NORTHWESTERN
UNIVERSITY

Computer Science Department

Technical Report
Number: NU-CS-2024-10

June, 2024

An Investigation of the Pragmatics of Debugging
with Contracts and Gradual Types

Lukas Lazarek

Abstract

This dissertation demonstrates that a new empirical method, called the Rational Programmer, can
examine the pragmatics of contracts and gradual typing in the context of debugging at scale and in an
automated manner. The method begins with a hypothesis about how a specification technique’s error
information assists in locating bugs. Then, the method calls for designing an algorithm that simulates an
idealized programmer using the technique to locate bugs. We can then test the algorithm on a variety of
scenarios in a large-scale automated experiment, the results of which provide evidence to either
support or refute the hypothesis.

Concretely, this dissertation provides data from evaluations of two techniques: contracts and gradual
typing. In the case of contracts, the rational programmer helps reveal that while carefully-designed
blame information does live up to its hypothesized debugging benefits, primitive stacktrace information
appears to do so nearly as well. In the case of gradual typing, the evaluation results suggest that when
mistakes occur in code, academic approaches’ specialized error information provide marginally better
debugging help; when mistakes occur in type annotations, however, the results do suggest that the
special error information offers valuable debugging information. These results demonstrate the value of
the rational programmer and point to several directions for future investigations.

Keywords

programming languages, language design, debugging, contracts, gradual typing

NORTHWESTERN UNIVERSITY

An Investigation of the Pragmatics of Debugging with Contracts and Gradual Types

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

In the Field of Computer Science

Lukas Lazarek

EVANSTON, ILLINOIS

June 2024

(© Copyright by Lukas Lazarek 2024
All Rights Reserved

ABSTRACT

This dissertation demonstrates that a new empirical method, called the Rational Pro-
grammer, can examine the pragmatics of contracts and gradual typing in the context of
debugging at scale and in an automated manner. The method begins with a hypothesis
about how a specification technique’s error information assists in locating bugs. Then, the
method calls for designing an algorithm that simulates an idealized programmer using the
technique to locate bugs. We can then test the algorithm on a variety of scenarios in a
large-scale automated experiment, the results of which provide evidence to either support or
refute the hypothesis.

Concretely, this dissertation provides data from evaluations of two techniques: contracts
and gradual typing. In the case of contracts, the rational programmer helps reveal that while
carefully-designed blame information does live up to its hypothesized debugging benefits,
primitive stacktrace information appears to do so nearly as well. In the case of gradual typ-
ing, the evaluation results suggest that when mistakes occur in code, academic approaches’
specialized error information provide marginally better debugging help; when mistakes oc-
cur in type annotations, however, the results do suggest that the special error information
offers valuable debugging information. These results demonstrate the value of the rational

programmer and point to several directions for future investigations.

ACKNOWLEDGEMENTS

There are many people I want to thank for making my PhD experience great.

First of all I want to thank my advisor Christos Dimoulas for his guidance, patience, and
support. He taught me how to focus my interests, and modeled a rigorous yet pragmatic ap-
proach to learning and research that I continuously aspire to. Beyond scholarly mentorship,
I must also thank Christos for always being empathetic and understanding that the PhD
was a part of my life rather than the other way around. I am fortunate to be his student.

I'd like to thank my committee members and collaborators for their feedback, insight-
ful commentary, and assistance: Robby Findler, Jessica Hullman, Matthias Felleisen, Ben
Greenman, and Alexis King.

I'd like to thank Jay McCarthy for introducing me to PL, and encouraging me to come
to graduate school in the first place.

I'd like to thank my lab mates, current and former, for sharing the Northwestern PL
journey with me, in all its particularity: Spencer Florence, Shu-Hung You, Dan Feltey, Alex
Owens, Tochukwu Eze, Chenhao Zhang, Bangyen Pham, Nathaniel Hejduk, Hakan Dingenc,
Joshua Hoeflich, Peter Zhong, and Caspar Popova.

I’d like to thank my friends across the rest of the department and university for making
the journey not only fun, but possible — I couldn’t have made it here without you all. In
particular, I want to thank: Enrico Deiana and Ettore Trainiti, who were among the first to
welcome me to Northwestern and have been such great friends since; Madhav Suresh, who
has been a constant wellspring of conversation, fun, and ideas, and from whom I have learned
more than many formal mentors; Hyeok Kim, who has probably spent nearly as much time in

my office as me, which ultimately helped me not only have fun but also improve my work—

including this document; Michalis Mamakos, who has never failed to provide a healthy dose
of sarcasm; Tommy McMichen, who I could always rely upon to stop by and chat, and
helped me see a way of talking about research without being too serious; Nick Wanninger,
who always welcomed me into his office, sometimes even with a serenade; Stephanie Jones,
Sanchit Kalhan, and Vishesh Kumar, who have always been a pleasure to see but never
around enough; Leif Rasmussen, Chenhao Zhang, and Can Giirkan, who found rolling dice
equally entertaining. Though I have many reasons to thank each of the following people,
for the sake of brevity, let me just say thanks also to: Abhraneel Sarma, Suman Bhandari,
Nathan Greiner, Federico Sossai, Atmn Patel, Brian Homerding, and Karl Hallsby.

