

Computer Science Department

Technical Report
Number: NU-CS-2024-07

March, 2024

Modern Hopfield Model for Deep Tabular Learning

Chenwei Xu

Abstract

In this work, we study tabular learning from modern Hopfield model perspectives. Specifically,
we use a generalized sparse modern Hopfield model for learning tabular data representation and
prediction. In this work, the BiSHop (Bi-Directional Sparse Hopfield Model) is introduced as an
innovative framework for end-to-end tabular learning, tackling the two challenges in deep tabu-
lar learning: non-rotationally invariant data structures and feature sparsity. Inspired by the newly
established connection between associative memory and attention mechanisms, BiSHop adopts
a dual-component strategy. It sequentially processes data column-wise and row-wise through
Bi-Directional learning modules, each equipped with generalized sparse Hopfield layers. These
layers extend the traditional Hopfield model by introducing learnable sparsity. Methodologically,
BiSHop enables multi-scale representation learning, effectively capturing intra-feature and inter-
feature interactions with adaptive sparsity at various scales. Empirical validation on diverse real-
world datasets shows that BiSHop exceeds the performance of current state-of-the-art methods
with fewer hyperparameter optimization (HPO) runs, marking a significant advancement in deep
tabular learning.

Keywords

Tabular Learning, Tabular Data, Deep Learning, Modern Hopfield Model, Modern Hopfield
Network

NORTHWESTERN UNIVERSITY

Modern Hopfield Model for Deep Tabular Learning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

MASTER OF SCIENCE

Field of Computer Science

By

Chenwei Xu

EVANSTON, ILLINOIS

March 2024

2

© Copyright by Chenwei Xu 2024

All Rights Reserved

3

ABSTRACT

In this work, we study tabular learning from modern Hopfield model perspectives. Specifically,

we use a generalized sparse modern Hopfield model for learning tabular data representation and

prediction. In this work, the BiSHop (Bi-Directional Sparse Hopfield Model) is introduced as an

innovative framework for end-to-end tabular learning, tackling the two challenges in deep tabu-

lar learning: non-rotationally invariant data structures and feature sparsity. Inspired by the newly

established connection between associative memory and attention mechanisms, BiSHop adopts

a dual-component strategy. It sequentially processes data column-wise and row-wise through

Bi-Directional learning modules, each equipped with generalized sparse Hopfield layers. These

layers extend the traditional Hopfield model by introducing learnable sparsity. Methodologically,

BiSHop enables multi-scale representation learning, effectively capturing intra-feature and inter-

feature interactions with adaptive sparsity at various scales. Empirical validation on diverse real-

world datasets shows that BiSHop exceeds the performance of current state-of-the-art methods

with fewer hyperparameter optimization (HPO) runs, marking a significant advancement in deep

tabular learning.

4

ACKNOWLEDGEMENTS

First and foremost, I extend my profound gratitude to my advisor, Professor Han Liu, whose

guidance, encouragement, inspiration, and steadfast support have been indispensable. Over the

past two years, his dedication to research excellence, his courage in navigating uncharted territo-

ries, his discerning approach to selecting research problems, and his vast knowledge of statistical

machine learning have profoundly influenced my academic journey. Engaging in discussions with

him has been incredibly enriching, covering a wide spectrum from mathematical methods to strate-

gic thinking, from the art of technical writing to public speaking, and from advanced coding tech-

niques to professional conduct. His thoughtful and considerate feedback has significantly shaped

my life choices and philosophy. I am immensely fortunate to have had him as my mentor.

I am also thankful to Professor David Demeter for his invaluable contributions as a member

of my committee. His insights laid the groundwork for my understanding of language models.

My gratitude extends to Professor Chris Riesbeck, the director of the master’s program, and to all

the faculty and staff within the MSCS program at Northwestern. Their unwavering support and

guidance have been crucial in navigating my studies.

I owe a great debt of thanks to my project collaborators, Jerry Yao-Chieh Hu, Haozheng

Luo, Weijian Li, Tim Lau, Yu-Chao Huang, Dennis Wu, Guo Ye, Mattson Thieme, Alex Reneau,

Zhenyu Pan, Donglin Yang, and Ammar Gilani. Their collaboration was essential in completing

this thesis, generously dedicating their time to help me refine my topic. Through this partnership,

I learned not only about topic development but also about conducting meaningful research. Their

expertise in various areas, including academic writing, theoretical development, and programming,

has significantly bolstered my research skills.

Being a member of the MAGICS Lab has been an extraordinary honor. I express my special

thanks once again to Professor Han Liu and Jerry Yao-Chieh Hu and Haozheng Luo and Tim Lau

for their extensive support in my academic and personal life. The knowledge and skills I have

acquired from them reach far beyond the academic realm and will undoubtedly enrich my future

5

endeavors. I am also grateful for the opportunity to collaborate with remarkable lab members like

Dennis Wu, Guo Ye, Qinjie Lin, Mattson Thieme, Alex Reneau, Shang Wu, Weimin Wu, Yufeng

Zou, Zhenyu Pan, Zhihan Zhou, Donglin Yang, Yibo Wen, Chiao-Wei Hsu, and all other outstand-

ing team members. Their deep insights into machine learning and their willingness to help have

been tremendously motivating and beneficial to my work. Interacting and collaborating with them

has been an incredibly productive and unforgettable experience, significantly contributing to my

research publications. Special thanks are also due to Holly Jia for her diligent efforts in managing

our computational resources, without which much of my work would have been unfeasible.

I would also like to extend my heartfelt gratitude to the READS collaborators at Fermilab:

Kyle Hazelwood, Aakaash Narayanan, Jason St. John, and Vladimir Nagaslaev. While their con-

tributions are not featured in this thesis, their partnership in the READS collaboration significantly

enriches my master’s research. This collaboration offers me a unique chance to employ machine

learning techniques in addressing challenges within the field of particle physics.

Additionally, I wish to express my appreciation to Shifeng Li. As my closest friend in machine

learning, collaborating with him on various side projects has greatly expanded my knowledge base.

Last but not least, I must acknowledge the unwavering support of my parents. Their unlimited

support has been the bedrock of my academic pursuit, allowing me to dedicate myself fully to my

studies without any concern.

It’s inevitable that there are people I’ve inadvertently forgotten from this list, yet I am equally

appreciative of their contributions. I extend my thanks to all such persons collectively and anony-

mously.

6

TABLE OF CONTENTS

Acknowledgments . 3

Table of Contents . 6

Chapter 1: Introduction . 10

1.1 Related Works . 12

1.2 Thesis Organizations . 14

Chapter 2: Background: Generalized Sparse Modern Hopfield Models 15

2.1 Notations . 15

2.2 (Dense) Modern Hopfield Models . 15

2.3 Generalized Sparse Modern Hopfield Model . 17

2.4 Definition of Memory Storage and Retrieval and Separation of Patterns 20

2.5 Theoretical Results for Generalized Sparse Modern Hopfield Model 21

Chapter 3: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse
Hopfield Model . 23

3.1 Tabular Embedding . 23

3.2 Bi-Directional Sparse Hopfield Module . 26

3.3 Stacked BiSHopModules for Multi-Scale Learning with Scale-Specific Sparsity . . 28

7

Chapter 4: Experimental Evaluations . 31

4.1 Experimental Setting . 32

4.2 Ablation Studies . 34

4.2.1 Component Analysis . 34

4.2.2 Comparison with the Dense Modern Hopfield Model 35

4.2.3 Convergence Analysis . 36

Chapter 5: Conclusion and Future Work . 38

5.1 Comparing with Existing Works. 38

References . 43

Appendix A: Experimental Details . 44

A.1 Additional Details on Datasets . 44

A.2 Baselines . 47

A.3 Implementation Details . 48

A.4 Training Details . 49

8

LIST OF FIGURES

1.1 High-Level Visualization of BiSHop’s Pipeline. 10

2.1 Visualizing Hopfield Models. 16

3.1 BiSHop Structure . 24

4.1 Performance Analysis on Dataset I . 32

4.2 Convergence Analysis . 37

9

LIST OF TABLES

4.1 BiSHop versus SOTA Tabular Learning Methods (Dataset II). 31

4.2 Component Ablation . 35

4.3 Comparing the Performance of Sparse versus Dense Hopfield Models and Atten-

tion Mechanism . 36

A.1 Details of Datasets I . 44

A.2 Details of Datasets II . 45

A.3 Dataset Sources . 46

A.4 BiSHop hyperparameter space . 49

A.5 Dataset Sources . 50

A.6 Hyperparameter configurations for CatBoost. 50

A.7 Hyperparameter configurations for LightGBM. 50

A.8 Hyperparameter configurations for TabNet. 50

A.9 Hyperparameter configurations for XGBoost. 51

A.10 Hyperparameter configurations for T2G-FORMER. 51

A.11 Hyperparameter configurations for TANGOS. 51

A.12 BiSHop Hyperparameter Search Space . 51

10

CHAPTER 1

INTRODUCTION

Recent advancements in the development of deep learning architectures for tabular data have been

notable, as evidenced by several key publications [1, 2, 3, 4]. These developments are largely fu-

eled by the inadequacies of tree-based methods, which, despite their effectiveness in tabular learn-

ing, fail to seamlessly integrate with deep learning frameworks. Thus, the exploration into deep

learning for tabular data is essential not only for performance improvement but also for bridging

the current methodological divide. Nonetheless, findings from a recent benchmark study on tabular

data [5] indicate that tree-based methods continue to outperform their deep learning counterparts,

highlighting two principal obstacles for deep learning in tabular contexts:

(C1) Non-Rotationally Invariant Data Structure: The inherent non-rotationally invariant nature

of tabular data diminishes the efficacy of deep learning techniques that rely on rotational

invariance.

(C2) Feature Sparsity: Tabular datasets are often more sparse compared to the conventional

datasets utilized in deep learning, presenting difficulties for deep learning models in extract-

ing useful information from features that lack informativeness.

