because the amount of shared-

endpoint communications is relatively small for k-nomial. The one-sided nature of the algorithm

means that each thread is only sending or receiving k messages per round.

Among the other collectives, MPI Bcast had a pattern similar to MPI Reduce. For MPI Allgather

and MPI Allreduce, other algorithms outperformed k-nomial for all message sizes, rending their

trends irrelevant. This result is logical because the k-nomial kernel maps more naturally to unbal-

anced collectives where there is a single node sending/receiving the data.
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The next algorithm is recursive multiplying in Figure 4.8(b). For the recursive multiplying al-

gorithm, the number of network ports is the dominant performance feature, and the number of ports

per node determines the optimal k-value. For all message sizes regardless of magnitude, k values

at or near 4 (the number of ports per node) are the best-performing choice for MPI Allreduce.

This result contradicts expectations based on the analytical models. It occurs because compared

to k-nomial, the number of simultaneous messages increases much faster with larger k values. In

recursive multiplying, each process sends and receives k messages per round, further stressing the

multiport network.

MPI Allgather and MPI Bcast favor k=4 or a multiple of k=4. They do not require receiver-

side computation like a reduction, which creates less predictable performance.

The last algorithm is k-ring in Figure 4.8(c), which I tested with 8 processes per node for the

1-MPI-process-per-GPU programming model. For the k-ring algorithm, the intranode links are

the dominant performance feature, and the number of processes per node determines the optimal

k-value. For larger message sizes, k = 8 is the most performant parameter value. When k = 8,

the “intragroup” and “intergroup” communication steps are effectively “intranode” and “internode”

steps, allowing much of the communication to leverage the superior intranode interconnect without

implicit synchronization with internode messages.

As part of the MPI Bcast algorithm, MPI Allgather naturally sees similar benefit from k-

ring. For MPI Allreduce, the reduce-scatter-allgather algorithm (which can also leverage the

MPI Allgather k-ring algorithm) generally outperforms ring for large message allreduces.

4.5.3.3 Speedup

In Figure 4.9, I show the speedup of each collective operation by selecting the optimal algorithm

for each message size using the complete results. I denote the algorithm using a color overlay (grey
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is k-nomial, blue is recursive multiplying). I did not encounter situations where k-ring is optimal

over recursive doubling, including additional experiments to study even larger message sizes. The

k-ring algorithm gets outperformed because jobs of smaller size are dispersed across the 9000+

nodes in the system, eliminating k-ring’s neighbor communication advantage.

The X-axis is once again the message size, and the Y-axis is the speedup over the two base-

lines. The dark green line represents the speedup over the default radix of the algorithm to show

the speedup from generalization alone. The red line represents the speedup over Cray MPI. The

Cray MPI baseline showcases how a current production user stands to benefit from my contribu-

tions. Cray MPI occasionally outperforms the best generalized algorithm most likely due to other

algorithms, which may be proprietary or hardware-accelerated. In these cases, the user would not

actually see a performance degradation; the autotuner would instead select Cray MPI’s current

behavior.

Now I analyse the results shown in each figure. The first one is MPI Reduce in Figure 4.9(a),

for which k-nomial is the only generalized algorithm. As expected from the previous section,

the speedup starts out high (over 2.0x) and erodes as the message size increases for the default-

parameter-value baseline. Surprisingly, the Cray MPI baseline matches the small-message speedup,

meaning that it is also employing the binomial algorithm instead of the more competitive “linear”

algorithm. Then, the speedup over Cray MPI soars to over 4.5x, where Cray MPI is likely incor-

rectly switching algorithms.

The second one is MPI Bcast in Figure 4.9(b), which typically sees little speedup. Message

sizes under 256KB have small (1.05x-1.2x) speedups over binomial/recursive doubling and no

speedup over Cray MPI. For large messages, recursive multiplying accomplishes its only signif-

icant performance improvements (up to nearly 2.0x over Cray MPI) with k=16. For MPI Bcast,

multiples of four are best for the recursive multiplying parameter value.
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Figure 4.9: Message Size vs. Speedup (Higher is Better), 128 Nodes w/ 1 Process Per Node on
Frontier. Generalization provides varying speedups over both baselines in most cases.
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Third is MPI Allgather, whose speedups are shown in Figure 4.9(c). Nearly all message sizes

show significant (1.4x-2.0x) speedups over both baselines. Similar to MPI Bcast, multiples of four

are the best parameter value.

The last is MPI Allreduce in Figure 4.9(d). As in Figure 4.8(b), recursive multiplying prefers

parameter values near 4, and it generates significant (1.2x-1.8x) speedups. While the optimal

parameter value is k=5, k=4 is less than 1% worse on average, meaning the slight win by k=5

is likely noise. For the largest message sizes in the range, performance improvement tails off as

expected from the analytical models.

4.5.4 Large-Scale Frontier Results

With performance trends established with smaller node counts, I now show how the performance

gains scale up to 1024 nodes. To keep the experiments tractable at this size, I could no longer

perform a sweep of all parameter values. Instead, I determined the most promising trends at smaller

scale and studied how they translate to larger scale.

In Figure 4.10, I present three figures representing 1024 node performance for the best k-

nomial and recursive multiplying scenarios from smaller scale. In these graphs, I plot the message

size on the x-axis again and the latency in microseconds of the various configurations on the y-

axis. I include the speedup baselines (Cray MPI and k=2) as lines on the graph for easy visual

comparison.

In Figure 4.10(a), the performance trends for MPI Reduce k-nomial remain intact; larger pa-

rameter values provide significant speedup at smaller message sizes. Interestingly, the parameter

value equal to the number of processes (1024) always performs worse than k=128. It appears that

at large scale, the parameter value may have an upper limit.

Figures 4.10(b)-(c) show the larger scale performance for MPI Allgather and MPI Allreduce.
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Figure 4.10: Message Size vs. Latency (Lower is Better), 1024 Nodes w/ 1 Process Per Node
for MPI Reduce, MPI Allgather, and MPI Allreduce on Frontier. The speedups from general-
ization are maintained at large scale.
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These experiments created the most consistent speedups in the smaller-scale tests, and those trends

are replicated here. While there is some noise in the MPI Allreduce results (e.g., 512KB performs

worse than some larger message sizes), there is consistent speedup from k=4 and k=8 until large

message sizes.

Overall, the large-scale experiments show how generalized algorithms can provide transparent

performance gains for leadership-class use cases.

4.5.5 Polaris Comparison

I conclude this evaluation by exploring how generalized algorithms perform on other pre-exascale

hardware, specifically Polaris. For these plots, shown in Figure 4.11, I used the same style as

Figure 4.8.

For k-nomial and recursive multiplying (Figures 4.11(a)-(b)), the results match expectations.

Just as on Frontier, the optimal k-nomial parameter value for very small messages is close to

the number of processes and decreases as message sizes increases. Again matching Frontier, the

optimal recursive multiplying parameter value is four or eight, which are the smallest multiples of

the two ports per node on Polaris.

For k-ring, however, the parameter value shows minimal affect. Unlike Frontier, Polaris’ nodes

are fully connected with equal bandwidth between every pair of GPUs. This architecture is less

compatible with the k-ring algorithm because many links within a node go underutilized.

Despite unclear results for k-ring, both k-nomial and recursive multiplying show that the gen-

eralized algorithm findings translate from one exascale system to another.
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Figure 4.11: Parameter Value (K) vs. Latency (Lower is Better), 32 Nodes w/ 1 or 4 Process(es)
Per Node on Polaris. The trends in how the parameter value affects performance are similar to
those observed on Frontier (Figure 4.8).
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4.5.6 Evaluation Summary

Overall, my experimental analysis generated many new findings. For k-nomial, I found the soft-

ware features (message buffering) control performance, and that our analytical models are fairly

accurate for optimizing the generalization. For recursive multiplying and k-ring, hardware features

(multiport/intranode links) dominate performance, and empirical analysis contradicted the analyti-

cal intuition. I showed how these same trends also achieve significant speedups at larger scale and

other exascale hardware.

4.5.7 Considerations

To ensure the stability of the results, I re-executed each microbenchmark 4-10x (depending on ex-

ecution length) within each trial. I included repetition at every level of my experimental methodol-

ogy (within the microbenchmarks, re-running the microbenchmarks, and running multiple separate

jobs on the systems). Still, when re-running experiments to select representative trials and develop

our understanding, I encountered significant run-to-run variance, which changed the optimal algo-

rithm selections and parameter values.

These effects are previously documented [110], but they are less well understood, particularly

on exascale hardware. Using my manual conclusions alone, I do not claim to have analytically or

empirically determined the optimal algorithms/parameters for all cases. Instead, autotuning tools

like FACT and ACCLAiM should be used in conjunction with these new algorithms to achieve the

maximum performance uplift showcased by our comparison with Cray MPI.
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4.6 Conclusion

I used a novel, comprehensive approach to create many new collective algorithms for exascale.

By identifying algorithm generalizations that leverage the features of exascale systems, these algo-

rithms provide a wide-sweeping speedup for multiple popular collective operations for two distinct

exascale and pre-exascale systems (Frontier and Polaris). This work was published at the CLUS-

TER’23 conference [235].