Finally, I'm grateful to my family, the Rieders, and Amrina Rosyada for their love and

encouragement throughout this journey.

TABLE OF CONTENTS

Acknowledgments L e e e e e e e e e e e 4
List of Figures 0 0 0 i e e e e e e e e e e e e e e e e 12
List of Tables e 13
Chapter 1: Introduction e 14
1.1 A First Taste of Contracts and Gradual Types 14
1.2 Debugging with Contracts and Gradual Types 17
1.3 Pragmatics 18
1.4 The Rational Programmer, 19
1.5 Outline. 19

Chapter 2: The Rational Programmer Framework at a High Level: Linking

Semantics and Pragmatics 20

Chapter 3: From the Rational Programmer Framework to a Method for

3.1

Debugging with Contracts and Gradual Types 23

Making Automatable Procedures 23

3.2

3.3

Designing a Rigorous Experiment 25

Obtaining Scenarios for an Experiment 27

Chapter 4: Experiment 1: Behavioral Contracts and Behaviorial Bugs in

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Code . . . o i i i e e e e e 30
Background: Contracts and Blame 30
The Blame Shifting Hypothesis 39
The Blame Shifting Procedure 40
The Experiment in Precise Terms 45
Obtaining Debugging Scenarios for Contracts 48
Results o 58
Lessons Learned 69
SUMMATY . . . o o o e e 71

Chapter 5: Experiment 2: Gradual Types and Type-level Bugs in Code . . 72

5.1

5.2

5.3

5.4

5.9

5.6

5.7

Background: Gradual Types Lo 72
Challenges 84
The Hypothesis for Gradual Types 86
The Procedure for Gradual Types 87
The Experiment in Precise Terms 92
Obtaining Debugging Scenarios for Gradual Types. 96

Results o 104

5.8 Lessons Learned 111

5.9 Summary . . oL ... 119

Chapter 6: Experiment 3: Gradual Types and Bugs in Type Annotations . 121

6.1 Background: Gradual Types Can Be and Often Are Wrong 121
6.2 The Hypothesis for Type Interface Mistakes 129
6.3 The Procedure for Type Interface Mistakes 130
6.4 The Experiment in Precise Terms 134
6.5 Obtaining Debugging Scenarios with Type Interface Mistakes 136
6.6 Results. 147
6.7 Lessons Learnedo 152
6.8 Summary 160
Chapter 7: Related Work 0 i i i it i it e 161
7.1 Contracts and Gradual Typing 161
7.2 Evaluations of Debugging Information and Strategies 166
7.3 Methodological Inspirations for Scenario Generation 168
Chapter 8: Conclusion i e 171
References e 190

Appendix A: Stratified Proportion Estimation 191

Appendix B: Revisiting Experiment 2 with the Natural Bias

Appendix C: Revisiting Experiment 3 with the Erasure Bias

.........

10

LIST OF FIGURES

1.1 Comparative view of specification tools in software development. 15
2.1 Rational programmer framework overview. L. 20
4.1 'The Sieve of Eratosthenes, with a bug pointed out by the comment. 32
4.2 A precision progression of contracts for (a) sieve and (b) sift. 37
4.3 Definition of sieved-stream/c. 37
4.4 Lattice for the Sieve program. oL 42
4.5 Blame trail for the Sieve program. 43
4.6 Experiment overview Lo 49
4.7 Breakdown of interesting mutants by mutator, per benchmark. 54
4.8 Stratification groups for stratified random sampling when using mutation. . . 57
4.9 Percentage rates of success.o 59
4.10 Head to head usefulness comparisons. 61
4.11 Trail length distributions per mode. 63

4.12 Simple program inspired by dungeon that defeats blame shifting. 65

11

4.13 The shape of paths generated by mbta. 67
5.1 One mixed-typed program, three interpretations. 7
5.2 A simplistic debugging scenario. 82
5.3 Experimental questions and their relevant modes. 95
5.4 The experimental process for one mode of the rational programmer. 96
5.5 Example program using occurrence typing. 100
5.6 Breakdown of interesting mutants by mutator, per benchmark. 102
5.7 Percentage rates of success.o 105
5.8 Head to head usefulness comparisons. 106
5.9 Blame usefulness analysis oo 107
5.10 Programmer efforto 109
5.11 Effort comparisons 110
5.12 An example scenario from takeb, with every mode’s resulting trail. 112
6.1 One program with an incorrect type interface, three interpretations. 124
6.2 Type mistakes captured by final mutant population. 143
6.3 A simple program illustrating the need for adaptors. 144
6.4 Adapting the program of figure 6.3. L. 145
6.5 Percentage rates of success.o 148

6.6 Head to head usefulness comparisons. 150

6.7 Trail length distributions per mode.
6.8 An example scenario from synth, with the trails that each mode explores. . .
6.9 Estimated percentage rates of bug detection (i.e. halting with an error). . . .