Drawing inspiration from the hierarchical and interconnected structure of the human brain [6,

7], we introduce the Bi-Directional Sparse Hopfield Model, a novel deep learning framework based

Ta
bu

la
r d

at
a Categorical

Patch

Embedding

Numerical
Embedding

Embedding

Column-Wise Row-Wise

Column-Wise Row-Wise

Column-Wise Row-Wise

…

Column-Wise Row-Wise

Column-Wise Row-Wise

Column-Wise Row-Wise

Column-Wise Row-Wise

Column-Wise Row-Wise

… In
fe

re
nc

e

Bi-Directional Cellular Learning Module

Figure 1.1: High-Level Visualization of BiSHop’s Pipeline.

11

on the Hopfield network, specifically designed for tabular data.

To address the challenge posed by the non-rotationally invariant structure of tabular data (C1),

our framework incorporates a bi-directional cellular learning module (BiSHopModule). This de-

sign mirrors the human brain’s memory mechanisms, where different regions work collaboratively

to form and retrieve associative memories. This module employs a dual Hopfield model approach,

focusing separately on column-wise and row-wise data patterns. This method leverages the tabu-

lar data’s structure as an inductive bias, akin to the collaborative memory formation and retrieval

processes in different brain regions.

For tackling the features sparsity in tabular data (C2), we draw inspiration from the human

brain, which dynamically adjusts neural activity based on the importance and relevance of infor-

mation [8, 9, 10]. With this perspective, we utilize the generalized sparse Hopfield model [11].

The generalized sparse Hopfield model [11] is an extension of both the sparse Hopfield model [12]

and the modern Hopfield model [13], with learnable sparsity. This model excels in robust repre-

sentation learning and integrates smoothly with existing deep learning frameworks, emphasizing

essential information. Furthermore, by stacking multiple layers of the generalized sparse Hopfield

model within the BiSHopModule, our design mimics the brain’s multi-tier associative memory sys-

tem, enabling each layer to capture representations at different scales and adjust its sparsity, thus

adding another layer of inductive bias (C2) to our model.

At its foundation, BiSHop excels in multi-scale representation learning, adept at capturing both

intra-feature and inter-feature dynamics, while fine-tuning sparsity levels at each scale, mirroring

the hierarchical structure observed in human cognition. By identifying representations in both

column-wise and row-wise manners across various scales, and then concatenating these multi-

scale representations for downstream tasks, BiSHop offers a comprehensive solution for tabular

data, tailored to its unique challenges.

Our contributions are twofold:

1. Methodologically, we introduce BiSHop, an innovative deep-learning framework designed

for tabular learnining. BiSHop incorporates two critical inductive biases (C1, C2) into its ar-

12

chitecture, utilizing the BiSHopModule and a hierarchical learning approach for tabular data

processing. The BiSHopModule leverages the generalized sparse Hopfield model [11] for

feature learning in tabular datasets, facilitating multi-scale learning of sparsity and providing

enhanced resilience against noise. Our framework further employs a hierarchical two-joint

design tailored to the unique aspects of tabular data, supporting learnable sparsity and multi-

scale cellular learning. To augment the learning of representations for both numerical and

categorical features, we integrate advanced tabular embedding techniques [4, 2, 14].

2. Experimentally, we conduct extensive evaluations using various real-world datasets along-

side a renowned tabular benchmark [5], covering 17 classification and 11 regression tasks.

We benchmark BiSHop against state-of-the-art (SOTA) models from both tree-based and

deep learning domains. Our findings demonstrate that BiSHop achieves superior perfor-

mance across a majority of the datasets evaluated, excelling in both regression and classifi-

cation challenges.

1.1 Related Works

Advancements in Machine Learning for Tabular Data Tabular data is a common data types

across various domains such as time series prediction, fraud detection, physics, and recommenda-

tion systems. The current state-of-the-art machine learning models on tabular data are tree-based

models such as the family of gradient boosting decision trees (GBDT) models [15, 16, 17]. Lately,

as deep learning has done well in understanding language and recognizing images, there’s been

many attempts to use these deep learning methods, like Multi-layer Perceptron (MLP) [18], Con-

volutional Neural Network (CNN) [19], and Transformer [4, 20, 1], for table data too. There’s also

work on making tree models that can learn and adjust, adding more power to the GBDT models

[3, 21, 22]. However, these deep learning methods haven’t yet beaten the tree models in working

with table data [23, 5]. Recent studies, like TabR [24], show a slight edge over GBDT in some data

sets. For small data sets, TabPFN [25] uses a special network and does better than tree models,

but it needs a lot of memory and time to train. T2G-FORMER [26] doesn’t beat XGBoost but

13

does better than other deep learning models by learning feature relations. TANGOS [27] narrows

the performance gap with tree models by using special training techniques. Still, no deep learning

model has consistently outperformed tree models for table data yet.

Modern Hopfield Models and Attention Mechanisms The classic Hopfield models [28, 29,

30] serve as a key example of how the human brain can store and retrieve memories. There’s a

resurgence of interest in these models because of new insights into how memories can be stored

more efficiently [30, 31], advancements in model architecture [32, 33, 34, 13], and a better under-

standing of their basis in biology [35, 36]. Modern Hopfield models [13] connect closely with deep

learning’s attention mechanisms, offering improved performance and the potential for substantially

larger memory storage. These models are now seen as a natural evolution of focus mechanisms,

paving the way for new machine learning architectures. They’re being applied in a range of fields,

from immunology [37] to time series forecasting [11, 38], reinforcement learning [39], and large

language models [34] . This research aims to further refine these models, particularly towards more

resource-efficient designs, highlighting the potential for Hopfield-based approaches and inspiration

from natural systems.

Sparse Attention Attention mechanisms in transformers have shown remarkable success across

domains like large lanugae models [40, 41], time series prediction [42, 43], and biomedical science

[44, 45, 46]. This structure presents computational challenges, especially for longer sequences,

given its O(n2) complexity for an input sequence of length n. To address this, research has been

exploring ways to make attention mechanisms more efficient without losing effectiveness. For a

comprehensive review, readers may refer to [47]. Generally, these efforts can be grouped into:

1. Structured-Sparsity Attentions [48, 49, 50]: This approach uses Structured patterns to limit

the parts of the data each segment needs to consider. Typically, each sequence token attends to

a predetermined subset of tokens instead of the entire sequence.

2. Dynamic Sparsity via Normalization Maps [51, 52, 30]: Unlike structured patterns, this

method adjusts sparsity based on the relevance of data segments, potentially improving effi-

14

ciency while maintaining or enhancing clarity and scalability. The dynamic sparsity does not

retain a space complexity of O(n2).

Our work mainly aligns with adaptive patterns, utilizing the generalized sparse Hopfield model

[11] to introduce efficiency into the model through alternatives to traditional focus mechanisms.

1.2 Thesis Organizations

The rest of this thesis is structured as follows: Chapter 2 delves into the backdrop of the contem-

porary Hopfield model, encompassing its theoretical examination. Chapter 3 unveils BiSHop, our

innovative strategy for leveraging the modern Hopfield model within tabular learning. Chapter 4

presents extensive experimental findings on real-world datasets, demonstrating the effectiveness

and precision of our approach. Finally, Chapter 5 concludes the paper by summarizing the entire

study and providing a comparison with existing work in the field of tabular learning.

15

CHAPTER 2

BACKGROUND: GENERALIZED SPARSE MODERN HOPFIELD MODELS

This section offers a brief summary of the modern Hopfield model [13] and the generalized sparse

modern Hopfield model [11] and its extension, the generalized sparse modern Hopfield model

[11]. The work by [11] extends the ideas found in [12, 13] by incorporating the concept of Tsallis

α-entropy [53].

2.1 Notations

We denote vectors by lowercase bold letters, and matrices by upper case bold letters For vectors

a, b, we define their inner product as ⟨a,b⟩ = aTb. We use the shorthand [I] to represent the

index set {1, · · · , I} with I being a positive integer. For matrices, we denote the spectral norm as

∥·∥, which aligns with the l2-norm for vectors. We denote the memory patterns by ξ ∈ Rd and the

query pattern by x ∈ Rd, and Ξ := [ξ1, · · · , ξM] ∈ Rd×M as shorthand for stored memory patterns

{ξµ}µ∈[M].

2.2 (Dense) Modern Hopfield Models

Given a query pattern x ∈ Rd and a set of memory patterns Ξ = [ξ1, · · · , ξM] ∈ Rd×M , Hopfield

models [29, 28, 30, 31, 36] are designed to encode these memory vectors and identify a particular

memory ξµ upon receiving a query x. These models embed the memories within the energy land-

scape E(x) of a physical model (for example, the Ising model discussed in [29]; refer to fig. 2.1

for an illustration), where each memory ξµ represents a distinct local minimum. Upon receiv-

ing a query x, the system initiates a process of energy-minimizing dynamics T starting from the

query point, navigating through the energy landscape to locate the closest local minimum, thereby

efficiently retrieving the memory that most closely resembles the query.

16

Figure 2.1: Visualizing Hopfield Models.

The models are founded on two primary elements: the energy function E(x), which maps

memories to local minima, and the retrieval dynamics T (x), tasked with identifying a memory by

reducing E(x) from an initial query.

To formulate the energy function E(x), memories are encoded [30] through the overlap method:

E(x) = F (ΞTx), where F : RM → R is a function chosen to be continuous, ensuring that mem-

ories are positioned at the stationary points of the energy landscape. The selection of F dictates

the specific variant of Hopfield model [30, 31, 13, 36]. Identifying appropriate retrieval dynamics

T for a particular E(x) is complex, as T must consistently lower E(x) and ensure its fixed points

coincide with the stationary points of E(x), facilitating precise memory recall. For successful

memory retrieval, T is required to:

(T1) Monotonically reduce E(x) when applied iteratively.

(T2) Ensure its fixed points coincide with the stationary points of E(x) for precise retrieval.