As HPC expands to exascale and beyond, new machines will continue to increase in size and

complexity. Generalized collective algorithms are a great fit for more complex systems, because

they expose easy-to-tune parameters, revealing the best solution for each system. In combination

with my autotuning advances, collective operations can be transparently optimized for modern

supercomputers.
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CHAPTER 5

A NEW PROGRAMMING MODEL FOR HIGH-PERFORMANCE PARALLELISM

The previous chapters describe my multiple transparent optimizations for parallel communication.

Throughout these many projects, I consistently wondered whether it is possible to make commu-

nication completely transparent, i.e., avoid exposing it the programmer altogether. Seeking the

answer, I explored the viability of Functional, Memory-Managed Programming Languages (FM-

PLs) for high-performance parallel applications. Functional, memory-managed parallel languages

(FMPLs) are a recent higher-level approach for shared memory parallelism that, among other ad-

vantages, abstract away parallel communication. Despite their rising prevalence in other areas,

FMPLs have yet to gain traction for high-performance parallel computing.

Here I describe my work to develop the NAS Parallel Benchmarks (NPB) in an FMPL to

understand the usefulness of the programming model in its current state, and the initial results of

my ongoing effort to port an FMPL to distributed memory.

5.1 NAS Parallel Benchmarks

I begin by describing the NPB suite and the benchmarks’ individual characteristics.

5.1.1 Benchmark History/Relevance

Stemming from NASA’s Numerical Analysis Simulation (NAS) Program, the NAS Parallel Bench-

marks (NPB) were developed to test supercomputers. The NAS Parallel Benchmarks were de-

signed to mimic the core kernels of computational fluid dynamics programs. They are formally
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Table 5.1: NPB Kernels.

Abbreviation Descriptive Name
IS Integer Sort
EP Embarrassingly Parallel (Random Number Generation)
CG Conjugate Gradient
MG Multi-Grid Solver
FT 3-D Fast Fourier Transform

described as algorithms, meaning any implementation that properly executes the implementation-

independent steps is considered valid. This design enables cross-language comparison; two imple-

mentations that both adhere to the specified algorithm can be directly compared.

The original NPB 1.0 specification has been cited nearly 4000 times, demonstrating that NPB is

a widely used tool for assessing the performance of highly parallel systems [15]. Since NPB 1.0’s

release, several versions have been developed. I specifically studied the five kernels shown in Table

5.1 from NPB 3.0 [158]. Because FMPLs are currently limited to shared memory parallelism, I

compared them with the third-party C+OpenMP implementation [160].

Overall, the NAS Parallel Benchmarks and their implementations are a reliable tool to deter-

mine the effectiveness of different high-performance programming techniques, such as FMPLs.

5.1.2 Benchmark Descriptions

The Embarrassingly Parallel (EP) benchmark generates pairs of Gaussian Deviates. The main

data structure is a one-dimensional array containing floating point values. EP’s main parallelism

comes from generating the pairs in parallel, with a parallel reduction to collect results. As its

name suggests, nearly all of EP’s calculations are parallelizable, meaning it has the most fine-grain

regular parallelism in the suite.

The Fourier Transform (FT) benchmark solves a partial differential equation using fast fourier



143

transforms. FT works with three-dimensional arrays that contain complex floating-point numbers.

FT’s parallelism comes from parallel loops used to iterate over the working arrays. FT’s arrays are

constant size, so the benchmark exposes a large amount of regular parallelism.

The Conjugate Gradient (CG) benchmark uses the inverse power method to estimate the largest

eigenvalue of a sparse matrix. The main data structures are 1-D floating-point arrays. The majority

of CG’s irregular parallelism comes from parallel iteration over the arrays and parallel reductions.

The Integer Sort (IS) benchmark sorts a pseudo-random set of integers. The main data struc-

tures are 1-D arrays of integers. The primary parallelism opportunity is iterating over the integer set

in parallel during the sorting algorithm. IS contains a decent amount of parallelism, but its execu-

tion pattern is irregular, as the parallel sections are interrupted by sequential, “master” thread-only

sections.

The Multi-Grid (MG) benchmark performs several iterations to approximate a solution to a

Poisson problem on a 3-D array. The main data structures are 3-D floating-point arrays of various

sizes. MG’s parallelism comes from parallel loops which iterate through the dimensions and values

of the arrays. Due to its complex operations on large arrays, MG is the most difficult kernel to

characterize, as is it contains both regular and irregular parallelism.

5.2 Parallel ML: A State-of-the-Art FMPL

I targeted Parallel ML as the FMPL of choice. The following sections describe Parallel ML’s

advantages over other FMPLs and detail how to write programs using its unique characteristics.

5.2.1 Why Parallel ML

I initially considered 3 modern FMPLs: Data Parallel Haskell (DPH), Multicore OCaml (MOC),

and Parallel ML (PML). I eliminated DPH because it is a pure functional language, meaning that
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all data is immutable. As described in Section 5.1.2, the NPB kernels rely on arrays. In a pure

functional setting (no mutations), array manipulations involve copies. This approach causes sig-

nificant slowdowns because updating an array field is not as simple as updating (i.e., mutating) the

proper memory location.

MOC and PML support mutable arrays and are considered generally performant [206, 230,

8]. For this work, both languages are acceptable choices. However, as I later describe, I have

continued this work with changes to the language runtime. I chose PML over MOC because

its design and underlying runtime are more research-focused, whereas MOC’s underpinnings are

unnecessarily complex for these purposes. Note that both languages are ML derivatives, meaning

it is straightforward to translate these findings to MOC; in this spirit, I refer to FMPLs generally

when possible to indicate results that are not language-specific.

Eagle-eyed readers may notice the connection between Parallel ML and MPL, the co-design

target from Chapter 2. Generally speaking, FMPLs are a subset of HLPLs, and MPL’s derivative

of Parallel ML is in fact a FMPL. For my study of the NPB suite, I again compiled the target

programs using MPL [230, 8]. However, this project was my first experience writing programs

using the language (for WARDen, I relied on pre-existing benchmarks [204]).

Parallel ML is a memory-managed, functional language with support for data mutation (i.e.,

side effects) and nested parallelism. Parallelism in PML is exposed through a variety of high-level

parallelism constructs.

5.2.2 Programming in Parallel ML

Programming in Parallel ML’s is fundamentally different compared to traditional high-performance

languages like Fortran and C/++. Throughout this section, I refer to line numbers from the example

in Figure 5.1.
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1 (×* Immutable Data Types ×*)
2 val i = 4 (* int *)
3 val a = 0.0 (* real (double) *)
4
5 (×* Mutable Data Types ×*)
6 val pointer = ref 0 (* ref (pointer) to int *)
7 val = pointer := 1 (* updated ref *)
8 val contents = !pointer (* dereferenced ref *)
9

10 (* 4-element array *)
11 val array1 = Array.array(i, a)
12 (* Reading first element *)
13 val first = Array.sub(array1, 0)
14 (* Updating first element *)
15 val = Array.update(array1, 0, 1.0)
16
17 (×* Functions ×*)
18 (* Basic func: increment array elem *)
19 fun incrElem(array, index) =
20 let
21 val new = Array.sub(array, index) + 1
22 in
23 Array.update(array, index, new)
24 end
25
26 (* Higher order func: for-loop *)
27 fun forLoop((i, j), f : int → unit) =
28 if i ≥j then ()
29 else (
30 f(i);
31 forLoop((i+1, j), f))
32
33 (* Using HOF: incrementing array *)
34 val len = Array.length(array1)
35 val = forLoop((0, len), fn i ⇒
36 incrElem(array1, i))
37
38 (* Parallelizing array increment *)
39 val G = 1
40 val = ForkJoin.parfor G (0, len) (fn i ⇒
41 incrElem(array1, i))

Figure 5.1: Basic Parallel ML Programming Examples
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5.2.3 Immutability by Default

By default, nearly all data in Parallel ML are immutable. Immutable data are values that cannot be

changed/updated. In Parallel ML, programs declare immutable values as shown starting at line 1.

Primitive types like int and real (i.e., a double in C/C++) are immutable by default. Simple tasks

in other languages, such as incrementing an int, cannot be performed in Parallel ML. Instead, the

runtime will store the result of the summation in a new location, even if the programmer uses the

same name.

On the other hand, mutable values can be updated. Starting on line 7, I showcase the two forms

of mutable data in Parallel ML: refs and arrays. On line 20, the program updates the value at the

first index in an array. Note that the return value is stored in “ ”, meaning the function does not

have a useful return value. Instead, the main result is the function’s “side-effect”: updating the

array value.

5.2.4 Functions

As the term “functional language” suggests, functions play an out-sized role in Parallel ML com-

pared to lower-level languages. Functions are treated as first-class citizens alongside other types

like int and real. In practice, this idea means that functions can be stored in variables and used as

input arguments and return values. A simple function that increments an array element is shown

on line 23.

incrElem takes advantage of the common “let-in-end” structure. This structure enables scoped

variables, meaning values like new are only valid between “in” and “end”.

To fully understand the power of functions in Parallel ML, consider the function shown on line

31. forLoop implements a for-loop. By default, Parallel ML does not include an implementation

of a sequential for-loop. Instead, programmers use recursion, as shown in the for-loop example.
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The forLoop function takes another function, f, as an input argument. The closest analogue to

this behavior in C is passing a function pointer. Because it includes another function, forLoop is

considered a “higher order function”. The program proceeds to use forLoop to increment all of

array1 on line 38.