6.10 Estimated percentages of trails that succeed without typing library modules.

B.1 Percentage rates of success. o
B.2 Head to head usefulness comparisons. L.
B.3 Blame usefulness analysis 0oL
B.4 Programmer efforto

B.5 Effort comparisonso

C.1 Percentage rates of success.o L
C.2 Head to head usefulness comparisons.

C.3 Trail length distributions per mode.

12

151

153

156

158

1.1

3.1

4.1

4.2

5.1

5.2

5.3

6.1

13

LIST OF TABLES

Error information comparisono 18
Types of experimental questions. 27
Benchmarks summary 50
Summary of mutators. oL 51
SUMMATY v v ot e e e e e 80
Summary of benchmarks oo 98
Summary of mutators. 99
Summary of mutators.o 140

14

CHAPTER 1
INTRODUCTION

This dissertation provides arguments in support of the following thesis:

Evaluating the pragmatics of debugging with contracts and gradual types, with
the rational programmer, provides evidence that contract-based semantics and

blame are useful for debugging.

In the rest of this chapter, I give a high-level explanation of the key pieces of this thesis

before outlining how the remaining chapters dive into these pieces in detail.

1.1 A First Taste of Contracts and Gradual Types

All software has bugs; unfortunately, we usually do not know what or where they are.
Specification techniques aim to help developers deal with this reality by allowing them to
define a separate, detailed specification of what a program is intended to do and subsequently
verify the actual program against that definition. There is a broad and varied array of
specification techniques available to developers today, each offering different trade-offs in the
kinds of specifications they support and how they are checked.

To illustrate the nature of these techniques and their different trade-offs concretely, con-
sider the simple example of figure 1.1a. The figure presents a basic snippet of pseudocode
consisting of two function definitions: one function g, performs a simple string-length oper-
ation on its input, and another function f, which accepts two inputs and applies g to each

before calculating the minimum of the two results. Although extremely simple, this program

Plain program

def g(x):
return len(x)

def f(a, b):
return min(g(a), g(b))

(a) No specifications

Partially typed

def g(x: string) -> int:
return len(x)

def f(a, b):
return min(g(a), g(b))

(c) Gradual Types

15

Typed

def g(x: string) -> int:
return len(x)

def f(a: string, b: string) -> int:
return min(g(a), g(b))

(b) Static Types

Contracts

def g(x):
Pre: x 1= ""
Post: result > O
return len(x)

def f(a, b):
Pre: a != "" gg b I= "
Post: 0 < result <= 100
return min(g(a), g(b))

(d) Contracts

Figure 1.1: Comparative view of specification tools in software development.

16

snippet is sufficient to demonstrate the key ideas of the specification techniques that this
dissertation focuses upon.

By far the most prevalent specification technique in practical use today is static types.
Static types require developers to annotate their code with types describing what datatypes it
uses. For example, figure 1.1b is the example program with type annotations specifying that g
accepts a string and returns an integer, and that f accepts two strings and returns an integer.
A type checker can then use these annotations to catch situations where the annotations of
different pieces of code don’t match up, which probably corresponds to a mistake in the
code. A significant weakness of type checking is its conservative nature, though, meaning
it occasionally rejects correct code. While this dissertation does not investigate static types
(sec. 7.2.1 identifies a significant body of existing work in that context), it serves as a useful
starting point from which to introduce gradual types and contracts.

Gradual types add a little flexibility to static types by allowing programmers to leave
parts of their code un-annotated (or un-typed). Figure 1.1c illustrates one way this can look,
with g annotated (typed) and f not (untyped). In the absence of complete types, the type
checker checks as much as it can using what annotations there are in the program, making
optimistic decisions in the face of insufficient information. In some approaches, gradually
typed languages convert annotations into dynamic checks to compensate for the incomplete
type information. For instance, the type checker may need to know that the result of f is
an integer in order to typecheck some use of £, but may not verify that fact itself because f
is untyped; in that case, some gradually typed languages add a run-time check that ensures
f’s result is an integer after every time it is called. Gradual types cater to the practical
realities of prototyping and incremental development, allowing developers to introduce types

piecemeal into existing, untyped codebases.

17

Diverging significantly from types, contracts represent an entirely different specification
approach. They enable programmers to write specifications in terms of pre- and post-
condition assertions, which are verified dynamically as the program executes. As the ex-
ample specifications of figure 1.1d illustrate, this approach supports highly expressive speci-
fications; g’s contract, for instance, stipulates that its input should never be an empty string
and that its output lies within the range 1-100. While thus supporting arbitrarily precise
specifications, contracts are only checked as the program runs—often leading to performance

overheads.

1.2 Debugging with Contracts and Gradual Types

The prior section demonstrates the differences between contracts and gradual types in terms
of what kind of specifications programmers can write. Another major distinguishing factor
between these options, however, is what happens when either technique does detect a problem
in the program; in particular, the information they offer to help developers debug the problem
varies dramatically between techniques.