The proposed (dense/vanilla) modern Hopfield model [13] introduces a unique set of E and

T , integrating it seamlessly into deep learning frameworks through its linkage with the attention

mechanism. This integration not only boosts performance but also ensures a theoretically guar-

anteed exponential memory capacity. Specifically, the model features a newly defined Hopfield

energy function:

E(x) = − lse(β,ΞTx) +
1

2
⟨x,x⟩ , (2.1)

17

and the corresponding memory retrieval dynamics

TDense(x) = Ξ · Softmax(βΞTx) = xnew. (2.2)

The function lse(β, z) := 1
β
log

(∑M
µ=1 exp(βzµ)

)
represents the log-sum-exponential operation

for any given vector z ∈ RM with a positive scalar β > 0. This discovery uncovers:

• The retrieval dynamics TDense are proven to converge to stored memories and can accurately

recall patterns in a single iteration.

• The contemporary Hopfield network, as described in equation (2.1), is characterized by its ex-

ponential capacity for memory storage relative to the pattern dimension d.

• Remarkably, the one-step execution of TDense aligns closely with the attention mechanism found

in transformers, paving the way for the innovative introduction of Hopfield layers into network

architecture designs.

2.3 Generalized Sparse Modern Hopfield Model

This section delivers a succinct summary of the generalized sparse modern Hopfield model [11],

an extension of the modern Hopfield model [13] that incorporates Tsallis α-entropy [53], offering a

sparser framework. This model also expands upon the sparse modern Hopfield model [12], thereby

presenting a broader generalization. Subsequently, we elucidate the link between the memory

retrieval dynamics within the generalized sparse Hopfield model and the attention mechanism.

This connection fosters the development of the Generalized Sparse Hopfield (GSH) layer, a novel

component for enhancing deep learning architectures.

Associative Memory Model. Let z,p ∈ RM , and ∆M := {p ∈ RM
+ |

∑M
µ pµ = 1} be the

(M − 1)-dimensional unit simplex. [11] introduce the generalized sparse Hopfield energy

E(x) = −Ψ⋆
(
βΞTx

)
+

1

2
⟨x,x⟩ , (2.3)

18

where Ψ⋆(z) :=
∫
dzα-EntMax(z), and α-EntMax(·) is defined as follows.

Definition 1 ([51]) The variational form of α-EntMax is defined as

α-EntMax(z) := ArgMax
p∈∆M

[pTz−Ψα(p)], (2.4)

where Ψα(·) is the Tsallis entropic regularizer

Ψα(p) :=

1

α(α−1)

∑M
µ=1

(
pµ − pαµ

)
, α ̸= 1,∑M

µ=1 pµ ln pµ, α = 1,

for α ≥ 1.

The corresponding memory retrieval dynamics is given as

Lemma 1 (Retrieval Dynamics, Lemma 3.2 of [11]) Given t as the iteration number, the gener-

alized sparse Hopfield model exhibits a retrieval dynamic

T (xt) = α-EntMax(βΞTxt) = xt+1, (2.5)

which ensures a monotonic decrease of the energy (2.3).

This model also enjoys nice memory retrieval properties:

Lemma 2 (Convergence of Retrieval Dynamics T , Lemma 3.3 of [11]) Given the energy func-

tion E and retrieval dynamics T defined in (2.3) and (2.4), respectively. For any sequence {xt}∞t=0

generated by iteration xt′+1 = T (xt′), all limit points of this sequence are stationary points of E.

lemma 2 ensures the (asymptotically) exact memory retrieval of this model ((2.3) and (2.5)), Thus,

it serves as a well-defined associative memory model.

Fundamentally, the work in [11] introduces a sparse variant of the modern Hopfield model by

developing the energy function E and retrieval dynamics T via the convex conjugate of Tsallis en-

tropic regularizers. This approach not only satisfies the criteria for a properly constructed modern

19

Hopfield model but also endows the system with enhanced robustness (corollary 2) and improved

retrieval speeds (theorem 1 and corollary 1) in comparison to the conventional modern Hopfield

model cited in [13]. Detailed theoretical underpinnings are discussed in section 2.5. Additionally,

fig. 4.2 showcases experimental validations on tabular datasets, substantiating the assertions of

increased sparsity (theorem 1), accelerated convergence (corollary 1), and noise resilience (corol-

lary 2).

Generalized Sparse Hopfield (GSH) Layers for Deep Learning. The generalized sparse

Hopfield model plays a pivotal role in deep learning architectures, especially due to its parallels

with the transformer attention mechanism, akin to its predecessor models. In the subsequent sec-

tions, we will dissect this connection in detail and delve into the operational intricacies of the

Generalized Sparse Hopfield (GSH) layers. This examination will shed light on how GSH lay-

ers can be seamlessly incorporated into and augment transformer-based frameworks, offering a

comprehensive insight into their significance and influence within contemporary deep-learning en-

deavors.

Following [11, 12, 13], X and Ξ are defined in the associative space, encoded from the raw

query R and memory patterns Y, respectively, using X⊤ = RWQ := Q and Ξ⊤ = YWK := K

with matrices WQ and WK . By transposing T from (2.5) and applying WV such that V :=

KWV , we obtain:

Z := QnewWV = α-EntMax(βQK⊤)V, (2.6)

introducing an attention mechanism with the α-EntMax activation function. Substituting R and

Y back in, the Generalized Sparse Hopfield (GSH) layer is formulated as:

GSH(R,Y) = α-EntMax(βRWQW
⊤
KY

⊤)YWKWV . (2.7)

This allows the seamless integration of the generalized sparse modern Hopfield model into deep

learning architectures.

20

Concretely, the GSH layer takes matrices R, Y as inputs, with the weight matrices WQ, WK ,

WV . Depending on its configuration, it offers several functionalities:

1. Memory Retrieval: In this learning-free setting, weight matrices WK , WQ, and WV are set

as identity matrices. Here, R represents the query input, and Y denotes the stored memory

patterns for retrieval.

2. GSH: This configuration takes R and Y as inputs. Intending to substitute the attention mecha-

nism, the weight matrices WK , WQ, and WV are rendered learnable. Furthermore, R, Y, and

Y serve as the sources for query, key, and value respectively. Achieving a self-attention-like

mechanism requires setting R equal to Y.

3. GSHPooling: With inputs Q and Y, this layer uses Q as a static prototype pattern, while Y

contains patterns over which pooling is desired. Given that the query pattern is replaced by the

static prototype pattern Q, the only learnable weight matrices are WK and WV .

4. GSHLayer: The GSHLayer layer takes the query R as its single input. The layer equips with

learnable weight matrices WK and WV , which function as our stored patterns and their corre-

sponding projections. This design ensures that our key and value are decoupled from the input.

In practice, we set WQ and Y as identity matrices.

In this work, we utilize GSH and GSHPooling layers1.

2.4 Definition of Memory Storage and Retrieval and Separation of Patterns

We adopt the formal definition of memory storage and retrieval from [13] for continuous patterns.

Definition 2 (Stored and Retrieved) Assuming that every pattern ξµ surrounded by a sphere Sµ

with finite radius R := 1
2
Minµ,ν∈[M] ∥ξµ − ξν∥, we say ξµ is stored if there exists a generalized

fixed point of T , x⋆
µ ∈ Sµ, to which all limit points x ∈ Sµ converge to, and Sµ∩Sν = ∅ for µ ̸= ν.

We say ξµ is ϵ-retrieved by T with x for an error.

Then we introduce the definition of pattern separation for later convenience.
1https://github.com/MAGICS-LAB/STanHop

https://github.com/MAGICS-LAB/STanHop

21

Definition 3 (Pattern Separation) Let’s consider a memory pattern ξµ within a set of memory

patterns Ξ.

1. The separation metric ∆µ for ξµ with respect to other memory patterns is the difference between

its self-inner product and the maximum inner product with any other pattern:

∆µ = ⟨ξµ, ξµ⟩ −Max
ν,ν ̸=µ

⟨ξµ, ξν⟩ . (2.8)

2. Given a specific pattern x, the relative separation metric ∆̃µ for ξµ with respect to other patterns

in Ξ is defined as:

∆̃µ = Min
ν,ν ̸=µ

(⟨x, ξµ⟩ − ⟨x, ξν⟩) . (2.9)

2.5 Theoretical Results for Generalized Sparse Modern Hopfield Model

Theorem 1 (Retrieval Error, Theorem 3.1 of [11]) Let TDense be the retrieval dynamics of the

dense modern Hopfield model [13]. It holds ∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥ for all µ.

theorem 1 implies two computational advantages:

Corollary 1 (Faster Convergence) Computationally, theorem 1 suggests that T converges to fixed

points using fewer iterations than Tdense for the same error tolerance. This means that T retrieves

stored memory patterns more quickly and efficiently than its dense counterpart.

Corollary 2 (Noise-Robustness) In cases of noisy patterns with noise η, i.e. x̃ = x + η (noise

in query) or ξ̃µ = ξµ + η (noise in memory), the impact of noise η on the sparse retrieval error

∥T (x)− ξµ∥ is linear for α ≥ 2, while its effect on the dense retrieval error ∥TDense(x)− ξµ∥ (or

∥T (x)− ξµ∥ with 2 ≥ α ≥ 1) is exponential.

Remark 1 corollary 1 does not imply computational efficiency. The proposed model’s sparsity

falls under the category of sparsity-inducing normalization maps [47, 51, 52, 30]. This means

22

that, during the forward pass, the space complexity remains at O(n2), on par with the dense

modern Hopfield model.

Remark 2 Nevertheless, corollary 1 suggests a specific type of “efficiency” related to faster mem-

ory retrieval compared to the dense Hopfield model. In essence, a retrieval dynamic with a smaller

error converges faster to the fixed points (stored memories), thereby enhancing efficiency.

23

CHAPTER 3

BI-DIRECTIONAL CELLULAR LEARNING FOR TABULAR DATA WITH

GENERALIZED SPARSE HOPFIELD MODEL

As in fig. 2.1, BiSHop use three distinct parts to integrate two pivotal inductive biases in tabular

data: non-rotationally invariant data structures (C1) and sparse information in features (C2) [:]

• A joint Tabular Embedding layer is designed to processing categorical and numerical data

separately.

• The Bi-Directional Sparse Hopfield module (BiSHopModule) leverages the generalized sparse

Hopfield model. This module incorporates the non-rotationally invariant bias through two inter-

connected GSH blocks for row-wise and column-wise learning.