5.2.5 Parallelism

To perform array increments in parallel, a programmer simply swaps out the sequential for-loop

for the builtin parallel for-loop, ForkJoin.parfor, as shown on line 43. ForkJoin.parfor dynamically

executes the loop in parallel using work stealing [30]. It only takes one additional parameter: grain

size (G). Grain size allows the user to easily control the granularity of parallelism by changing the

size of computational units in the application. Grain size has a significant impact on performance.

Parallelization in FMPLs is simpler than OpenMP because of the dynamic parallelization and

memory management scheme performed by the language runtime. In FMPLs, there is no user-

level concept of threads. Instead, the runtime uses work stealing to distribute parallel computation

across the multiprocessor. Work stealing is a dynamic scheduling technique where runtime threads

will “steal” tasks from other threads and execute them in parallel. By ensuring that every thread

stays busy, work stealing can provide efficiency beyond what is possible using a traditional, static

scheduler.

During work stealing, the runtime is responsible for managing memory across the parallel

threads. Therefore, important (and challenging) manual optimizations in OpenMP, such as declar-

ing variables as thread-private or shared, are automated by the FMPL runtime. In other words, all

parallel communication (e.g., shared variables) is transparent to the programmer.

Parallel ML also recently added support for select high-level parallel operations on data col-

lections [229].
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5.3 Fitness of FMPLs for HPC Applications

While I did not perform a formal user study, I evaluated the fitness of FMPLs for high performance

applications through my experience porting NPB to Parallel ML. I consider the advantages and dis-

advantages of the FMPL programming model and compare the performance with the C+OpenMP

implementations of NPB.

5.3.1 Advantages of FMPLs for HPC

I found that FMPLs provide many advantages that make them appealing for HPC applications.

5.3.1.1 Functional Programming

The first and most apparent feature of FMPLs is functional programming. The primary advantage

of this approach is high-level legibility and abstraction. Every expression within an FMPL is a

function with inputs and outputs, which means that the flow and purpose of a new piece of code

can be easily read and understood. High-level functional languages also include rich semantics for

user-defined datatypes. For example, in FT, I created custom datatypes and functions to elegantly

manipulate 3-D arrays of complex numbers.

5.3.1.2 Automatic Memory Management

Another major advantage of high-level functional languages is automatic memory management.

All allocations and deallocations are handled by the language runtime. Automatic memory man-

agement is particularly attractive for HPC applications, as HPC memory systems are becoming

increasingly complex (e.g., NUMA architectures, heterogeneous accelerators, etc).
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5.3.1.3 High-Level Parallel Constructs

Parallel ML’s support for nested parallelism includes simpler constructs such as parallel for loops

popularized by OpenMP and more complex parallel data operations such as reduce, map, and fil-

ter [230, 229]. In my NPB implementations, I used these operations to expose the same parallelism

opportunities as the C+OpenMP code.

The main advantage of these constructs is their elimination of communication-related tasks

in OpenMP like declaring shared vs. private variables, which can be difficult for developers to

implement in complex scenarios. I also had a positive experience with some of the more com-

plex constructs. Particularly, I frequently used the data-parallel reduction to efficiently parallelize

regions of EP, CG, and MG.

5.3.1.4 Foreign Function Interface

Foreign Function Interface (FFI) support is critical to the development process when porting ex-

isting code to an FMPL. The FFI in PML allows full bidirectional interoperability, meaning PML

programs can directly call C functions and vice versa. When porting code, developers can use the

FFI to avoid rewriting non-performance-critical code (e.g., random number generation and data

initialization). Additionally, porting can be done incrementally, entirely using the existing code to

start and replacing it one function at a time. This process maintains the full functionality of the

program while iteratively expanding the scope of the PML section. In my experience, I used the

FFI in both these ways to accelerate development. I was able to routinely test the code instead of

rewriting the entire benchmark from scratch. Note that using the FFI creates the opportunity for

mixed language programs, which introduces concerns about maintainability.
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5.3.1.5 File I/O

File I/O is a prevalent and important component of modern high-performance applications, Load-

ing and parsing data from many-gigabyte files into PML is surprisingly feasible. During an early

iteration of the benchmarks, I used File I/O to import input data generated by the C+OpenMP

benchmarks. Overall, I found FMPLs elegantly handle file I/O, although it was not needed in the

final implementation for NPB.

5.3.1.6 Memory Protection/Exceptions

A convenient feature of FMPLs is their robust memory protection scheme. NPB, like most high-

performance parallel applications, involves complex iterations over large memory regions. When

developing these applications, it is easy to make mistakes. In C, errors like out-of-bounds array

accesses may go completely undiagnosed until runtime, where they may induce strange behavior

or segmentation faults.

Parallel ML solves this issue by protecting data structures and creating detailed exceptions.

For example, an out-of-bounds array access halts the program and produces an ”Array: Subscript”

error. These exceptions point developers to their mistakes, which greatly improved my debugging

experience.

While memory protection is beneficial during the development process, it comes at a perfor-

mance cost. During execution, the language runtime must perform a bounds check for every array

access.

5.3.2 Disadvantages of FMPLs for HPC

Despite their many advantages, FMPLs also introduce drawbacks that are important to consider.
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1 (×* C Version of MG Benchmark ×*)
2 if (Class == "A" ‖ Class == "S" ‖ Class =="W") {
3 c[0] = -3.0/8.0;
4 c[1] = 1.0/32.0; ...}
5 else {
6 c[0] = -3.0/17.0;
7 c[1] = 1.0/33.0; ...}
8
9 (×* PML Version of MG Benchmark ×*)

10 fun smallClass(class: string) =
11 class = "A" orelse class = "S" orelse class = "W";
12 if smallClass(CLASS) then
13 let
14 val = Array.update(c, 0, ˜3.0/8.0)
15 val = Array.update(c, 1, 1.0/32.0) ...
16 in() end
17 else
18 let
19 val = Array.update(c, 0, ˜3.0/17.0)
20 val = Array.update(c, 1, 1.0/33.0) ...
21 in() end;
22

Figure 5.2: Porting an if Statement from C to PML in the MG benchmark. PML’s functional
semantics result in more verbose if statements.

5.3.2.1 Functional Programming

While the functional programming paradigm is useful for HPC applications in many ways, it can

be unintuitive for programmers, particularly HPC developers who have years of experience with

low-level, imperative programming. I also experienced this learning curve. In this vein, certain

familiar concepts are more difficult to use. For example, if statements are treated as functional

expressions, meaning they must resolve to a single value (e.g., the return value of a function call).

To illustrate the complexity induced by functional if statements, consider the if statement in each



152

version of the MG Benchmark shown in Figure 5.2. Using this if statement, the program decides

between two sets of initial conditions according to class size. Each portion of the if statement

performs array updates. Bringing this behavior into PML, there is no if statement that directly

performs the array updates because each update has its own (null) return value. Instead, a “let-

in-end” structure assigns the return value of each operation to a dummy value, then performs an

empty function call for the if statement’s return value. Behavior like this example is an obvious

headache for developers more familiar with imperative languages.

Another issue caused by the functional paradigm is verbosity. For example, C has special

syntax to elegantly index arrays, but Parallel ML uses yet more function calls.

5.3.2.2 High-Level Parallel Constructs

While Parallel ML’s parallel constructs simplifies some programming tasks, the high-level abstrac-

tions makes some complex parallel control flows difficult to implement.

To illustrate this challenge, consider the IS benchmark. The C+OpenMP implementation of IS

is essentially one large parallel section operating on a few thread-private arrays. Figure 5.3 shows

an example parallel computation from the eventual implementation of IS in PML. In C+OpenMP,

thread private copies prevent a race condition when prev buf ’s elements are incremented at various

locations according to key buff2.

In PML, no notion of threads is exposed to the programmer, so no version of thread-private

copies can be declared. To circumvent this issue, I implemented the kernel using a single shared

array. To prevent race conditions on the shared array, I had to manually develop concurrency con-

trol. Currently, PML only provides a basic compare-and-swap operation for concurrency control,

so I had to create a custom lock type and lock/unlock methods. Developing locks was ultimately

straightforward, but this task is far lower-level than the promised programming model of FMPLs.
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1 fun for() =
2 let val l = lock init()
3 in ForkJoin.parfor G (0, n) (fn i ⇒
4 let
5 val ind = Array.sub(key buff2, i)
6 val cur = Array.sub(prv buff1, ind)
7 in(
8 lock(l);
9 Array.update(prv buff1, ind, cur+1);

10 unlock(l))
11 end)
12 end
13

Figure 5.3: A Parallel Kernel from IS. In the C implementation, prv buff1 is thread-private. In
PML, thread-private values persist across iterations, so data locks protect a single shared array.

5.3.2.3 Compilation Time

Another pain point with FMPLs is the compilation time. NPB are small applications (<1000 lines

of code), meaning the C+OpenMP implementations compile near instantly with any commonplace

compiler (GCC, Clang, etc.). PML, on the other hand, can take more than a minute to compile

smaller files. This issue is a known challenge for Parallel ML compilers [150], which perform full-

program analyses that quickly grow in complexity relative to the program size. These full-program

analyses greatly decrease the execution time for the compiled binaries, so they are very important

to the compilation process.