To illustrate concretely, consider again the examples of the prior section. With static
types, the type checker raises an error before the program runs that identifies one or more
pieces of code where the type annotations don’t match up. With contracts, the contract
system halts the program with an error that describes which assertion failed, and the value
that fails to satisfy the assertion; in addition, contracts provide a special mechanism intended
to help with debugging called blame, which identifies one part of the program as being at
fault for the violation. Finally, gradual types offer a range of different possible information,
including type checker errors just like static types, blame information similar to that of

contracts, or just plain stacktraces. Table 1.1 summarizes these differences compactly, with

18

one row naming the kind of information each technique provides, one row describing it, and

a third row providing an example.

Table 1.1: Error information comparison

Static Types Gradual Types Contracts
Type checker error before | Type checker error before | Contract violation with
running program running program blame

Blame like contracts

Stacktraces
Identifies mismatched types | ... see left and right ... Identifies failed assertion,
at some program location the witness value, and

blames one component

expected String, stacktrace: f 101 fails postcondition
found Bytes g 0 < result < 100,
on line 7 blaming f

1.3 Pragmatics

The question this dissertation begins with is how useful the different kinds of information of
the prior section are and how they compare to each other.

Unpacking this question: Semantics—i.e. formal models and their properties—provide
precise understandings of what error information these techniques produce. However, se-
mantic models and their properties don’t make connections from that error information to
practical outcomes like locating bugs. Hence, the question at hand is what those connections
look like—or if they exist at all.

In this dissertation, I call connections of this nature the pragmatics of the techniques
at hand, and I investigate them with a recently developed methodological framework called
the rational programmer. This dissertation is a first application of that idea to understand

the pragmatics of debugging with the run-time errors produced by contracts and gradual

19

types. At a meta-level, therefore, the dissertation can also be understood as a validation of

the usefulness of the rational programmer framework.

1.4 The Rational Programmer

Chapter 2 provides a detailed overview of the rational programmer framework. At a very
high level, in the context of debugging with specifications, the framework consists of four
pieces. First, a hypothesis about how the semantics of a specification technique relate to
pragmatic outcomes like locating bugs; second, the design of an automated procedure that
leverages the hypothesized semantic-pragmatic connections to locate bugs; third, a large
scale automated experiment that tests the procedure on real programs; and fourth, a set of
data, resulting from that experiment, providing evidence that either supports the hypothesis

or provides concrete examples refuting it.

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 provides a high level overview
of the rational programmer framework and its key pieces. Chapter 3 describes the key
challenges involved in instantiating that framework in the specific context of debugging
with contracts and gradual typing, and the key insights to overcome them. The following
three chapters then apply those insights to design three rational programmer experiments
evaluating contracts and gradual typing in the context of debugging; chapter 4 describes a
rational programmer experiment for contracts, chapter 5 describes one for gradual typing—
under one assumption about gradual types, and chapter 6 describes a followup experiment
for gradual typing that flips the assumption of the former one. Finally, chapter 7 provides

an overview of related work, and 8 concludes with a few directions for future work.

20

CHAPTER 2
THE RATIONAL PROGRAMMER FRAMEWORK AT A HIGH LEVEL:
LINKING SEMANTICS AND PRAGMATICS

At a high level, the rational programmer is a framework for empirically investigating ques-
tions about how information provided by programming languages and tools relates to prac-
tical outcomes. The framework consists of four pieces.

Hypothesis. From these abstract questions, the framework concretely begins by formu-
lating hypotheses about their answers. To illustrate the nature of these hypotheses, consider
for example a hypothesis about locating bugs with blame information from contracts. A
good hypothesis for this context posits a concrete relationship between the error information
offered by the technique and the location of bugs, such as being able to translate the infor-
mation into the location of a bug. Concretely, this idea can be formulated as the following

hypothesis:

blame from contracts can be translated into the location of a bug by iteratively

adding stronger contracts to the blamed component.

¢ 0 Al

(1) (2) (3) (4)
hypothesis procedure experiment analysis

Figure 2.1: Rational programmer framework overview.

21

Automated procedure. The next piece of the rational programmer framework is to
design an automated procedure that reifies or puts the hypothesis into action. That is,
the procedure leverages the hypothesized relationship between semantic information and
practical outcomes to accomplish a task. Continuing from the example hypothesis about
contracts’ blame, an example procedure could automatically respond to blame by adding
stronger contracts to the blamed component and then re-running the program, repeating
until it can no longer proceed—say, when the blamed component can not be given any
stronger a contract.

Experiment. With the procedure in hand, the next piece is to test it out on real
programs in a large scale automated experiment. In terms of the running example, the idea
of the experiment is to run the procedure on a large corpus of buggy programs and recording
for each such test whether the procedure succeeds at locating the program’s bug.