• Stacked BiSHopModules for hierarchical learning, addressing sparse features. Each layer in

the stack module captures information at different scales, allowing for scale-specific sparsity.

We provide a detailed breakdown of each part as follows.

3.1 Tabular Embedding

Tabular embedding consists of three parts: categorical embedding Ecat, numerical embedding

Enum, and patch embedding Epatch. The categorical embedding not only learn the representa-

tions within individual categorical features but also capture the inter-relation among all categorical

features. The numerical embedding represents each numerical feature with a one-hot-like rep-

resentation and thus benefits neural network learning numerical features. The patch embedding

captures localized feature information by aggregating across feature dimensions, at the same time

reducing computation overhead. Starting from this section, we denote x ∈ RN any given tabular

data point with N features. We suppose each x has N num numerical feature xnum and N cat categori-

cal feature xcat, where x = (xnum,xcat). The categorical embedding Ecat and numerical embedding

24

GSH

LayerNorm

MLP

LayerNorm

GSHPooling

GSH

LayerNorm

MLP

LayerNorm

XpatchXpatch
QQ

Column-Wise Row-Wise

(c): BiSHopModule

(b): Patch Embedding

Column-Wise Row-Wise

Finest Grain

Coarser Grain

Coarsest Grain

LayerNorm

MLPLayerNorm

Column-Wise Row-Wise

Column-Wise Row-Wise

Column-Wise Row-Wise

GSH

LayerNorm

MLPLayerNorm

GSH

(d): Hierarchical Multi-Cell Learning

EposEpos:

Encoder Decoder

(a): Tabular Embedding

EindEind
NcatNcat

PP

GsharedGsharedGindGind
EsharedEshared

EnumEnumNnumNnum
0.1

1

-1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0.3

0

1

0

0

0

2.8

NN

LL

EpatchEpatch
LL

GG

Figure 3.1: BiSHop. (a) Tabular Embedding: For a given input feature x = (xcat,xnum) ∈
RN=Nnum+N cat

, the tabular embedding produces embeddings denoted as Eemb ∈ RN×G. (b) Patch Em-
bedding: Using the combined numerical and categorical embeddings Eemb ∈ RN×G, the patch embedding
gathers embedding information, subsequently reducing dimensionality from G to P = ⌈G/L⌉ for all N
features using a stride length of L. (c) BiSHopModule: The Bi-Directional Sparse Hopfield Module (BiSH-
opModule) leverages the generalized sparse Hopfield model. It integrates the tabular structure’s inductive
bias (C1) by deploying interconnected row-wise and column-wise GSH blocks. (d) Hierarchical Cellu-
lar Learning Module: Employing a stacked encoder-decoder structure, we facilitate hierarchical cellular
learning where both the encoder and decoder consist of the BiSHopModule across H layers. This arrange-
ment enables BiSHop to derive refined representations from both directions across multiple scales. These
representations are then concatenated for downstream inference, ensuring a holistic bi-directional cellular
learning specially tailored for tabular data.

Enum transforms xcat and xnum to a embedding dimension G, seperately. The patch embedding

Epatch then reduces G to the patch embedding dimension P .

Categorical Embedding. For categorical embedding Ecat, we use learnable column embedding

proposed by [4]. For a tabular data point x = (xnum,xcat), a column embedding only acts on

the categorical features xcat, as in Ecat(xcat). It comprises a shared embedding Eshared(xcat) for

all categorical features, and N cat individual embeddings for each categorical features {xcat
i }i∈[N cat],

where [N cat] = {1, · · · , N cat}. We denote the shared embedding dimension as Gshared and the

individual embedding dimension as Gind, where G = Gshared + Gind. The shared embedding

Eshared(xcat) ∈ RN cat×Gshared represents each categorical feature differently. The individual embed-

ding Eind = {Eind
1 , · · · ,Eind

N cat} represents each category in one categorical feature differently. Each

individual embedding Eind
i (·) ∈ R1×Gind is a scalar-to-vector map acting on each categorical fea-

25

ture {xcat
i }i∈[N cat]. To obtain the final categorical embedding, we first concat all individual embed-

ding row-wise, i.e. Eind(xcat) := Concat([Eind
1 (xcat

1), . . . ,Eind
N cat(xcat

Ncat)], axis = 0) ∈ RN cat×Gemb .

Then, we concatenate the shared embedding with all individual embeddings column-wise, i.e.,

Ecat(xcat) := Concat([Eshared(xcat),Eind(xcat)], axis = 1) ∈ RN cat×G. Eind represents the unique

category in each feature and Eshared represents the unique feature. Ecat enables our model to capture

both the relationship between each feature and each category, with the flexibility to train shared

and individual components separately.

Numerical Embedding. We employ the numerical embedding method as described in [2, 14]. The

numerical embedding Enum only acts on the numerical features xnum, as in Enum(xnum) ∈ RNnum×G.

Given a numerical feature {xnum
i }i∈[Nnum], the embedding process begins by determining G quan-

tiles. To start, we determine G quantiles for each numerical feature. Quantiles represent each nu-

merical data distribution by dividing it into equal parts. For a numerical feature {xnum
j }j∈Nnum , we

first sort all its values in the training data, xnum
j , in ascending order. Then, we split the sorted data

into G equal parts, where each part contains an equal fraction of the total data points. We define the

boundaries of these parts as bj,0, · · · , bj,G, where bj,0 is the smallest value in xnum
j . We express the

embedding for a specific value xj as a G-dimensional vector, Enum
j (xj) = (ej,1, · · · , ej,G) ∈ RG.

We compute the value of each ej,g, where 1 ≤ g ≤ G according to the following function:

ej,g :=

0, if xj < bj,g−1 and g > 1,

1, if xj ≥ bj,gj and g < G,

xj−bj,g−1

bj,g−bj,g−1
, otherwise.

For the final embedding, we have Enum(xnum) ∈ RNnum×G. We denote this numerical embedding as

piece-wise linear embedding. This technique normalizes the scale of numerical features and cap-

tures the quantile information for each data point within the numerical feature. It enhances the rep-

resentation of numerical feature in deep learning. Concatenating Enum(xnum) with Ecat(xcat) row-

wise, we obtain: Eemb(x) := Concat (Enum(xnum),Ecat(xcat), axis = 0), where Eemb(x) ∈ RN×G.

26

Namely, we call each point Eemb
n,g (x) as a single cell. The categorical and numerical embedding is

in fig. 3.1 (a).

Patch Embedding. Motivated by [54, 55], we adopt patched embedding (shown in fig. 3.1 (b))

to enhance the awareness of both local and non-local patterns, capturing intricate details often

missed at the single-cell level. Specifically, we divide embeddings into patches that aggregate

multiple cells. To simplify the computation process, we transpose the numerical and categorical

embedding dimensions. For convenience, we denote the previous embedding outcomes as Xemb :=

(Eemb(x))T ∈ RG×N . The patch embedding Epatch reduces the embedding dimension G by a stride

factor L, leading to a new and smaller patched embedding dimension P := ⌈G/L⌉, where ⌈·⌉

is the ceil function. Furthermore, we introduce a new embedding dimension Dmodel to represent

each patch’s hidden states. The patched embedding as Epatch(Xemb) ∈ RP×N×Dmodel . For future

computation, we flip the patch dimension and feature dimension, resulting final output of patch

embedding Xpatch := (Epatch(Xemb))T ∈ RN×P×Dmodel . This patch embedding method enhances our

model’s ability to interpret and integrate detailed local and broader contextual information from

the data, crucial for in-depth analysis in deep learning scenarios. For the Xpatch, we denote it as

having N rows (features) and P columns (embeddings).

3.2 Bi-Directional Sparse Hopfield Module

By drawing parallels with the intricate interplay of different parts in the brain [6], we present the

core design of the BiSHop framework, the Bi-Directional Sparse Hopfield Module (BiSHopModule),

as visualized in fig. 3.1 (b). The BiSHopModule incorporates the generalized sparse Hopfield

model and integrate the inductive bias of tabular structure (C1) through a unique structure of

stacked row-wise and column-wise GSH blocks. Specifically, the row-wise GSH focuses on cap-

turing the embedding details for individual features, whereas the column-wise GSH aggregates

information across all features. We denote Xpatch
n,p , n ∈ [N], p ∈ [P] as the element in n-th row

(feature) and p-th column (embedding).

Column-Wise Block. The column-wise GSH block (purple block on the LHS of fig. 3.1 (c))

27

is responsible for capturing embedding hidden information across the embedding dimension P

for each feature. The process begins by passing the patch embeddings of n-th row of Xpatch,

Xpatch
n,: , n ∈ [N], to the GSH layer, followed by the addition of the original patch embeddings (similar

to the residual connection of the standard transformer). Next, we pass the output above through one

LayerNorm layer, one Multi-Layer Perception (MLP) layer, and another LayerNorm, and obtain

the final output of the column-wise block Xcol:

X̂patch
n,: := LayerNorm

(
Xpatch

n,: + GSH(Xpatch
n,:)

)
, (3.1)

Xcol := LayerNorm
(
X̂patch + MLP(X̂patch)

)
, (3.2)

This sequence of operations ensures the effective transformation of the embeddings, facilitating

the extraction of meaningful information from the feature space.

Row-Wise Block. The row-wise GSH block (pink block on the RHS of 3.1 (c)) serves a vital

function in capturing information across the feature dimension N . For each feature, we apply

both GSHPooling and GSH layers to its embedding dimensions. Specifically, we use C learnable

pooling vectors in each feature dimension to aggregate information across all embedding dimen-

sions, forming a pooling matrix Q ∈ RC×P×Dmodel . We represent the pooling at p-th embedded

dimension as the p-the columns of Q, Q:,p, where p ∈ [P]. The process begins by pooling the

row-wise output Xrow
:,p using Q:,p in the GSHPooling step. Next, we combined this pooled output

with the row-wise output again, and add the row-wise output to the result. Following this, we pass

the output of the above approach through a LayerNorm layer, then through an MLP layer, and

finally through another LayerNorm layer. This sequence of operations yields the final output of the

28

row-wise block:

Q̂:,p := GSHPooling(Q:,p,X
col
:,p), (3.3)

X̂row
:,p := GSH(Xcol

:,p , Q̂:,p), (3.4)

X̄row := LayerNorm(X̂row +Xcol), (3.5)

Xrow := LayerNorm(X̄row + MLP(X̄row)), (3.6)

This Q pooling matrix design aggregates information from all patch embedding dimensions, and

by setting C ≪ N , it significantly reduces computational complexity.