During the debugging process, compile time became a significant overhead as I repeatedly

tweaked, re-compiled, and tested the applications. For larger-scale HPC applications, compile time

when using FMPLs will also grow commensurately to code size, becoming a greater challenge.

The codebases of real-world scientific applications are many magnitudes larger than NPB, so

the current compilation time would be intractable for development.
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5.3.2.4 Floating-Point Correctness

Low-level languages like C include assumptions regarding how to compute exact floating point

values. These assumptions may not be shared by FMPLs, potentially causing errors.

During the NPB development process, I struggled to generate precise floating point values

to match the C+OpenMP implementation. Initially, I implemented a replica of the C random

number generator, which is used to create pseudorandom input values for multiple benchmarks.

I found that the FMPL version of the function produced slightly erroneous values. For example,

the C+OpenMP implementation would produce a value of .8081127688877 while PML would

generate .8081127688880 for the exact same input. These discrepancies caused the otherwise-

correct FMPL implementations to produce invalid outputs. In the end, I avoided this issue by

using the FFI to directly call the C random number generator.

The root cause is that the C+OpenMP implementation allows programmers to manipulate vari-

ables in a way that does not directly translate to FMPLs. Specifically, the C version casts 64-bit

double precision values directly to 32-bit integers, which incurs rounding. ALL IEEE compli-

ant platforms provide multiple rounding modes that can be set using rounding control bits. The

C+OpenMP and PML implementations are using different rounding modes, leading to different

results. Low-level computational minutiae translates poorly to FMPLs, so developers must pay

special attention to maintain correctness in their programs. It is important to note that beyond

random number generation, there were no other issues with floating point correctness.

5.3.2.5 Debugging Support

Even more so than lower-level parallel languages, there is a lack of source-level debugging tools

for FMPLs. Given their cutting-edge nature, none of the FMPLs we considered for this work have

debuggers.
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Instead, I embedded source-level debug information through print statements, which can be

toggled as needed. This approach to debugging is very similar to the one used by the C+OpenMP

implementation, and this issue is a symptom of the much broader need for debugging support for

parallel programmers.

5.3.3 Performance Evaluation

The performance trade-off for FMPLs’ higher-level abstraction is significant. To quantitatively

evaluate the fitness of FMPLs for HPC, I compare the performance of the Parallel ML implemen-

tations of the NPB kernels to the existing C+OpenMP implementations.

5.3.3.1 Experimental Methodology

For these experiments, I used a single-node, four socket machine with Intel Xeon Gold 6238L

CPUs with 384GB of DDR4 memory. Each processor contains 22 physical cores, each with 2

hyperthreads, resulting in 176 logical cores. I collected each measurement 5 times. Overall, there

was minimal run-to-run performance variation.

To compile the C+OpenMP NPB implementations, I used GCC version 9.4.0 with the O3 and

mavx512 optimization flags. MPL only supports source-to-source compilation to C. I therefore

compiled Parallel ML to C and then to binaries using MPL and GCC with the exact same flags as

the C+OpenMP version.

In Figure 5.4, I present graphs for each NPB kernel showing how performance changes over

the three configurable performance factors: input size (i.e., class or class size), thread count, and

grain size. For each benchmark (IS, EP, CG, MG, and FT), I performed a sweep over the three

factors and measured execution time for both the PML and C+OpenMP implementations.

Each graph varies one parameter along the x-axis, while showing the relative performance dif-
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Figure 5.4: Relative Slowdowns for PML vs. C+OpenMP Implementations of NPB. Sub-
figures show results for varying input sizes, numbers of threads, and grain sizes. To choose the
fixed parameters for each graph, I selected the largest class size that I fully evaluated (B) and
the best-performing number of threads/grain size. These decisions are made per-benchmark, so
the graphs for different benchmarks will feature different grain sizes and thread counts. Details
regarding the problem sizes and their associated parameter values can be found online [181].
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ference between PML and C+OpenMP on the y-axis. I represent the performance difference as the

relative slowdown of PML compared to C+OpenMP (i.e., how many times slower the PML imple-

mentation is when compared to C+OpenMP). For these experiments, input sizes ranged between

S-C, thread counts were up to 176, and grain sizes were up to 64 or 20000 if the benchmark perfor-

mance improved with greater grain sizes. Regarding grain size, I varied the grain size in PML, but

I left the equivalent OpenMP parameter (chunk size) as its default value because the C+OpenMP

implementation of NPB does not vary chunk size. When manipulating other variables, I selected

the best-performing number of threads/grain size and class size B.

The figures are ordered by relative performance, best to worst. In general, there was a corre-

lation between the amount of parallelism available in the benchmark and the performance of the

PML implementation.

5.3.3.2 EP

EP is where MPL’s best-performing benchmark. Across input sizes, thread counts, and grain sizes,

I measured relative slowdowns at most 25–30% compared to the C+OpenMP implementation.

Typically, the performance difference is negligible, and the PML version is actually faster for

small input sizes.

EP, as indicated by its full name, ”Embarrassingly Parallel”, contains abundant regular paral-

lelism. The results here show that PML can reach performance parity with C+OpenMP code when

supplied with significant amounts of fine-grained parallelism.

This result is promising and surprising. FMPL’s biggest performance advantage over OpenMP

was thought to be the dynamic load balancing provided by work stealing. When there is suffi-

cient parallelism to satiate OpenMP’s static scheduler, inefficiencies like array bounds checks are

expected to slow the FMPL version. However, the FMPL achieves performance parity in this case.
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5.3.3.3 FT

The PML implementation of FT maintains relative slowdowns of less than 2×. FT’s many array

operations expose sufficient regular parallelism opportunities, but the individual tasks are larger

than in EP because only the outermost loop of three when mutating the 3-D arrays can be paral-

lelized.

In FT, larger tasks result in a more significant slowdown compared to OpenMP. This result

points towards inefficiencies induced by the FMPL’s memory management, as larger tasks on

multi-dimensional arrays stress this component.

5.3.3.4 CG

The PML implementation of CG produces relative slowdowns of between 2–3× for large input

sizes. This benchmark contains many fine-grained parallelism opportunities, but they are irregular,

with parallel reductions interspersed among some parallel loops. The small task size is highlighted

by the varying grain size plot (brown line), where for the first time, the PML benchmark performs

better with larger grain sizes.

This result was the most disappointing of the benchmarks. FMPL’s load balancing should

provide an inherent advantage over OpenMP for CG’s irregular parallelism, but there is still a

significant slowdown.

5.3.3.5 IS

IS generally hovers between 3.5–4× slower than the C+OpenMP implementation. IS again con-

tains bountiful irregular parallelism opportunities, but as highlighted in Section 5.3.2.2, it has a

complex parallel workflow. In IS, the parallel sections are separated by sequential critical sections

only executed by the “master” thread. These sequential sections cause a “join” operation in the
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FMPL implementation, while the OpenMP version avoids any slowdown through a large “omp

parallel” region and “master” pragmas. As a result, the FMPL IS implementation is one of the

worst performers.

5.3.3.6 MG

MG is the worst performing FMPL benchmark. PML MG tends to be 4–8× slower than the same

C configuration, with far more variance than the other benchmarks.

MG’s poor performance has multiple causes. The benchmark contains irregular parallelism and

many heavyweight tasks, which as shown in the previous benchmarks, cause performance issues

for the FMPL. Its core computations require multiple array accesses (i.e., stencil calculations).

Frequently, new array values are calculated using four or more older values from multiple arrays.

Each of these individual array accesses incur a performance penalty compared to C+OpenMP to

support higher-level language features, (e.g., bounds checks to enable protection from Section

5.3.1.6). These slow calculations decrease the parallelism of the benchmark, because like FT, only

the outermost loop is parallelizable. For all these reasons, FMPL MG struggles the most compared

to C+OpenMP.

5.3.4 Discussion

With respect to their programmability, FMPLs’ advantages outweigh their disadvantages. Al-

though functional semantics are sometimes verbose, they quickly become familiar due to the strict

and consistent rule set. Then, higher-order functions can quickly scale an implementation. Addi-

tionally, by using the FFI, applications can be ported incrementally, and bugs are easier to identify.

Perhaps the most interesting way to highlight FMPL’s advantages is what the programmer does

not have to do. Thanks to the language abstractions, they do not have to worry about threads, mem-
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ative slowdown for each benchmark where both the C and PML implementations use their most
performant parameters (e.g., thread count) for Class Size B. The average across all benchmarks is
2.96×.

ory management, or communication, which makes for a straightforward programming experience.

However, using an FMPL to develop HPC applications can incur a significant performance loss.

The magnitude of this slowdown shifted drastically from one application to another depending the

amount and structure of parallelism in each benchmark.

Figure 5.5 shows the best-performing thread count and grain sizes for the PML and C imple-

mentations of each benchmark for class B. Table 5.2 shows the thread count and grain sizes used

to provide the best performance for each benchmark. Figure 5.5 shows a massive difference in

relative slowdown between the best-performing PML implementation (EP=1.02×) and the worst

(MG=5.76×). The average relative slowdown across all benchmarks is 2.96×.

In their current state, FMPLs are not truly useful to existing HPC developers for a few reasons.