Analysis. The result of that experiment is a set of data about the procedure’s perfor-
mance with respect to its goal. In particular, that data consists of two parts: one, the tests
for which the procedure succeeds, provides evidence in support of the original hypothesis; the
set of tests for which the procedure fails, on the other hand, are concrete counter-examples
refuting the hypothesis. Besides helping to understanding why the hypothesis doesn’t hold,
these counter-examples can also serve as test-cases with which to improve the design or im-
plementation of the language technique or tool under evaluation. To make things concrete in
terms of the running example, the data for that experiment provides (1) evidence that blame
can be translated into the location of bugs, and/or (2) example programs where blame leads
the procedure astray.

Figure 2.1 summarizes this overview of the rational programmer framework pictorially.

The first component is the hypothesis positing a specific relationship between error infor-

22

mation and bug-finding. The second is a procedure reifying that hypothesis. The third is a
large-scale experiment testing the procedure on real programs. The final component is the

data resulting from the experiment.

23

CHAPTER 3
FROM THE RATIONAL PROGRAMMER FRAMEWORK TO A METHOD
FOR DEBUGGING WITH CONTRACTS AND GRADUAL TYPES

Figure 2.1 outlines four essential components to the rational programmer framework. This
chapter describes how I instantiate this framework into a concrete method for investigating
the pragmatics of contracts and gradual typing in the context of debugging, which requires
refining and overcoming challenges in most of those components. The following sections
consider each challenge in turn, expanding upon what each entails and sketching how I
overcome them in my work. This chapter lays the foundation for the following three chapters,

which illustrate how to build three concrete experiments in the image of this outline.

3.1 Making Automatable Procedures

The second component of the framework is a procedure reifying the hypothesis that the
experiment examines, putting it into action—to try to locate bugs, in this specific context.
This piece presents an essential challenge. The trouble is that most interesting ways of re-
sponding to debugging information (e.g. adding correct contracts to the blamed component)
are not automatable. To overcome this, the key insight I use in my work is to pre-bake
possible responses for the programs under test.

To illustrate the challenge and solution, consider the example hypothesis from the prior
chapter (2) about translating contracts’ blame into the location of bugs. A procedure reify-
ing that hypothesis must be able to automatically add precise and correct contracts (or

increase their precision) for an arbitrary component that is blamed. The reality, however,

24

is that crafting contracts is a fundamentally creative task that requires an understanding of
the component at hand, what it is intended to do, how it is intended to fit in with other
components in the program, and how those pieces lead to a succinct description of correct
behavior. Indeed, even in the context of plain type-level specifications this remains a largely
open problem [Campora, Chen, Erwig, et al. 2017; Garcia and Cimini 2015; Kristensen and
Mgller 2017a; Migeed and Palsberg 2019; Miyazaki et al. 2019; Phipps-Costin et al. 2021;
Rastogi, Chaudhuri, et al. 2012].

Instead, suppose we start from a set of (buggy) programs that don’t have contracts. A
human can look at any of those programs and perform the reasoning necessary to come up
with suitable contracts for every component in the program. If we record these manually-
written contracts in copies of the components, then we obtain two parallel versions of the
components in a program: the original ones without contracts, and corresponding versions
with our manually-written contracts. With this construction, we can select one of the two
versions for every component in the program to get a configuration of the program — a
concrete instantiation of these possible choices in a single program that we can run. And if
running such a configuration results in blame identifying some component in the program, it
is trivial to construct an automatic procedure to add contracts to that component—simply
swap in the version with a pre-written contract to get a new configuration. Of course, the
manual labor required by this solution raises significant scalability questions; section 3.3
describes how I manage that problem.

As a final note, the essence of this idea comes from Greenman [2023], Greenman, Takikawa,
et al. [2019], and Takikawa, Feltey, et al. [2016], who introduce the GTP benchmark suite.
Essentially, the suite provides parallel typed and untyped versions of each component in ev-

ery program of the suite, enabling automated experiments that investigate the performance

25

effects of adding types to various components in a program.

3.2 Designing a Rigorous Experiment

The third component of the framework is an experiment that tests how successfully the
procedure is able to locate bugs in real programs. Obtaining meaningful results from such
an experiment requires careful design of the experimental setup. Testing the procedure of
the prior subsection on some corpus of scenarios allows answering two kinds of experimental

questions:
1. How reliably does the procedure succeed at the debugging task (locating the bug)?
2. What does the process looks like?

The first question quantitatively captures the pragmatic value of the technique under
evaluation for locating bugs. The second question offers a secondary lens to understand
how the technique helps the rational programmer succeed (or fail). It supports asking, for
example, how quickly the rational programmer typically succeeds.

However, answers to these two questions alone are not usually sufficient to provide a
solid basis for understanding the comparative pragmatics of different competing techniques.
In particular, it is unclear how the answers to the experimental questions offer insight into
whether, for instance, Typed Racket’s blame offers better debugging information than Era-
sure. Consider for example if the results show that some procedure reliably succeeds using
Typed Racket, and that it also reliably succeeds using Erasure; in that case, we have little in-
formation about how the two compare directly (e.g. do they succeed in different scenarios?),
nor do we have information about whether blame is responsible for Typed Racket’s success.