Together with the row-wise block, we summarize the entire BiSHopModule as a function

BiSHopModule(·) : RP×N → RP×N , (3.7)

where input is Xpatch and output is Xrow.

3.3 Stacked BiSHopModules for Multi-Scale Learning with Scale-Specific Sparsity

Motivated by the human brain’s multi-level organization of associative memory [6, 7], we utilize

a hierarchical structure to learn multi-scale information similar to [54, 43]. This is illustrated

in fig. 3.1 (d). This structure consists of two main components: the encoder and the decoder,

both of which incorporate the H layer of BiSHopModules. Specifically, the encoder captures

coarser-grained information across different scales, while the decoder makes forecasts based on

the information encoded by the encoder.

Encoder. The encoder (pink block on LHS of fig. 3.1 (d)), encodes data at multiple levels of gran-

ularity. To accomplish this multi-level encoding, we use H stacked BiSHopModules. These mod-

ules help in processing and understanding the data from different perspectives. We also employ a

learnable merging matrix [56] to aggregate r adjacent patches of Xpatch. We denote the merging

matrix at layer h ∈ [H] as Emerge
h ∈ Rr×1, which refines its input embeddings to be coarser at each

29

level. We refer to h-th level encoder output as Xenc,h and input as Xenc,h−1. Concretely, at the level

h, we use Emerge
h to aggregate r adjacent embedding vectors from Xenc,h−1, producing a coarser

embedding X̂enc,h−1. We then pass X̂enc,h−1 through the BiSHopModules, resulting in the output

encoded embedding, denoted as Xenc,h. It is worth noting that Xenc,0 = Xpatch. This granularity-

decreasing process is then iteratively applied across all layers in 1 ≤ h ≤ H . We summarize the

merging procedure at level h as:

X̂enc,h
n,p := Emerge

h

(
Xenc,h

n,r×p, . . . ,X
enc,h
n,r×(p+1)

)
, 0 ≤ p ≤ P

rh
,

for 0 ≤ h ≤ H − 1, and then

Xenc,h := BiSHopModule(X̂enc,h−1), for 1 ≤ h ≤ H. (3.8)

Decoder. The decoder (yellow block on RHS of fig. 3.1 (d)) captures information from each

level of encoded data. To accomplish this, we utilize H stacked BiSHopModuless and employ a

positional embedding matrix Epos ∈ RP×S to extract encoded information for prediction, where S

represents the number of extracted feature used for future forecast. Specifically, at the first level,

we use the learnable matrix Epos to decode S different representations through a BiSHopModules,

obtaining Xpos,0. We then pass Xpos,0 through GSH with the corresponding encoded data, followed

by the addition to the encoded data at the h-th level Xenc,h. Next, we process the output through

one LayerNorm layer, one MLP layer, and another LayerNorm layer, as in

Xpos,h :=

BiSHopModules(Epos), h = 0,

BiSHopModules(Xdec,h−1), 1 ≤ h ≤ H.

(3.9)

X̂dec,h := GSH(Xpos,h,Xenc, h), 1 ≤ h ≤ H, (3.10)

X̄dec,h := LayerNorm(X̂dec,h +Xpos,h), (3.11)

Xdec,h := LayerNorm(X̄dec,h + MLP(X̄dec,h)). (3.12)

30

For the final prediction, we flatten Xdec,H and pass it to a new MLP predictor.

Learnable Sparsity at Each Scale. Drawing inspiration from the dynamic sparsity observed in

the human brain [8, 9, 10], the parameter α for each GSH layer is a learnable parameter by design

[11, 52], which allows BiSHopModule to adapt to different sparsity for different resolutions.

Namely, the learned representations at each scale are equipped with scale-specific sparsity.

31

CHAPTER 4

EXPERIMENTAL EVALUATIONS

Table 4.1: BiSHop versus SOTA Tabular Learning Methods (Dataset II). Following the benchmark
[5], we evaluate BiSHop against SOTA methods, including Deep Learning methods (MLP, ResNet, FT-
Transformer, SAINT) and Tree-Based methods (GBDT, RandomForest, XGBoost), across various datasets.
We randomly select a total of 19 datasets of four different tasks: categorical classification (CC), numerical
classification (NC), categorical regression (CR), and numerical regression (NR). CC and CR contain both
categorical and numerical features, while NC and NR contain only numerical features. Baseline results are
quoted from the benchmark paper [5]. We report with the best Accuracy scores for CC and NC, and R2 score
for CR and NR, (both in %) by HPO. We also report the number of HPOs used in BiSHop. Hyperparameter
optimization of our method employs the “sweep” feature of Weights and Biases [59]. In the 19 different
datasets, BiSHop delivers 11 optimal and 8 near-optimal results (within 1.3% margin), using less than 10%
(on average) of the number of HPOs used by the baselines.

Dataset ID BiSHop # of HPOs FT-Transformer GBDT MLP RandomForest ResNet SAINT XGBoost

CC
361282 66.08 16 65.63 65.76 65.32 65.53 65.23 65.52 65.70
361283 72.69 1 71.90 72.09 71.41 72.13 71.4 71.9 72.08
361286 69.80 10 68.97 68.62 69.06 68.49 69.00 68.87 68.20

CR

361093 98.98 23 98.06 98.34 98.07 98.25 98.04 97.77 98.42
361094 99.98 64 99.99 100 99.99 100 99.97 99.98 100
361099 94.12 64 94.09 94.26 93.71 93.69 93.71 93.75 94.77
361104 99.94 70 99.97 99.98 99.98 99.98 99.96 99.9 99.98
361288 57.96 93 57.48 55.75 58.03 55.79 58.3 57.09 55.75

NC

361055 78.29 4 77.73 77.52 77.41 76.35 77.53 77.41 75.91
361062 98.82 15 98.50 98.16 94.70 98.24 95.22 98.21 98.35
361065 86.32 2 86.09 85.79 85.6 86.55 86.3 86.04 86.19
361273 60.76 9 60.57 60.53 60.50 60.49 60.54 60.59 60.67
361278 73.05 2 72.67 72.35 72.4 72.1 72.41 72.37 72.16

NR

361073 99.51 8 99.51 99.0 97.31 98.67 96.19 99.51 99.15
361074 87.96 34 91.83 85.07 91.81 83.3 91.56 91.86 90.76
361077 82.4 53 73.28 83.97 83.72 83.72 71.85 70.1 83.66
361079 60.76 19 53.09 57.45 48.62 50.16 51.77 46.79 55.42
361081 98.67 13 99.69 99.65 99.52 99.31 99.67 99.38 99.76
361280 56.98 96 57.48 54.87 58.46 55.27 57.81 56.84 55.49

Score mean 81.21 - 80.34 80.48 80.3 79.84 79.81 79.68 80.65

Rank

mean 2.79 - 3.58 4.21 4.74 5.53 5.05 5.26 3.84
min 1 - 1 1 1 1 1 1 1
max 8 - 6 8 8 8 8 8 8
med. 1 - 4 4 5 6 5 5 3

In this section, we compare BiSHop with SOTA tabular learning methods, following the tabular

learning benchmark paper [5]. We summarize our experimental results in table 4.1 and fig. 4.1.

32

Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis

MLP 72.5‡ 92.9‡ 83.9‡ 90.5‡ 73.5‡ 84.6‡ 98.4‡ 91.0‡ 82.59
TabNet 90.49 91.76∗ 79.61∗ 90.72∗ 77.77 84.39 99.80 67.55∗ 87.81
TabTransformer 73.7‡ 93.4‡ 83.5‡ 90.6‡ 75.1‡ 85.6‡ 98.5‡ 91.8‡ 82.85
FT-Transformer 90.60 91.83 86.06 92.15 74.60 80.83 100.00 92.04 89.02
SAINT 91.6† 93.30∗ 84.67∗ 91.67∗ 76.6⋆ 86.47∗ 98.54∗ 93.21∗ 85.52
TabPFN 88.48 88.17 84.03 88.59 75.32 83.30 100 93.31 78.34
TANGOS 90.23 88.98 85.74 90.44 73.52 84.32 100 90.83 83.59
T2G-FORMER 85.96⋄ 94.47 85.40 92.35 82.58 86.42 100 94.86 73.68⋄

LightGBM 92.9† 93.39∗ 83.17∗ 92.57∗ 77.43 85.36∗ 100.00 92.97∗ 87.48
CatBoost 92.8† 90.47∗ 84.77∗ 90.80∗ 81.59 85.44∗ 100.00 93.05∗ 87.53
XGBoost 92.8† 92.96∗ 81.78∗ 92.31∗ 75.3⋆ 83.59∗ 100.00 92.70∗ 86.72

BiSHop 92.97 93.95 88.49 92.97 91.88 87.99 100.00 96.14 90.63

Figure 4.1: (LHS:) BiSHop versus SOTA Tabular Learning Methods (Dataset I). We evaluate BiSHop
against predominant SOTA methods, including Deep Learning methods (MLP, TabNet, TabTransformer, FT-
Transformer, SAINT, TabPFN, TANGOS, T2G-FORMER) and Tree-Based methods (LightGBM, CatBoost,
XGBoost), across various datasets. We report the average AUC scores (in %) of 3 runs, with variances omit-
ted as they are all ≤ 0.13%. Results quoted from [57, 1, 58, 4] are marked with ⋆, ∗, †, and ‡, respectively. If
multiple results are available across different benchmark papers, we quote the best one. When unavailable,
we reproduce the baseline results independently. Hyperparameter optimization employs the “sweep” feature
of Weights and Biases [59], with 200 iterations of random search for each setting. Our results indicate that
BiSHop outperforms both tree-based and deep-learning-based methods by a significant margin. (RHS:)
Changing Feature Sparsity. Following [5], we remove features in both randomly (red), increasing order
of feature importance (purple), and decreasing (blue) order of feature importance (feature importance order
obtained by random forest). We report the average AUC score across all datasets from BiSHop, XGBoost,
and LightGBM. The results highlight BiSHop’s capability in handling sparse features.