Performance is the most obvious concern. Promising results for lightweight, regular parallelism

(e.g., EP) show that FMPLs have potential to close this gap with further research, but the current

state (average slowdown of nearly 3× is obviously untenable for performance-conscious develop-

ers.
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Table 5.2: Optimal Thread Count and Grain Size for Class=B

Benchmark Language Thread Count Grain Size
EP C 176 N/A (Default)
EP PML 176 1
FT C 128 N/A (Default)
FT PML 128 1
CG C 128 N/A (Default)
CG PML 128 256
IS C 16 N/A (Default)
IS PML 16 10000

MG C 128 N/A (Default)
MG PML 128 1

More fundamentally, FMPLs lack a groundbreaking feature to out-compete existing shared

memory programming models. Interfaces like OpenMP already provide a programmer-friendly,

directive-based approach to shared memory parallelism. Seasoned developers who are familiar

with OpenMP or an equivalent are unlikely to see benefit from switching to an FMPL.

That said, the future of FMPLs is not all doom and gloom. For example, FMPLs could help

more users write highly parallel programs. Data science and deep learning are currently hot topics,

and developers in these fields already use high-level languages like Python. Efforts are already

underway to provide parallel programming models better suited for these communities [242, 21].

FMPLs could provide a familiar programming model and substantially better parallel performance

for these applications.

Lastly, it is important to note that these languages are still nascent and under active research,

which may create new features and better performance. FMPL language properties, such as dis-

entanglement, enable promising new optimizations, like WARDen, to overcome the performance

gap. In the next section, I detail my effort to extend the Parallel ML runtime by adding automatic

distributed memory parallelism.
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5.4 DMPL: Completely Transparent Communication

FMPLs’ most obvious shortcoming in the context of this thesis is their limitation to shared memory

parallelism. In shared memory, cache coherence already provides a highly transparent abstraction

for programmers. By contrast, distributed memory programs must still explicitly communicate

between processes. To address this challenge and merge these domains, I set out to develop DMPL:

a distributed FMPL that maintains the original programming model. The idea is to provide a

consistent high-level programming experience regardless of the underlying hardware. Users can

develop a single program that will run on both a multiprocessor and a supercomputer. Throughout,

communication between the many layers of hardware parallelism are managed transparently.

As my final project, DMPL’s ambition extends far beyond this thesis. Here I describe my initial

intuition regarding how to port an FMPL to distributed memory, my progress so far, and the key

outstanding challenges.

5.4.1 MPL Refresher

The MPL compiler’s runtime for Parallel ML manages memory in a strict manner that makes it

especially suitable for high-performance, distributed computation. Specifically, MPL enforces the

“disentanglement” memory property [230], as described in Section 2.1.2. From a systems perspec-

tive, disentanglement ensures that concurrent threads remain oblivious to each other’s allocations.

MPL automatically ensures disentanglement by enforcing a strict memory heap hierarchy.

When a thread forks and creates parallel child threads (e.g., to begin executing a parallel-for loop),

each child thread allocates a new, separate heap. Child threads can access their parent’s heap,

which they can use freely for communication. Because parent threads are suspended while their

children execute, they are not concurrent threads, and accesses to the parent heap by the child
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Figure 5.6: Example Execution Path of a Disentangled Parallel Program. Memory accesses
may occur in the local heap or specific remote heaps depending on forks and joins.

threads do not violate disentanglement. On the other hand, child threads remain unaware of each

other’s personal heaps. This policy ensures that no child threads can access their sibling’s heap

concurrently, maintaining disentanglement. The heap management surrounding forks and joins is

illustrated in Figure 1.1.

5.4.2 Distributed FMPL Execution

I observe that FMPL programs can be automatically executed across distributed memory systems,

where parallel tasks are distributed across separate processes. Importantly, disentangled parallel

programs create a specific execution model with two distinct types of memory accesses and four

forms of communications overall. An example execution is shown in Figure 5.6. In this example,

assume each thread is now a process distributed across separate memory domains. Then, there are

four forms of communication that encompass the fork/join execution model and memory accesses

therein.
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• Forks (navy): When a process forks, it must spawn new “child” processes and tell them

what computation to complete.

• Joins (pink): When all of the child processes complete their computation, they must com-

municate their results (i.e., return values, relevant portions of their local heap) to the “parent”

and exit.

• Local Heap Access (brown): During computation, any process may access the local heap

that they allocated.

• Remote Heap Access (tan): During computation, a child process may access a remote an-

cestor heap.

Each type can be mapped onto existing patterns in lower-level communication libraries:

• Forks (navy): Forks can be performed by distributing work to parallel processes using col-

lective communication (e.g., broadcast the function to run and scatter the input values).

• Joins (pink): Joins can also be performed using collective communication (e.g., gather or

reduce the results).

• Local Heap Access (brown): Local accesses can occur without any communication.

• Remote Heap Access (tan): Remote accesses can occur through one-sided operations. Dis-

allowing copies of shared data effectively maintains the processor consistency model ex-

pected by fork/join programs.
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5.5 DMPL Programming Model

Building upon these ideas, I am in the initial stage of developing DMPL. To simplify the devel-

opment of parallel programs, DMPL provides a single, consistent programming model for shared

and distributed memory. Sequential programming remains identical to existing FMPLs, including

functional semantics, immutable data, etc.

Also similar to FMPLs, programmers implicitly declare parallelism through high-level con-

structs such as parallel for loops and reductions. However, for correctness and optimizations dis-

cussed in the following sections, programmer-specified data accesses to any heap within parallel

constructs must maintain the WARD property from Section 2.4. Note that this requirement is

stronger than in WARDen, which only recognizes leaf heaps maintain WARD by default. How-

ever, it does not significantly restrict application behavior due to the broadness of the WARD

property. Note that dependencies can exist implicitly, such as in reduction operations.

Recall that WARD’s two requirements are (generally): 1.) no read-after-write dependencies,

and 2.) write-after-write dependencies can resolve in any order. Assuming that the programmer

intuits that concurrent tasks have no inherent order and utilizes the higher-level parallel constructs,

they will follow these restrictions naturally. WARD essentially only prevents races that would be

non-deterministic in lower-level programming.

In its current state, DMPL relies on the programmer to manually ensure the WARD property.

In the future, it is likely that low-cost tooling assist/automate this process. For example, existing

tools to detect whether a program is disentangled [229] can help programmers identify and correct

entanglement issues.
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5.5.1 Functionality Requirements

To automatically execute disentangled programs across distributed memory systems, DMPL needs

to match the parallelism functionality of shared-memory FMPLs. The necessary functions are:

1. Task Distribution

2. Mutable Data Updates

3. Write-after-Write Race Resolution

4. Reduction Operations

These functions encompass the execution model from the previous section. “Task Distribution” is

the implementation of forks, where new tasks are sent to be executed in parallel.

Next, consider memory accesses. Local accesses do not require additional functionality for

DMPL. For remote accesses, recall that FMPLs classify memory as immutable or mutable. Im-

mutable data is read-only, so it can be freely copied and read locally by all processes. On the other

hand, DMPL disallows copies of mutable data to maintain coherence and consistency. There-

fore,“Mutable Data Updates” is the ability to update these values across memory domains. When

multiple data updates occur close together, DMPL must avoid data hazards. Write-after-write

races are the only data hazard allowed by the programming model, hence “Write-after-Write Race

Resolution”. Lastly, “Reduction Operations” are data updates that combine together using an arith-

metic operation. This set of memory functionality encompasses DMPL’s programming model and

is sufficient to run significant applications like NPB.

The last part of the execution model are join operations. At these points, data can be merged

using the previously described functionality. Then, function clean-up (e.g., freeing memory) can

be performed locally as in MPL.
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To test whether a DMPL implementation correctly implements these operations, I define a set

of test cases, acting as litmus tests that cover each case:

1. Task Distribution: Distribute tasks that print the process ID where they are executed.

2. Update Mutable Data: Populate an array with random integers in parallel.

3. Write-after-Write Race: Search a random array in parallel for some key that may have

duplicates.

4. Reduction Operation: Sum an array of random integers in parallel.

By successfully completing these test cases, I show that the DMPL prototype is able to cover a

significant set of high-performance parallel programs, including the NPB benchmarks. The DMPL

prototype provides the required functionality through a set of mechanisms, detailed in the following

sections for each required operation.

5.5.2 Mechanisms for Task Distribution

DMPL’s scheduler has been modified to support dynamic task distribution. An example of MPL’s

original scheduler is shown in Figure 5.7.

As mentioned previously, MPL’s runtime uses work stealing to dynamically distribute tasks

across hardware threads. Work stealing is a ubiquitous scheduling policy because it provides rea-

sonable efficiency guarantees [31]. However, work stealing relies on shared memory to quickly

check peer threads for work and perform stealing. In distributed memory, checking other pro-

cesses is far more expensive because the process must traverse the network. Instead, DMPL uses

“work sharing” to dynamically distribute tasks, meaning that a process will proactively push a por-

tion of the tasks to another process. Within each process, the original work stealing strategy then

further disperses the computation.
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Figure 5.7: Work Stealing Example. Tasks spawn on each hardware thread. When threads run
out of work (i.e., starve), they steal from another random thread.
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Figure 5.9: Serializing a Task for Distribution. The language runtime recursively copies all
reachable memory heaps into one contiguous buffer and sends it to the remote process, which
unpacks the buffer and executes the task.