In other words, the experimental questions are not themselves comparative in nature. Truly

26

understanding the value offered by a technique requires comparison, at the very least against
established baselines.

The rational programmer framework can enable such comparisons through a mechanism
dubbed modes. Modes are variations of the original procedure under examination, which
embody the same original hypothesis but using a different technique or source of information.
Each mode can be tested in independent sub-experiments to obtain answers to the two kinds
of experimental questions alone, and then all the answers together can be synthesized into
a fuller understanding of the comparative pragmatics of different techniques. In doing so,
it is of course critical to control all the experimental variables so that only the point of
comparison changes across each sub-experiment, so that differences in the answers to the
experimental questions can be accurately attributed.

In more concrete terms, the multiple modes of an experiment embody both the various
techniques under evaluation and baselines against which to compare them all. One such
baseline that is useful for all evaluations of debugging information is a mode that acts
randomly, using no information at all, which captures a sort of null hypothesis. This random
mode provides a baseline against which to establish the non-random nature of the debugging
information offered by a technique, and what benefits a technique offers over random chance.

Hence, with modes enabling comparative evaluation, the experimental questions of chap-
ter 4-6’s experiments additionally include some number of comparative versions of the first
question; that is, how reliably is one mode better than another mode (i.e. mode A succeeds
but mode B fails for the same scenario)? In cases where both modes succeed, answering these
comparison questions may also require considering the debugging process of the two modes
to decide which is better (e.g. mode A succeeds faster than B). That leaves in total a space

of experimental questions, summarized in table 3.1. There is one experimental question per

27
Table 3.1: Types of experimental questions.

‘ per technique per pair of techniques per mode (optional)

Question ‘ Better than baseline? A better than B? What does process look like?

technique of interest asking whether the corresponding mode is better than its baseline, one
question per pair of techniques asking if either of the two are reliably better than the other,
and optionally another question per mode asking what the debugging process looks like for

that mode (e.g. is it typically quick, or lengthy?).

3.3 Obtaining Scenarios for an Experiment

The experiment component poses another essential challenge for practical implementations of
the rational programmer framework. A rigorous experiment needs buggy test programs with
significant and reliable information about their bugs: their nature, their location, and strong
confidence that there are not more unknown bugs. While there is a wealth of buggy software
available in online repositories, there is no curated collection with this key information about
the bugs represented, so obtaining such programs is a challenge.

To overcome this challenge, the insight I use in my work is to obtain such programs by
injecting bugs ourselves using mutation analysis [DeMillo, Richard J. Lipton, et al. 1978;
Y. Jia and Harman 2011; Richard J Lipton 1971]. The essential idea of mutation is to make
small syntactic modifications to a program, such as swapping a + with a - or a 1 with a
0. Each such modification is dubbed a mutation of the original program, creating a mutant
which has a single known potential bug.

This approach has several advantages, but also comes with drawbacks. The principal

advantage of this approach is that by injecting the bugs ourselves, we have all the informa-

28

tion we need about them. Furthermore, by starting with a seed set of programs which is
well-tested, we can have confidence that the only bug in the program is the one we injected.
The drawbacks are that not all mutations actually introduce interesting bugs, and that the
relationship between mutations and real bugs that programmers actually make is unclear.
To address the first drawback, we develop criteria describing the suitability of mutants and
ensure that we create a large and diverse population of mutants satisfying those criteria (see
secs. 4.5.2.1, 5.6.3, and 6.5.2.1). To address the second drawback, we use or design mutators
that have been carefully selected to fit the kinds of bugs under study in each of the three
experiments (see in particular sec. 6.5.2.1). Furthermore, there is some empirical evidence
that mutations effectively simulate real faults in the context of test suite evaluation [Andrews
et al. 2005; Just et al. 2014] and fault localization [Papadakis and Le Traon 2015], despite
clear differences in the syntactic nature of real faults [Gopinath, Jensen, et al. 2014] and
the fact that many real faults may not even be attributable to a single location in a pro-
gram [Thung et al. 2012] With all that in mind, the second drawback ultimately constitutes
a threat to validity of this approach (see secs. 4.7.1, 5.8.2, and 6.7.3).

Mutation introduces a secondary challenge, however, because it typically produces more
mutants than are feasible to actually test. To overcome this challenge in my work, I sample
from the population of all possible scenarios to obtain a smaller set that is feasible to run. In
particular, I use a stratified random sampling approach that trades a significant amount of
computational work for a modest reduction in the statistical confidence of the experimental
results. The key idea of this approach is to divide the population of scenarios induced
by mutation into groups, and then sub-groups, and sub-sub-groups, and so on, based on
characteristics of the tests—e.g. which source program the mutant corresponds to, which

mutator created the mutant, etc. Since we know that these groups each have different

29

characteristics, we can select a few representatives from each group to obtain a sample; it
will be a diverse sample of the overall population that is representative of its variety in those
characteristics, and that representativeness translates to better confidence. While this is an
abstract summary, section 4.5.3 describes one such concrete stratification in detail, and all

the other chapters essentially replicate the same sampling strategy.