4.1 Experimental Setting

Our experiment consists of two parts: firstly, we benchmark commonly used datasets in the litera-

ture; secondly, we follow the tabular benchmark [5], applying it to a broader range of datasets on

both classification and regression tasks.

Datasets I. In the first experimental setting, we evaluate BiSHop on 9 common classification

datasets used in previous works [5, 1, 2, 4, 1]. These datasets vary in characteristics: some are

well-balanced, and others show highly skewed class distributions; We set the train/validation/test

proportion of each dataset as 70/10/20%. Please see section A.1 for datasets’ details.

Datasets II. In the second experimental setting, we test BiSHop in the tabular benchmark [5].

The datasets compiled by this benchmark consist of 4 OpenML suites: (i) Categorical Classifi-

cation (CC, suite id: 334), (ii) Numerical Classification (NC, suite id: 337), (iii) Categorical Re-

gression (CR, suite id: 335), and (iv) Numerical Regression (NR, suite id: 336). Both CC and CR

33

include datasets with numerical and categorical features, whereas NC and NR only contain numer-

ical features. Due to limited computational resources, we randomly select one-third of the datasets

from each suite for evaluation. We evaluate BiSHop on each suit with 3-6 different datasets and

truncate to 10,000 training samples for larger datasets (corresponding to medium-size regimes in

the benchmark). For these datasets, we allocate 70% of the data for the training set (7,000 sam-

ples). Of the remaining 30%, we allocate 30% for the validation set (900 samples), and the rest

70% for the test set (2,100 samples). All samples are randomly chosen from the original dataset

and perform identical preprocessing steps of the previous benchmark [5].

Metrics. We use the AUC score for the first experimental setting, aligned with literature. We

use accuracy for classification task and R2 score for regression task in the second experimental

setting, aligned with [5].

Baselines I. In the first experimental setting, we select 5 deep learning and 3 tree-based base-

lines, including (i) DL-based method such as MLP, TabNet, TabTransformer, FT-Transformer [2],

SAINT [1], TabPNF[25], TANGOS[27], T2G-FORMER [26] and (ii) tree-based methods such as

LightGBM, CatBoost, and XGBoost [15]. For each dataset, we conduct up to 200 random searches

on BiSHop to report the score of the best hyperparameter configuration. We stop HPOs when ob-

serving the best result. Baselines and benchmark datasets’ results are quoted from competing

papers when possible and reproduced otherwise. We report the reproduced results in chapter A.

Notably, we quote the best result from all baselines if multiple results are available.

Baselines II. In the second experimental setting, we reference baselines results1 from the

benchmark paper [2], comprising 4 deep learning methods and 3 tree-based methods, including

(i)DL-based method such as (i) DL-based method such as MLP, ResNet [60], FT-Transformer [2],

SAINT [1] and (ii) tree-based methods such as RandomForest, GradientBoostingTree (GBDT),

and XGBoost [15]. We select the best results of each method from the benchmark [5]. Notably,

these best results take 400 HPOs according to [5].

Setup. BiSHop’s default parameter settings are as follows: Embedding dimension G = 32; Stride

1https://github.com/LeoGrin/tabular-benchmark

https://github.com/LeoGrin/tabular-benchmark

34

factor L = 8; Number of pooling vector C = 10; Number of BiSHopModules H = 3; Number of

aggregation in encoder r = 4; Number of representation decoded S = 24; Dropout = 0.2; Learning

rate: 5× 10−5. For numerical embedding, we only gather quantile information from training data

to process the embedding function. For hyperparameter tuning, we use the “sweep” feature of

Weights and Biases [59]. Notably, due to the computational constraints, we manually end the HPO

once our method surpass the best performance observed in the benchmarks. We report search space

for all hyperparameters in table A.4 and other training details in section A.2. The optimization is

conducted on training/validation sets, and we report the average test set scores over 3 iterations, us-

ing the best-performed configurations on the validation set. We show implementation and training

details in the appendix.

Results. We summarize our results of the Baselines I in fig. 4.1 and the results of the Baselines

II in table 4.1. In fig. 4.1, BiSHop outperforms both tree-based and deep-learning-based methods

by a significant margin in most datasets. In table 4.1, BiSHop achieves optimal or near-optimal

results with less 10% numbers (on average) of HPO in a tabular benchmark [5].

4.2 Ablation Studies

We conduct the following sets of ablation studies.

Changing Feature Sparsity. In fig. 4.1, we change feature sparsity on our datasets following

[5, Figure 4 & 5]. Firstly, we compute the feature importance using Random Forest. Secondly, we

remove features in both increasing (solid curves) and decreasing (dashed curves) order of feature

importance. For each order, we report the average AUC score over all datasets at each percentage

from BiSHop, XGBoost, and LighGBM.

4.2.1 Component Analysis

We separately remove each component of BiSHop, and report the average AUC score of three runs

using the default parameter for all datasets in table 4.2.

• Without Cat Emb: We remove both individual and shared embedding methods as described in

35

the tabular embedding section, replacing them with one-hot encoding.

• Without Num Emb: We remove the Piecewise Linear Encoding method for numerical

features, directly concatenating numerical features with the output of categorical embedding.

• Without Patch Embedding: We remove the patch embedding method by setting the stride factor

L to 1.

• Without Decoder: We remove the decoder blocks and pass the encoded data directly to MLP

predictor.

• Without BiSHopModule: We replace the column-wise block and row-wise block in the BiSHop

module with an MLP of the hidden state size of 256.

The results demonstrate that each component contributes to varying degrees to the BiSHop model,

with numerical embedding, decoder blocks, and the BiSHopModule being the most significant

contributors.

Table 4.2: Component Ablation. We remove each component at one time and keep all other
settings the same. For the experimental results, we prove that each component contributes to the
model performance.

Data BiSHop w/o Cat Emb w/o Num Emb w/o Patch Emb w/o Decoder w/o BiSHopModule

Adult 91.74 90.91 89.40 91.32 88.18 91.28
Bank 92.73 90.88 77.21 91.14 91.93 91.98

Blastchar 88.49 87.92 88.81 86.75 84.28 85.38
Income 92.43 91.01 90.38 91.56 91.44 91.36

SeismicBumps 91.42 90.03 87.85 89.33 80.75 79.34
Shrutime 87.38 86.49 81.75 81.32 86.26 85.41
Spambase 100 100 100 100 100 100

Qsar 92.85 91.15 94.69 91.50 93.04 91.65
Jannis 89.66 87.95 87.50 87.62 86.58 86.10

Average 91.86 90.82 88.62 90.06 89.16 89.17

4.2.2 Comparison with the Dense Modern Hopfield Model

Using the default hyperparameters of BiSHop, we evaluate its performance using three distinct

layers: (i) the GSH (generalized sparse Hopfield model), (ii) the Hopfield (dense modern Hop-

36

field model [13]) and (iii) Attn (attention mechanism [61]). We report the average AUC score

over 10 runs in table 4.3.

Table 4.3: Comparing the Performance of Sparse versus Dense Hopfield Models and Attention
Mechanism. We contrast the performance of our generalized sparse Hopfield model with that of the dense
modern Hopfield model and the attention mechanism. We achieve this by substituting the GSH layer with
the Hopfield layer from [13] and the Attn layer from [61]. We report the average AUC score (in %) over
10 runs, with variances omitted as they are all ≤ 0.08%. The results indicates the superior performance of
our proposed generalized sparse Hopfield model across datasets.

AUC (%) Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis Mean AUC

GSH 91.74 92.73 88.49 92.43 91.42 87.38 100 92.85 89.66 91.86
Hopfield 91.72 92.60 85.31 91.65 78.63 86.81 100 91.27 85.04 89.23
Attn 91.44 92.46 83.14 91.46 78.42 83.04 100 89.88 88.28 88.68

4.2.3 Convergence Analysis

We calculate the validation loss and AUC score using the same default parameters and compare

them with the dense modern Hopfield model. For ease of presentation, we only plot the results of

six datasets (Blastchar, Shrutime, Income, Bank, Qsar and Jannis). We use the same hyperparam-

eter for each dataset for both GSH and Hopfield. We plot the results in Figure 4.2 with the mean

of 30 runs. The result indicate that GSH converges faster and achieves an AUC score that is equal

to or higher than Hopfield.

37

Figure 4.2: Convergence Analysis. We plot the validation loss and AUC score curves of generalized
sparse (GSH) and dense (Hopfield) Hopfield models. The results indicate that the sparse Hopfield model
(solid lines) converges faster and yields superior accuracy.

38

CHAPTER 5

CONCLUSION AND FUTURE WORK

We address the gap highlighted by [5] where deep learning methods trail behind tree-based meth-

ods. We present the Bi-Directional Sparse Hopfield Model (BiSHop) for deep tabular learning,

inspired by the recent intersection of Hopfield models with attention mechanisms. Leveraging the

generalized sparse Hopfield layers as its core component, BiSHop effectively handles the hardness

of deep tabular learning, with the inclusion of two important inductive biases of tabular data (C1,

C2).

5.1 Comparing with Existing Works.

Empirically, our model consistently surpasses SOTA tree-based and deep learning methods by 3%

across common benchmark datasets. Moreover, our model achieves optimal or near-optimal results

within 16% number of HPOs, compared with methods in the tabular benchmark [5]. We deem these

results as closing the performance gap between DL-based and tree-based tabular learning methods,

making BiSHop a promising solution for deep tabular learning.

39

REFERENCES

[1] G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein, “Saint: Im-
proved neural networks for tabular data via row attention and contrastive pre-training,” arXiv
preprint arXiv:2106.01342, 2021.

[2] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting deep learning models
for tabular data,” Advances in Neural Information Processing Systems, vol. 34, pp. 18 932–
18 943, 2021.

[3] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learning,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 35, 2021, pp. 6679–6687.