An example of DMPL’s complete scheduler is shown in Figure 5.8. DMPL uses an additional

grain size parameter (Gdist) to decide how much work to distribute.

When the scheduler selects a task to distribute, it serializes the task into a contiguous memory

buffer and sends it to the remote process using MPI. Upon receipt, the remote process reconstructs

the heap and executes the task. The process is visualized in Figure 5.9.

Serialization is a complex process where the language runtime has to package all of the data

the task may use. Note that is similar to a closure but simplified thanks to disentanglement; DPLM

only must serialize data in ancestor heaps. First, the runtime recursively traverses the memory

hierarchy and sums the size of each heap to determine the buffer size. Then, it allocates the buffer

and copies the heaps.

During the copy, the runtime must take extra care to not break pointers. Pointers are converted

to point to the copy of their target in the buffer. Then, the runtime sends the buffer to the remote

process using MPI. The runtime on the remote process deserializes the buffer and executes the

task. The base address of the buffer in the original address space is included as metadata dur-

ing the MPI Send, so the remote process can fix the pointers in its memory. I implemented this

functionality in my DMPL prototype, so it is able to correctly execute the first, “hello-world” test

case.
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5.5.3 Mechanisms for Mutable Data Races

Copying data during serialization ensures correctness for all immutable data in DMPL because

once an immutable value is declared, it may be copied and used freely. However, mutable types

like refs and arrays may be updated by distributed processes. In this case, the copies may become

inconsistent, breaking the correctness of the program. To address this issue, DMPL converts mu-

table data structures to a dynamic MPI Window when they are first copied for distribution and

include the window tag alongside the pointer in the buffer. Then, any time a process updates its

copy of the data structure, it also uses a one-sided RMA operation to update the original copy.

When reading from the data structure, the process just uses its local copy; by the WARD property,

it will never attempt to read an updated value from another process.

Because one-sided operations are non-blocking and each process otherwise only interacts with

its local copy, processes operate with the full efficiency of shared memory. Fences are automat-

ically inserted at each join to ensure all updates from a parallel section are completed by every

process participating in the join before the program proceeds. The fences also resolve any write-

after-write races that appear. Again by the WARD property, DMPL can safely allow these races to

resolve in random order through RMA.

The functionality described here is also implemented in my DMPL prototype, and it success-

fully completed test cases 2 (populate a random array) and 3 (array search).

The last piece of DMPL’s current programming model is the parallel reduction. This function is

built on top of the mutable data updates and atomic operations. A reference to the final reduction

variable is passed as an additional parameter in the buffer. When the remote task completes, it

atomically updates the variable with its result using the reduction operation. My DMPL prototype

supports parallel reduction, completing the test cases.
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5.6 Remaining Challenge: Memory Management

At time of writing, my DMPL prototype supports the complete programming model described in

this dissertation, and it is able to execute the microbenchmarks described in the previous section.

Developing DMPL has highlighted the need for smarter distributed memory management.

For example, despite the disentanglement optimization, the buffers remain quite large in the

DMPL prototype. It is clear that DMPL is conservatively serializing unneeded data, and this area

remains a subject for further study.

There are other memory management complexities to consider. First, multiple layers of par-

allelism will result in the same values being copied repeatedly. Particularly for applications with

large data structures like FT and MG, this inefficiency will create a massive bottleneck. In future

work, I plan to improve this process by merging new data with the existing heap at the remote

process.

A series of parallel constructs frequently reuse the same mutable data structures. For exam-

ple, FT performs multiple sets of parallel computations on the same array. In the current DMPL

prototype, all changes to the array are recorded at an ancestor using RMA, then the entire array

is re-copied to the other processes when the following construct is distributed. I plan to optimize

this bottleneck by maintaining heap data after a parallel task ends. When a new task begins, it will

mark the old data structures as “dirty” and lazily retrieve the new values as needed using one-sided

communication back to the ancestor.

The current implementation may also run into memory capacity issues. If many processes are

sharing a single ancestor data structure, the data structure size will be constrained by the memory

available to the ancestor process and not scale with the number of children. To overcome this

challenge, I plan to consider many strategies, including automatic sharding for large data structures.
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5.7 Conclusion

FMPLs provide an exciting new alternative for HPC applications. My exploration in the context

of shared memory parallelism found significant opportunities to improve upon existing distributed

memory techniques. This work was published at the HIPS’23 workshop [236].

Work on a new distributed FMPL, DMPL, is ongoing, and it has the potential to benefit HPC

developers. The new runtime makes it possible to run some FMPL programs on distributed systems

without modification. The language runtime utilizes both the existing shared-memory back-end

and the new distributed back-end to transparently communicate and execute applications across

multiple layers of parallel hardware.

There are countless long-term benefits, including for load balancing, dynamic scaling (e.g.,

growing if a larger allocation becomes available on a supercomputer or shrinking to make room

for an on-demand job) and fault tolerance (e.g., buffers can be cached and re-distributed following

single node failures), etc. Additionally, further co-designed optimizations like WARDen could

unlock performance beyond what is possible with existing programming models.

Considering these major benefits, distributed FMPLs are an exciting new frontier for program-

ming model research, and I hope my thesis research spurs further efforts in this direction.
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CHAPTER 6

RELATED WORK

6.1 Shared Memory Communication

WARDen improves shared memory communication by selectively disabling cache coherence ac-

cording to language properties. There is substantial prior work in coherence-related optimizations.

Removing/deactivating coherence has been proposed before in hardware-supported, compiler-

directed (HSCD) cache coherence [59], OS-driven coherence deactivation [62], and software cache

coherence [129, 214, 11, 167, 213, 55, 58, 64, 164]. WARDen is distinct because it drives coher-

ence deactivation from the properties of HLPLs, which can provide the information to control co-

herence by construction. In contrast, these prior works give this task to the programmer (pragmas)

or recover this information through run-time inspector-executor methods and compiler analyses.

These analyses treat entire arrays as single variables and fail to detect false sharing [55, 58], or limit

array subscripts to loop iterators [64]. Others rely on software for triggering coherence actions and

hardware for selective self-invalidations but incur high overhead in lock-intensive programs [11]

or are restricted to unity loop iterators in affine loops without conditionals [164].

Other works improve cache coherence for discplined memory programs. DeNovo [57, 212]

simplifies hardware cache coherence by banning “wild shared-memory behaviors”, but it uses a

restrictive programming model that requires user-annotated code. VIPS-M [191] avoids directory

accesses and invalidations given data-race-free guarantees from software. This approach is limited

compared to WARDen because it only supports DRF programs. In addition, it does not support

legacy applications, meaning all programs must enforce DRF. SPEL expands VIPS by implement-
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ing a dual cache coherence protocol, allowing for legacy, non-DRF applications [190]. SPEL relies

on static compiler analysis to identify DRF code regions, which limits its scope compared to WAR-

Den. The static analysis will fail on any disentangled, non-DRF regions. Also, WARDen avoids

any compile-time overhead/analysis. Jimborean et al [119] recognize DRF regions in programs

manually parallelized with pthreads using static compiler analysis and target the SPEL dual cache

coherence protocol. The performance of this approach is limited by the conservativeness of mod-

ern alias/pointer-analysis; it is unable to detect up to 50% of potential extended DRF regions. In

contrast, WARDen avoids the limitations of compile-time analysis by targeting the disentangle-

ment property of HLPLs. For all these DRF-based works, note that disentanglement encompasses

DRF. Therefore, these works could be tweaked to target WARDen, allowing WARDen to support

some non-HLPL programs.

Alternative cache designs and protocols [186, 46, 129, 107, 73, 126] and transactional memory

[102, 201, 100] also relax hardware coherence according to higher-level directives. However,

these schemes only support regions that are limited in time and/or number of addresses. They also

require programmer intervention through memory fence annotations and/or transaction boundaries.

Earlier software distributed shared memory work aims to provide coherence in software through

middleware [137, 45, 5, 130, 209] or a hypervisor [52], but they are built on the kernel’s paging

system and share its limitations (expensive faults, large granularity, etc). Shasta [196] supports

a fine-grain shared address space through rewriting the application binary to intercept loads and

stores and perform in-line checks for sharing, but these checks cause performance degradation.

Blizzard [197] offers similar functionality with hardware assistance but also with sizeable over-

heads. Hierarchical private/shared classification [189] uses hierarchical sharing status, but compli-

cates page management.
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6.2 Distributed Memory Communication

I created a series of projects for optimizing distributed collective communication, namely algorithm

selection autotuning (FACT/ACCLAiM) and new algorithms (generalized algorithms). Collective

optimization dates back more than 20 years [216, 90].

6.2.1 Collective Algorithm Selection Autotuning

My autotuning work builds upon the ideas presented by Hunold et al.[111, 109], who present the

idea of using machine learning to autotune collective algorithms. They prove that basic machine

learning models without hyperparameter tuning can accurately select collective algorithms. The

work in [109] goes further, building an autotuner prototype using basic ML models without hyper-

parameter tuning. Their paper includes an ad hoc testing methodology that shows an ML autotuner

works well on allocations up to 48 nodes on larger supercomputers. FACT and ACCLAiM include

many advancements to scale the idea for exascale-era supercomputers.