30

CHAPTER 4
EXPERIMENT 1: BEHAVIORAL CONTRACTS AND BEHAVIORIAL
BUGS IN CODE

This chapter demonstrates how to instantiate the rational programmer framework to evaluate
the pragmatics of contracts in the context of debugging. It is an adaptation and extension
of Lazarek, A. King, et al. [2020], including a full reproduction of the experiment with some
significant structural changes. As such, this is joint work with Alexis King, Samanvitha
Sundar, Robby Findler, and Christos Dimoulas.

The chapter begins with the essential background on contracts and blame (sec. 4.1)
before instantiating the pieces of the framework (secs. 4.2-4.5), describing the results of the

experiment (sec. 4.6), and discussing them (secs. 4.7-4.8).

4.1 Background: Contracts and Blame

The origins of contracts and blame in higher-order languages [Findler and Felleisen 2002]
can be traced to an apocryphal story.! Once upon a time, a young PhD Student embarked
on the mission of building a programming environment for a newly-hatched higher-order
language. The road to success was (and still is) strewn with vicious bugs, and the Student
fought for days, months and years to weed out as many of them as possible. Some times
though, the battle was impossible to win... The Student had to deal with havoc-causing

faulty callbacks and other powerful values from other people’s code. All the Student could

IThis story is a work of fiction. Names, characters, business, events and incidents are the products of
the authors’ imagination. Any resemblance to actual persons, living or dead, or actual events is purely
coincidental.

31

do was labor hard to trace where the values came from, and try even harder to convince the
authors’ of that other code that the problem was on their end and their responsibility. After
repeating this process again and again, the Student finally made a wish; “I wish there was a
way to say what values others should give to my code, and if they do not comply then they
get blamed!” And so contracts and blame came to be. Happily ever after, contracts caught
all the stray values, blame showed where they came from, and the Student had to worry no
more about which piece of code was at fault.

To understand the basics of modern higher-order contracts, consider figure 4.1. It depicts
a snippet of a Racket program that calculates an infinite stream of prime numbers using the

Sieve of Eratosthenes. The snippet consists of three function definitions:

e sift is a function that consumes a number n and a stream of numbers st and returns

a stream that contains the same numbers as st except those that are multiples of n;

e sieve consumes a stream st, and constructs a new stream with the same head (hd)

as st and the recursively sieved tail of st after sifting from it hd;

e primes is the stream that sieve returns when given the stream of all naturals starting

at 2.

In this example, we will refer to top level definitions as components.

Three of the definitions come with contracts.?

e The contract for start, integer?, states that it is an integer. In detail, this flat
contract is a predicate, and the contract system checks that contract by checking that

start satisfies the predicate when the definition of start is evaluated.

2In Racket, programmers can opt to accompany some definitions with a contract using the
define/contract form.

32

sieve : racket

;; ... dependencies omitted ...

;; ‘sift n st
;; Filter all elements in ‘st‘ that are
;5 divisible by ‘n‘. Return a new stream.
(define/contract (sift n st)
(-> integer? stream? stream?)
(define-values (hd tl) (stream-unfold st))
(cond [(= 1 (modulo hd n)) ;; <- a bug
(sift n tl)]
[else
(make-stream hd (A () (sift n t1)))]1))

;; ‘sieve st Sieve of Eratosthenes

(define (sieve st)
(define-values (hd tl) (stream-unfold st))
(make-stream hd (A () (sieve (sift hd t1)))))

(define/contract start integer? 2)
;; stream of prime numbers
(define/contract primes

(streamof (and/c integer? prime?))
(sieve (count-from start)))

Figure 4.1: The Sieve of Eratosthenes, with a bug pointed out by the comment.

33

e The contract for sift, (-> integer? stream? stream?), states that it is a func-
tion that consumes an integer and a stream and produces a stream. Unlike flat con-
tracts, higher-order contracts like function contracts can not be completely checked
immediately upon evaluating the definition of sift. The contract system can check
that sift is a function (and, in Racket, that it accepts two arguments) — so-called
first-order properties — but it is unclear how to know from the function value alone
whether it will return a stream when given an integer and a stream. When the function
eventually gets applied with some particular inputs, however, the contract system can
check the input contracts and the function’s result; in other words, the contract system

needs to delay (most of the) checks for higher-order contracts.

e The contract for primes, (streamof (and/c integer? prime?)), states that itisa
stream of integers that are also prime numbers. Streams are also higher-order values,
because they are essentially a pair containing the head of the stream, and a function

that returns the rest of the stream.