[4] X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin, “Tabtransformer: Tabular data modeling
using contextual embeddings,” arXiv preprint arXiv:2012.06678, 2020.

[5] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models still outperform
deep learning on typical tabular data?” Advances in Neural Information Processing Systems,
vol. 35, pp. 507–520, 2022.

[6] C. Presigny and F. D. V. Fallani, “Colloquium: Multiscale modeling of brain network orga-
nization,” Reviews of Modern Physics, vol. 94, no. 3, p. 031 002, 2022.

[7] D. Krotov, “Hierarchical associative memory,” arXiv preprint arXiv:2107.06446, 2021.

[8] M. G. Stokes, M. Kusunoki, N. Sigala, H. Nili, D. Gaffan, and J. Duncan, “Dynamic coding
for cognitive control in prefrontal cortex,” Neuron, vol. 78, no. 2, pp. 364–375, 2013.

[9] J. K. Leutgeb et al., “Progressive transformation of hippocampal neuronal representations
in “morphed” environments,” Neuron, vol. 48, no. 2, pp. 345–358, 2005.

[10] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-holographic associative
memory,” Nature, vol. 222, no. 5197, pp. 960–962, 1969.

[11] D. Wu, J. Y.-C. Hu, W. Li, B.-Y. Chen, and H. Liu, “Stanhop: Sparse tandem hopfield model
for memory-enhanced time series prediction,” arXiv preprint arXiv:2312.17346, 2023.

[12] J. Y.-C. Hu, D. Yang, D. Wu, C. Xu, B.-Y. Chen, and H. Liu, “On sparse modern hopfield
model,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[13] H. Ramsauer et al., “Hopfield networks is all you need,” arXiv preprint arXiv:2008.02217,
2020.

40

[14] Y. Gorishniy, I. Rubachev, and A. Babenko, “On embeddings for numerical features in tabu-
lar deep learning,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 991–
25 004, 2022.

[15] T. Chen et al., “Xgboost: Extreme gradient boosting,” R package version 0.4-2, vol. 1, no. 4,
pp. 1–4, 2015.

[16] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: Un-
biased boosting with categorical features,” Advances in neural information processing sys-
tems, vol. 31, 2018.

[17] G. Ke et al., “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in
neural information processing systems, vol. 30, 2017.

[18] A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka, “Well-tuned simple nets excel on tabular
datasets,” Advances in neural information processing systems, vol. 34, pp. 23 928–23 941,
2021.

[19] L. Buturović and D. Miljković, “A novel method for classification of tabular data using
convolutional neural networks,” BioRxiv, pp. 2020–05, 2020.

[20] I. Padhi et al., “Tabular transformers for modeling multivariate time series,” in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2021, pp. 3565–3569.

[21] A. Abutbul, G. Elidan, L. Katzir, and R. El-Yaniv, “Dnf-net: A neural architecture for tabular
data,” arXiv preprint arXiv:2006.06465, 2020.

[22] S. Popov, S. Morozov, and A. Babenko, “Neural oblivious decision ensembles for deep
learning on tabular data,” arXiv preprint arXiv:1909.06312, 2019.

[23] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep neural
networks and tabular data: A survey,” CoRR, vol. abs/2110.01889, 2021. arXiv: 2110.
01889.

[24] Y. Gorishniy, I. Rubachev, N. Kartashev, D. Shlenskii, A. Kotelnikov, and A. Babenko,
Tabr: Unlocking the power of retrieval-augmented tabular deep learning, 2023. arXiv:
2307.14338 [cs.LG].

[25] N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter, Tabpfn: A transformer that solves
small tabular classification problems in a second, 2023. arXiv: 2207.01848 [cs.LG].

[26] J. Yan, J. Chen, Y. Wu, D. Z. Chen, and J. Wu, “T2g-former: Organizing tabular features
into relation graphs promotes heterogeneous feature interaction,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, 2023, pp. 10 720–10 728.

https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2307.14338
https://arxiv.org/abs/2207.01848

41

[27] A. Jeffares, T. Liu, J. Crabbé, F. Imrie, and M. van der Schaar, “Tangos: Regularizing tab-
ular neural networks through gradient orthogonalization and specialization,” arXiv preprint
arXiv:2303.05506, 2023.

[28] J. J. Hopfield, “Neurons with graded response have collective computational properties like
those of two-state neurons.,” Proceedings of the national academy of sciences, vol. 81,
no. 10, pp. 3088–3092, 1984.

[29] J. J. Hopfield, “Neural networks and physical systems with emergent collective computa-
tional abilities.,” Proceedings of the national academy of sciences, vol. 79, no. 8, pp. 2554–
2558, 1982.

[30] D. Krotov and J. J. Hopfield, “Dense associative memory for pattern recognition,” Advances
in neural information processing systems, vol. 29, 2016.

[31] M. Demircigil, J. Heusel, M. Löwe, S. Upgang, and F. Vermet, “On a model of associative
memory with huge storage capacity,” Journal of Statistical Physics, vol. 168, pp. 288–299,
2017.

[32] B. Hoover et al., “Energy transformer,” arXiv preprint arXiv:2302.07253, 2023.

[33] P. Seidl et al., “Improving few-and zero-shot reaction template prediction using modern
hopfield networks,” Journal of chemical information and modeling, vol. 62, no. 9, pp. 2111–
2120, 2022.

[34] A. Fürst et al., “Cloob: Modern hopfield networks with infoloob outperform clip,” Advances
in neural information processing systems, vol. 35, pp. 20 450–20 468, 2022.

[35] L. Kozachkov, K. V. Kastanenka, and D. Krotov, “Building transformers from neurons and
astrocytes,” bioRxiv, pp. 2022–10, 2022.

[36] D. Krotov and J. Hopfield, “Large associative memory problem in neurobiology and ma-
chine learning,” arXiv preprint arXiv:2008.06996, 2020.

[37] M. Widrich et al., “Modern hopfield networks and attention for immune repertoire classi-
fication,” Advances in Neural Information Processing Systems, vol. 33, pp. 18 832–18 845,
2020.

[38] A. Auer, M. Gauch, D. Klotz, and S. Hochreiter, “Conformal prediction for time series with
modern hopfield networks,” arXiv preprint arXiv:2303.12783, 2023.

[39] F. Paischer et al., “History compression via language models in reinforcement learning,” in
International Conference on Machine Learning, PMLR, 2022, pp. 17 156–17 185.

42

[40] A. Chowdhery et al., “Palm: Scaling language modeling with pathways,” arXiv preprint
arXiv:2204.02311, 2022.

[41] T. Brown et al., “Language models are few-shot learners,” Advances in neural information
processing systems, vol. 33, pp. 1877–1901, 2020.

[42] T. Zhou et al., “Film: Frequency improved legendre memory model for long-term time se-
ries forecasting,” Advances in Neural Information Processing Systems, vol. 35, pp. 12 677–
12 690, 2022.

[43] H. Zhou et al., “Informer: Beyond efficient transformer for long sequence time-series fore-
casting,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, 2021,
pp. 11 106–11 115.

[44] Z. Zhou, Y. Ji, W. Li, P. Dutta, R. Davuluri, and H. Liu, “Dnabert-2: Efficient foundation
model and benchmark for multi-species genome,” arXiv preprint arXiv:2306.15006, 2023.

[45] T.-H. Yang, S.-C. Shiue, K.-Y. Chen, Y.-Y. Tseng, and W.-S. Wu, “Identifying pirna targets
on mrnas in c. elegans using a deep multi-head attention network,” BMC bioinformatics,
vol. 22, no. 1, pp. 1–23, 2021.

[46] Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri, “Dnabert: Pre-trained bidirectional encoder rep-
resentations from transformers model for dna-language in genome,” Bioinformatics, vol. 37,
no. 15, pp. 2112–2120, 2021.

[47] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers: A survey,” ACM
Computing Surveys, vol. 55, no. 6, pp. 1–28, 2022.

[48] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document transformer,”
arXiv preprint arXiv:2004.05150, 2020.

[49] J. Qiu, H. Ma, O. Levy, S. W.-t. Yih, S. Wang, and J. Tang, “Blockwise self-attention for
long document understanding,” arXiv preprint arXiv:1911.02972, 2019.

[50] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with sparse
transformers,” arXiv preprint arXiv:1904.10509, 2019.

[51] B. Peters, V. Niculae, and A. F. Martins, “Sparse sequence-to-sequence models,” arXiv
preprint arXiv:1905.05702, 2019.

[52] G. M. Correia, V. Niculae, and A. F. Martins, “Adaptively sparse transformers,” arXiv
preprint arXiv:1909.00015, 2019.

[53] C. Tsallis, “Possible generalization of boltzmann-gibbs statistics,” Journal of statistical
physics, vol. 52, pp. 479–487, 1988.

43

[54] Y. Zhang and J. Yan, “Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting,” in The Eleventh International Conference on Learning
Representations, 2023.

[55] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A time series is worth 64 words:
Long-term forecasting with transformers,” arXiv preprint arXiv:2211.14730, 2022.

[56] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted windows,” in
Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–
10 022.

[57] G. Liu, J. Yang, and L. Wu, “Ptab: Using the pre-trained language model for modeling
tabular data,” arXiv preprint arXiv:2209.08060, 2022.

[58] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep neural
networks and tabular data: A survey,” IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[59] L. Biewald et al., “Experiment tracking with weights and biases,” Software available from
wandb. com, vol. 2, p. 233, 2020.

[60] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2015.
arXiv: 1512.03385 [cs.CV].

[61] A. Vaswani et al., “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[62] J. Gardner, Z. Popovic, and L. Schmidt, “Benchmarking distribution shift in tabular data
with tableshift,” arXiv preprint arXiv:2312.07577, 2023.

[63] D. McElfresh et al., When do neural nets outperform boosted trees on tabular data? 2023.
arXiv: 2305.02997 [cs.LG].

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2305.02997

44

APPENDIX A

EXPERIMENTAL DETAILS

Computational Hardware. All experiments are conducted on the platform with NVIDIA GEFORCE

RTX 2080 Ti, A100 GPUs, and INTEL XEON SILVER 4214 @ 2.20GHz.