Many others have proposed methodologies for selecting collective algorithms besides machine

learning. The popular approach is analytical models [225, 77, 178, 177, 142, 163]. The most

recent of these proposals is by Luo et al. [142]. They create submodules that represent lower-level

portions of a collective task, some of which can be mapped to specific hardware components. An-

alytical models suffer from other minor concerns, but their ultimate downfall is development cost.

Compared with the effort required to maintain handcrafted models and analyze new algorithms,

ML provides a black-box solution with automatic expandability.

Another approach is exhaustive benchmarking. Chaarawi et al.’s OPTO tool tunes individual

scenarios in Open MPI using a complete search [47]. Tools such as OPTO, however, require far

too much data collection time to compete with ML models.
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Faraj et al. proposed STAR-MPI, an “online” autotuner that builds a statistical model during

program execution and dynamically selects MPI parameters [79]. In general, online approaches

are rare because of their runtime overhead; decision space exploration directly slows the applica-

tion performance. Performance modeling/guideline approaches are simpler and also use runtime

information to make selections dynamically [112, 202]. However, these tools are restrained by the

models/heuristics that guide them, similar to the existing solutions in production MPI libraries.

Machine learning is becoming a prominent optimization tool across HPC. Pellegrini et al. op-

timized other MPI runtime parameters using ML [173]. Isaila et al. built an ML model to tune I/O

tasks [117]. Mohammed et al. used ML to predict failures in a virtualized system/application [151].

Zhang et al. scheduled HPC batch jobs with an ML model [240].

6.2.2 Collective Algorithms

Many past works have optimized collective algorithms. Seminal work on collective algorithms by

Thakur et al. [215, 216] laid the foundations for the standard set of collective implementations in

MPICH [154]. Other important works include Bruck’s algorithm [37], the n-way dissemination

barrier by Hoefler et al. [105], and the ring-based all-reduce algorithm designed by Patarasuk et al.

[171].

More similar to my work, others have also created generalized collective algorithms for spe-

cific scenarios. Ruefencht et al. proposed a generalization of the recursive doubling algorithm

for MPI Allreduce for small message sizes [192]. Ruhela et al. first utilized the k-nomial algo-

rithm to optimize intranode MPI Bcast [193]. MPI Allreduce k-nomial appears in Intel MPI, but

its use case is unexplained. Hasanov et al. created a hierarchical structure across reduction algo-

rithms [101]. Recently, Fan et al. generalized the Bruck’s algorithm [37] by developing the padded

Bruck and two-phase Bruck algorithms for nonuniform all-to-all communication [78]. My work
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is inspired by and goes beyond these previous efforts by showing how a single generalized kernel

can optimize for multiple collectives on multiple systems.

To further improve collective performance on new and emerging hardware, many works focus

on the development of new, topology-aware collective algorithms. Bienz et al. designed a locality-

aware Bruck allgather [24]. Gong et al. proposed a set of network-aware algorithms for MPI bcast,

reduce, gather, and scatter on cloud platforms [89]. Most recently, Feng et al. simulated collective

algorithms specially designed for the standard dragonfly topology [80]. My approach is more

general because I do not incorporate the topology directly into the algorithms; instead, I designed

system-agnostic algorithms that consider both the topology and other features (e.g., multi-port,

etc.), and the variable parameter fits the algorithm to the specific system.

The rising popularity of machine learning has motivated GPU-centric research. Cai and Liu et

al. proposed the Synthesized Collective Communication Library (SCCL) to synthesize optimal al-

gorithms on specific GPU topologies [40]. Leveraging new, collective-specific hardware, Haghi et

al. offloaded collective operations to in-switch hardware accelerators with two additional modules:

a Collective Control Module and a Reduction Unit [96]. Awan et al. pipelined bcast operations

during deep learning workloads on GPU clusters [13]. Also for distributed deep learning, Cho

et al. [56] decomposed allreduce operations into parallel reduce-scatter and allgather operations.

These network/application-specific designs are restricted to the contexts for which they were cre-

ated. By contrast, my algorithms are transparent to both applications and hardware, meaning they

can impact a wider variety of systems and users.

6.3 High-Performance Programming Models

I ported the NAS Parallel Benchmarks to an FMPL (Parallel ML) and am actively developing a

new programming model for distributed parallelism, DMPL.
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6.3.1 NPB

The NAS Parallel Benchmarks have frequently been used to evaluate the effectiveness of emerging

languages for HPC applications. Examples include UPC [72, 120] and Chapel [51]. In addition,

NPB is commonly used to compare different HPC programming models [200].

6.3.2 FMPLs

There is a long history of functional languages for distributed memory, such as the MPI backend for

NESL [25]. NESL is an ML-like language, and it was one of the original functional languages to

support nested data parallelism and automatic vectorization. Other functional languages to support

distribution include Erlang [6] and Cloud Haskell [75]. However, both of these languages expose

distribution to the programmer through message passing.

Parallel ML is one of many recently developed FMPLs, which maintain a higher-level abstrac-

tion compared to the older works via the fork-join programming model. From the ML family of

languages alone, other relatively new FMPLs include Multicore OCaml [206, 207] and the Manti-

core project [84], which has its own dialect of Parallel ML.

Multicore OCaml is an industry-led, shared-memory parallel version of OCaml. In this work, I

chose Parallel ML using the MPL compiler because of the planned development of DMPL, which

benefits from MPL’s research-oriented design. A natural future step is bringing any MPL enhance-

ments to Multicore OCaml.

The Manticore project defines its own dialect of Parallel ML, which includes implicitly threaded

data structures such as parallel arrays. I focus on MPL’s PML over Manticore because MPL’s

high-level parallelism constructs are more similar to parallelism APIs currently used in HPC (e.g.,

OpenMP).

Beyond the ML family, another recent FMPL is Distributed Parallel Haskell [49]. DPH focuses
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on pure functional programming, which is far less suitable for high-performance applications be-

cause it does not support mutable arrays.

6.3.3 Other New Programming Models

A wide variety of new programming models have been created for high-performance parallel pro-

gramming. Broadly speaking, they can be separated into multiple categories based on the hardware

systems they target and/or the type of abstraction they provide to the programmer. A similar sum-

mary, which goes into even more depth, can be found at [152].

6.3.4 Shared Memory

Various programming models only target shared-memory systems. Cilk [29, 115, 188] is a task-

based model invented at MIT and later supported by Intel. Cilk Plus is a library which extends

C/C++ with a non-blocking spawn function and a sync function. The tasks are structured into a

directed acyclic graph (DAG), which effectively implements the fork/join model. TBB [116] is

a C++ threading library created by Intel. It allows programmers offload lighter-weight tasks to

a pool of OS threads, avoiding expensive OS thread creation/termination. OpenMP [63] is the

predominant programming model for shared memory parallelism. It was originally designed to

implement the fork/join model in C, C++, and Fortran through parallel for loops, and now also

supports asynchronous tasks. OpenMP is the most common shared-memory programming model

in HPC, and it is the most popular “X” in “MPI+X”. OmpSs [69, 218] extends OpenMP with

more-advanced task concepts from the StarSs programming model [179]. OmpSs also supports

executing tasks on heterogeneous hardware. Qthreads [232, 221] is a threading library designed to

support massive numbers of user-level threads.

Overall, there are multiple programming models and libraries for shared memory systems that
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enable lightweight parallel execution. Many, such as Cilk and OpenMP, implement a fork/join

programming model that is very similar to the programming model in FMPLs. However, the

obvious limitation here is all of these libraries require the underlying shared memory abstraction

in hardware.

Some works [20, 143, 144] have attempted to bring fork/join programming in the form of

OpenMP to distributed-memory systems. However, these designs rely on lower-level software

to implement distributed shared memory (DSM), essentially passing the buck for managing dis-

tributed memory down the system stack. DSM is a long-standing research topic with known per-

formance issues. Therefore, it is unlikely these many programming models will reach beyond

shared memory any time soon. The remaining categories all support distributed execution.

6.3.5 Fortran Variants

Fortran is perhaps the most longstanding programming language for high-performance applica-

tions, dating back to the 1950’s [14]. Since then, there have been proposed updates to improve

Fortran for modern high-performance applications. Prominent examples include Coarray For-

tran [162] and High Performance Fortran (HPF) [141]. Coarray Fortran extended F95 with SPMD

coarrays, which were later adopted into Fortran 2008. HPF extended F90 with innovative features

like parallelism directives, but it largely fizzled [127]. Various flavors of Fortran (new and old) still

remain popular in high-performance computing. However, new developments are largely focused

on new programming paradigms, as described below.

6.3.6 Partitioned Global Address Space (PGAS)

There are multiple runtimes and languages that support a PGAS abstraction. In a global address

space, multiple parallel threads may freely and directly access memory across distributed regions.
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The UPC/++ [44, 241] languages are the classical examples of the PGAS abstraction in action.

However, UPC and UPC++ are very low-level extension of C and C++, respectively, requiring pro-

grammers to explicitly state all communication between the threads, synchronization, the neces-

sary memory consistency model, etc. Chapel [50, 217] is a separate PGAS language that provides

a higher-level abstraction compared to UPC/++. It relies on the same underlying communication

library (GASNet) as UPC++. X10 [239, 53] is PGAS language built on Java. It includes a few

unique abstractions (e.g., data can be stored private memory called “places”) and executes on top

of the Java Virtual Machine (JVM) runtime system.

Despite years of advancement and new, higher-level languages, the PGAS abstraction remains

a fairly niche choice for HPC programming. It is difficult to suggest why HPC programmers

seem reluctant to adopt this new programming model. By contrast, DMPL maintains the fork/join

programming model HPC programmers are already familiar with through more popular tools, such

as OpenMP.

6.3.7 Task Parallel

Task parallel programming models the fastest-growing category in HPC today. The basic idea is

that the programmer specifies parallel “tasks” and data dependencies between them. Then, the

language/runtime system can automatically execute tasks in parallel across distributed resources.

Charm++ [124] is one the first task-parallel implementations, dating back to the 1990’s, and is

still relevant work. Charm++ extends C++ to include “charms”, which are asynchronous tasks that

are distributed to execution resources. HPX [123] also extends C++, but instead targets the Par-

alleX [122] execution model, which enables asynchronous task-parallel execution. HPX improves

on Charm++ by using an active global address space (AGAS), meaning data can migrate en masse

to better fit the dynamic execution model. Legion [22, 135] is a lower-level task parallel model



182

that requires programmers to explicitly map data into memory partitions. Legion enables fine-

grained control of execution across heterogeneous distributed systems for maximum performance.

OCR [146] is more recent task-based runtime specifically designed as an alternative to “MPI +

X” on exascale systems. Uintah [149, 88, 222] is a set of task libraries specifically designed for

large-scale simulation, such as those common in HPC. PaRSEC [36, 169] requires users to specify

the dataflow between dependent code segments, which in-turn guides the runtime system to better

distribute tasks onto the processing resources.

Task-based programming models are another example of a powerful abstraction that is logically

different than longstanding approaches like MPI. Individual applications tend to be biased towards

one or the other depending on the structure and regularity of the available parallelism.

6.3.8 Heterogeneous Systems

In this thesis, I focus on addressing the challenge of programming high-performance systems,

which are quickly increasing in scale. In addition, these machines are also increasing in hetero-

geneity. Non-CPU accelerators, such GPUs and FPGAs, are becoming more commonplace in

supercomputers. To combat the separate challenge of programming for these devices, multiple

heterogeneous programming models have been developed.

OpenCL [220] is the most prominent example. It presents a generic programming interface for

functions, which can then be automatically offloaded to a heterogeneous accelerator. The OpenCL

runtime manages the translation from one hardware type to another. OpenACC [219] is a hetero-

geneous programming model specifically designed for CPU+GPU systems. This tight integration

allows OpenACC to present a simpler programming interface similar to OpenMP. StarPU [12] is a

task-parallel programming model targeted towards CPU+GPU systems. CUDA [61], developed by

NVIDIA, is an API for programming NVIDIA GPUs for general purpose applications, including
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scientific programs. The ROCm interface [4] is AMD’s analogue to CUDA, and they also include

a tool to convert CUDA code to HIP, the AMD API. Intel’s preferred heterogenous programming

model is SYCL [187], a C++ library inspired by OpenCL which relies heavily on template func-

tions. Kokkos [70] is another C++ library designed to enable performance portability across CPU

and accelerators, such as GPUs. Kokkos programmers operate on data as multi-dimensional arrays,

then the runtime the data in memory according to the target architecture. Last is RAJA, another

C++ compatibility layer that utilizes almost exclusively template functions [106].

These programming models take cues from both fork/join and task parallel models to tackle

heterogeneous hardware. Such systems remain outside the scope of this dissertation. Future work

on DMPL could target heterogeneous hardware.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Communication is a critical component of parallel programming, but traditional communication

mechanisms lag behind the growth of modern hardware. My dissertation focuses on multiple novel

advancements to improve their performance for newer systems like manycore multiprocessors and

large-scale distributed memory machines like exascale supercomputers without disrupting the pro-

gramming model. For shared memory, I created WARDen, a novel cache coherence protocol, and

for distributed memory, I developed multiple advancements for collective communication. Exam-

ples include for autotuning (FACT and ACCLAiM) and new collective algorithms (generalized

algorithms).

Additionally, I explored a new programming model for high-performance parallelism. I took

an exciting new field of parallel languages called FMPLs and examined their usefulness within

shared memory. Then, I built DMPL, an expanded FMPL runtime that encompasses both shared

and distributed memory.

Going forward, these works serve as proof of the potential for transparent optimizations for

programming models old and new. Below, I list the primary contributions on this dissertation.

7.1 Summary of Contributions

Argument The foremost contribution of this work is the argument that longstanding communication ab-

stractions (e.g., shared memory, message passing) can be transparently optimized for mod-

ern computer systems, and future programming models can abstract away communication
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altogether. I provided evidence for the validity of this claim through the following projects.

WARDen I designed WARDen, a novel cache coherence protocol for high-level parallel languages.

WARDen shows that it is uniquely possible to transparently reign in the cost of cache coher-

ence for HLPLs.

FACT I devised FACT, a methodology for ML-based autotuners for collective algorithm selection.

FACT shows that ML autotuners can be trained more feasibly at large scale using a clever

training methodology.

ACCLAiM I am the lead and sole developer of ACCLAiM, the world’s first ML collective autotuner to

be trainable on a large-scale supercomputer.

Algorithms I designed 10 new “generalized” MPI collective algorithms that include a new tunable pa-

rameter to better leverage modern systems.

NAS-MPL I ported and maintain NAS-MPL, an open-source implementation of the NAS Parallel Bench-

marks in the derivative of Parallel ML defined by the MPL compiler. NAS-MPL is freely

available online [159].

DMPL I created DMPL, an extension of the MPL compiler and runtime system that supports dy-

namic distributed computation without modifying the existing programming model.

7.2 Other Contributions

During my Ph.D. journey, I also had the opportunity to contribute to other research projects. Most

notably, I helped create CARMOT (Compiler and Runtime Memory Observation Tool) [66].

CARMOT helps parallel programmers perform Program State Element Characterization (PSEC),



187

which is the analysis of program elements like variables and memory regions to understand how

they interact across parallel threads. CARMOT provides source-code level assistance to the pro-

grammer for popular programming models. For example, it can recommend the correct OpenMP

pragmas to use, or how to classify a C++ smart pointer object. For benchmarks across the PARSEC

and NPB suites, CARMOT’s OpenMP recommendations matched or exceeded the performance of

hand-crafted optimizations.

Most relevant to my thesis work, the need for CARMOT in the first place shows how difficult it

can be for parallel programmers to use new abstractions for parallel programming. It emphasizes

both the importance of updating existing models that programmers are already comfortable with,

and developing higher-level models that make it easier to write correct, performant code.

7.3 Future Work

There are multiple potential directions for further research that stem from this dissertation, most

notably the convergence of my ML autotuners and generalized collective algorithms. In my ex-

periments in Chapter 4, I combined these efforts by manually selecting the optimal algorithm

parameters using analytic models and empirical evidence. In the future, I envision an autotuner

that selects both the proper algorithm and its parameters. However, algorithm parameter autotun-

ing drastically increases the autotuner’s search space, which risks reaggravating the data collection

challenges FACT and ACCLAiM so greatly sought to overcome.

To tune collective parameters without more training data, I propose “hybrid” tuning. FACT

and ACCLAiM leverage “allocation-time” tuning, a novel approach where the tuner trains its ML

model once a job is scheduled onto the supercomputer but prior to application execution. In hybrid

tuning, training also continues “online” while the application is running.

As discussed in Chapter 6, online tuning has been explored in previous work. However, these
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approaches suffer from significant performance degradation due to search space exploration. When

an online tuner wants to understand how an algorithm performs, it must replace the one the applica-

tion is using. If the new algorithm is slower than the previous one, the algorithm can lose significant

performance. It is difficult to infer how one algorithm will perform based on others (i.e., Algorithm

‘A’ performing better than Algorithm ‘B’ is unlikely to inform the autotuner about Algorithm ‘C’),

so these errors must be encountered frequently to eventually find the optimal choice.

Generalized algorithms inherently solve the online tuning selection issue. Their parameters

offer fine-grained, transitive tuning, meaning the autotuner can incrementally alter the algorithm’s

behavior (e.g., increasing/decreasing the parameter value slowly), and make inferences about

untested values (e.g., if k=4 performs better than k=2, then k=3 is likely better than 2 but worse

than 4).

To implement the hybrid autotuner, I propose tuning algorithm selection at allocation time

and parameters online. The allocation-time tuning methodology (e.g., ACCLAiM) will remain

unaltered. Then, a new online component will track the most common collective operations. When

an operation reaches a certain frequency threshold, the autotuner will apply a simple multiplicative

increase/subtractive decrease strategy1 to the next few invocations of the collective to quickly locate

the optimal parameter value.

The other most exciting direction for further research is DMPL. DMPL remains an ongoing

project, where the basic functionality exists, but it has not been extensively evaluated. In the

future, this project will involve a thorough performance evaluation of the DMPL prototype for

both microbenchmarks and real applications (the implemented functionality is sufficient to execute

my NPB implementations). This evaluation will identify the key performance bottlenecks in the

design. As I described in Section 5.6, there any many avenues to transparently improve DMPL’s

1For familiar readers, this strategy is the converse of TCP’s well-known congestion control mechanism.
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performance, extending the impact of this dissertation.
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