A.1 Additional Details on Datasets

We describe all the datasets used in our experiments in table A.1, as well as the download links to

each dataset in table A.3.

Table A.1: Details of Datasets. We summarize the statistics of 9 datasets we have used in Baseline
I, 8 of which involve binary classification and 1 of which involve multi-class classification (4
classes).

Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis

Numerical 6 7 3 6 14 6 58 41 54
Categorical 8 9 16 8 4 4 0 0 0
Train 34190 31648 4923 34189 1809 7001 3221 738 58613
Validation 9769 9042 1407 9768 517 2000 920 211 16747
Test 4884 4522 703 4885 258 1000 461 106 8373
Task type Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Multi-Class

The links to the four OpenML suites from [5] are CC: 1, NC2, CR3, NR4

1https://www.openml.org/search?type=benchmark&sort=date&study_type=task&id=
300

2https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_
included&id=298

3https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_
included&id=299

4https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_
included&id=297

https://www.openml.org/search?type=benchmark&sort=date&study_type=task&id=300
https://www.openml.org/search?type=benchmark&sort=date&study_type=task&id=300
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=299
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=299
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=297
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=297

45

Table A.2: Details of Datasets. We summarize the statistics of 19 datasets covering four suite:
categorical classification (CC), numerical classification (NC), categorical regression (CR), and nu-
merical regression (NR).

Dataset ID Dataset Name # of Categorical # of Numerical

CC
361282 albert 11 21
361283 default-of-credit-card-clients 2 20
361286 compas-two-years 9 3

CR

361093 analcatdata supreme 5 3
361094 visualizing soil 1 4
361099 Bike Sharing Demand 5 7
361104 SGEMM GPU kernel performance 6 4
361288 abalone 1 8

NC

361055 credit 0 10
361062 pol 0 26
361065 MagicTelescope 0 10
361273 Diabetes130US 0 7
361278 heloc 0 22

NR

361073 pol 0 27
361074 elevators 0 17
361077 Ailerons 0 34
361079 house 16H 0 17
361081 Brazilian houses 0 9
361280 abalone 0 8

46

Table A.3: Dataset Sources
Dataset URL

Adult http://automl.chalearn.org/data
Bank https://archive.ics.uci.edu/ml/datasets/bank+marketing
Blastchar https://www.kaggle.com/blastchar/telco-customer-churn
Income https://www.kaggle.com/lodetomasi1995/income-classification
SeismicBumps https://archive.ics.uci.edu/ml/datasets/seismic-bumps
Shrutime https://www.kaggle.com/shrutimechlearn/churn-modelling
Spambase https://archive.ics.uci.edu/ml/datasets/Spambase
Qsar https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
Jannis http://automl.chalearn.org/data

http://automl.chalearn.org/data
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/lodetomasi1995/income-classification
https://archive.ics.uci.edu/ml/datasets/seismic-bumps
https://www.kaggle.com/shrutimechlearn/churn-modelling
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
http://automl.chalearn.org/data

47

A.2 Baselines

We evaluate BiSHop by comparing it to state-of-the-art (SOTA) tabular learning methods, specifi-

cally choosing top performers in recent studies [5, 1, 2].

• LightGBM [17]

• CatBoost [16]

• XGBoost [15]

• MLP [1]

• TabNet [3]

• TabTransformer [4]

• FT-Transformer [2]

• SAINT [1]

• TabPFN [25]. We implement TabPFN using 32 data permutations for ensemble same as the

original paper setting and truncate the training set to 1024 instances.

• T2G-FORMER [26]. We implement T2G-FORMER by applying quantile transformation from

the Scikit-learn library to Baseline I datsets, aligning with the default setting in. The hyperpa-

rameter space is at table A.10.

• TANGOS [27] We adapted the official TANGOS source code to include the datasets from Base-

line I alongside the original datasets. The hyperparameter space is at table A.11.

Selection of Benchmark. We select [5] as our benchmark for several reasons. Unlike other

benchmarks that focus solely on tasks such as classification [62], this benchmark encompasses

both regression and classification tasks. This benchmark provides results from 400 hyperparameter

optimization (HPO) trials, ensuring each model’s hyperparameter search is sufficient. In contrast,

48

some methods, such as [63], restrict HPO to 10 hours on a specific GPU. As a deep-learning-

based method, BiSHop requires more training time compared to tree-based methods. Moreover,

the comparison under the same time constraints on different GPUs is unfair.

A.3 Implementation Details

Data Prepossessing. We label encoded the categorical features, and keep the raw numerical

features for further encoding.

Categorical Features. For tree based method, we employ the build in categorical embedding

method. For MLP we use one-hot encoding.

Numerical Features. We implement Piece-wise Linear Encoding from [2, 14] which change the

original scalar values of numerical features to a one-hot-like encoding.

Evaluation. For each model hyperparameter configuration, we run 3 experiments on the best

configuration and report the average AUC score on the test set.

49

A.4 Training Details

Table A.4: BiSHop hyperparameter space
Parameter Distribution

Number of representation decoded [2, 4, 8, 16, 24, 32, 48, 64, 128, 256, 320]
Stride factor [1, 2, 4, 6, 8, 12, 16, 24]

Embedding dimension [16, 24, 32, 48, 64, 128, 256, 320]
Number of aggregation in encoder [2, 3, 4, 5, 6, 7, 8]

Number of pooling vector [5, 10, 15]
Dimension of hidden layers (Dmodel) [64, 128, 256, 512, 1024]

Dimension of feedforward network (in MLP) [128, 256, 512, 1024]
Number of multi-head attention [2, 4, 6, 8, 10, 12]

Number of Encoder [2, 3, 4, 5]
Number of Decoder [0, 1]

Learning rate LogUniform[(1e-6, 1e-4)
ReduceLROnPlateau factor=0.1, eps=1e-6

Learning Rate Scheduler. We use ReduceLROnPlateau to fine tuning the learning rate to im-

prove convergence and model training progress.

Optimizer. We use Adam optimizer to minimize cross-entropy. The coefficients of Adam opti-

mizer, betas, are set to (0.9, 0.999).

Patience. We continue training till there are Patience = 20 consecutive epochs where valida-

tion loss doesn’t decrease or we reach 200 epochs. Finally, we evaluate our model on test set with

the last checkpoint.

HPO. We report the number of hpo for each dataset from baseline I in table A.5. We report

hyperparameter configurations for CatBoost in table A.6, LightGBM in table A.7, TabNet in ta-

ble A.8, XGBoost in table A.9, T2G-Former in table A.10, Tangos in table A.11. We follow the

same procedure of HPOs for Tangos and T2G-Former in [26] and [27], including the number of

trials. For other methods, we follow the same settings as BiSHop.

50

Table A.5: Dataset Sources
Dataset # of HPO

Adult 36
Bank 26
Blastchar 52
Income 174
SeismicBumps 200
Shrutime 16
Spambase 1
Qsar 67
Jannis 137

Table A.6: Hyperparameter configurations for CatBoost.
Parameter Distribution Default

Depth UniformInt[3,10] 6
L2 regularization coefficient UniformInt[1,10] 3
Bagging temperature Uniform[0,1] 1
Leaf estimation iterations UniformInt[1,10] None
Learning rate LogUniform[1e-5, 1] 0.03

Table A.7: Hyperparameter configurations for LightGBM.
Parameter Distribution Default

Number of estimators [50, 75, 100, 125, 150] 100
Number of leavs UniformInt[10, 50] 31
Subsample UniformInt[0, 1] 1
Colsample UniformInt[0, 1] 1
Learning rate LogUniform[1e-1,1e-3] None

Table A.8: Hyperparameter configurations for TabNet.
Parameter Distribution Default

n d UniformInt[8,64] 8
n a UniformInt[8,64] 8
n steps UniformInt[3,10] 3
Gamma Uniform[1.0,2.0] 1.3
n independent UniformInt[1,5] 2
Learning rate LogUniform[1e-3, 1e-1] None
Lambda sparse LogUniform[1e-4, 1e-1] 1e-3
Mask type entmax sparsemax

51

Table A.9: Hyperparameter configurations for XGBoost.
Parameter Distribution Default

Max depth UniformInt[3,10] 6
Minimum child weight LogUniform[1e-4,1e2] 1
Subsample Uniform[0.5,1.0] 1
Learning rate LogUniform[1e-3,1e0] None
Colsample bylevel Uniform[0.5,1.0] 1
Colsample bytree Uniform[0.5,1.0] 1
Gamma LogUniform[1e-3,1e2] 0
Alpha LogUniform[1e-1,1e2] 0

Table A.10: Hyperparameter configurations for T2G-FORMER.
Parameter Distribution Default

layers UniformInt[1,3] None
Feature embedding size UniformInt[64,512] None
Residual Dropout Const(0.0) None
Attention Dropout Uniform[0, 0.5] None
FNN Dropout Uniform[0, 0.5] None
Learning rate (main backbone) LogUniform[3e-5, 3e-4] None
Learning rate (column embedding) LogUniform[5e-3, 5e-2] None
Weight decay LogUniform[1e-6, 1e-3] None

Table A.11: Hyperparameter configurations for TANGOS.
Parameter Distribution Default

λ1 LogUniform[0.001,10] None
λ2 LogUniform[0.0001,1] None

Table A.12: BiSHop Hyperparameter Search Space
Data BiSHop w/o Cat Emb w/o Num Emb w/o Patch Emb w/o Decoder w/o GSH

Adult 91.50 91.54 89.40 91.32 0.306 0.306
Bank 92.23 92.90 77.21 91.14 0.346 0.306

Blastchar 88.49 88.05 88.81 86.75 0.434 0.306
Income 91.47 91.38 90.38 91.56 0.462 0.306

SeismicBumps 91.42 91.72 87.85 89.33 0.524 0.306
Shrutime 87.38 87.16 81.75 81.32 0.524 0.306
Spambase 100 100 100 100 0.524 0.306

Qsar 92.85 91.54 94.69 91.50 0.524 0.306
Jannis 88.27 87.95 87.50 0.610 0.524 0.306

Average 91.51 91.36 87.50 0.610 0.524 0.306