When a contract check fails, the contract system raises an error with information intended
to help programmers determine the cause of the problem. As basic pieces of information,
these error messages identify which contract failed, the value that failed the check, and a
stacktrace describing where in the program the check failed; this information may be sufficient
to determine the cause of simple contract failures (e.g. for purely first order contracts like
that of start).

For higher-order contracts, however, that information may not be sufficiently helpful, so
contracts also provide specialized debugging information called blame. The trouble stems
from the delaying necessary to check higher-order contracts; consider that in languages like

Racket, functions are first-class values, so they can flow through a program to places that have

34

no direct connection to the point where they are defined (or created, or acquire a contract).
In large programs with many components and complex value flows, it may therefore be
difficult for a programmer to understand which component actually produced the value
which fails to satisfy the broken contract. To address this problem, Findler and Felleisen
[2002] describe contracts as establishing obligations between the component providing a value
and components that use that value. For example, sift’s function contract establishes the
obligations that components which call sift are responsible for providing an integer and a
stream as inputs, and it is sift’s own responsibility to return a stream. By tracking these
obligations as the program runs, the contract system can identify which component is to

blame for supplying the value causing a contract violation.

4.1.1 Debugging with Blame

Twenty years on, stories like those at the start of the section sustain a folklore belief in
the potency of blame for helping programmers find software bugs.® Papers about higher-
order contracts contain claims in the vein of “blame kicks off the debugging process in the
right direction” or “blame narrows down the search for the bug”, despite a lack of systematic
supporting evidence (e.g. [Dimoulas, Findler, and Felleisen 2013; Dimoulas, New, et al. 2016;
Strickland and Felleisen 2009b; Waye et al. 2017]). This dissertation examines whether the
reputation of blame is justified in Racket’s contract system.

Getting down to specifics, the contracts community has an established programming
practice for dealing with blame that we call blame shifting. It goes like this: if a programmer
is convinced that a blamed component does not contain a bug, then the programmer increases

the precision of the contracts between the component and other components in an attempt

3See for example https://beautifulracket.com/jsonic-2/contracts.html (accessed November
2019).

https://beautifulracket.com/jsonic-2/contracts.html

35

to detect faulty values the component received. That is, the programmer attempts to shift
the blame to some other part of the program as a means of digging down to the root cause
of the problem.

This blame shifting practice serves as the main source of inspiration for the hypotheses
and procedures tested in the rest of this dissertation, so it is useful to walk through an
example. Consider again figure 4.1; these contracts are sufficient to uncover a bug we planted
in the implementation of the Eratosthenes sieve. In detail, when we run the program and
attempt to inspect the first two elements of primes, the contract system complains that
the stream’s second element is 4, an integer that is definitely not prime. Thus it fails
the prime? part of the contract of primes. Together with the information about which
value failed which contract, the contract system provides blame information that identifies
the component responsible for the problem. In this case, blame points to primes, which
promised to be a stream of primes.

However, even a cursory inspection of primes suggests that the problem is not actually
there. As the comment in sift of figure 4.1 shows, the problem is with sift. In contrast
to what it is supposed to do, sift fails to remove from its st argument elements that are
multiples of its n argument. Unfortunately the contract of sift is not precise enough to
detect this discrepancy, and sieve does not have a contract at all. This reflects a fundamental
aspect of the design of contract systems; programmers can choose the level of precision of
the contracts of their components and the contract system reports only a mismatch between
the contracts and the program’s behavior. Hence, in the absence of precise contracts, blame
points to the component whose contracts detect that it handles a faulty value. In fact,
this value may have reached the blamed component from somewhere else in the code under

contracts that are insufficient to detect the bug (if there are any at all). Specifically in our

36

example, primes ends up getting blamed because it has blindly trusted these two components
to produce values about which primes makes promises in its own contract [Dimoulas and
Felleisen 2011; Dimoulas, Findler, Flanagan, et al. 2011].

The above justification of blame is the source of the key insight for evaluating blame: if
we make the contract of primes more precise, then the contract system should be able to
detect the problem and give us blame information that is more accurate with respect to the
location of the bug. Specifically, the contract system should detect that primes received a
faulty value. In general terms, heeding blame and increasing the precision of the contracts
in a program should eventually lead to the identification of the component that contains the
bug.

Back to our example: even though primes seems to be as precise as possible, in fact, it is
missing something important; primes interacts with and receives values from sieve. Thus
increasing the precision of the contract of primes requires making the contract of sieve
more precise, at least for the use of sieve in primes.*

Figure 4.2 shows three candidate contracts for sieve ordered by increasing precision.
The first, (a.1), states properties of the tags of the argument and result of sieve. Of course,
this is insufficient to change the behavior of the program; sieve does indeed produce a
stream when given a stream. Thus, attempting to inspect the first two elements of primes
with this new contract results in exactly the same contract error that blames primes. The
second contract, (a 2), is also insufficient; the result stream does contain integers, just not

the right ones.

4This is a subtle point of the design of Racket’s contract system. Even though we refer to the contract
of a component as a single entity that regulates all its interactions with any other component in a program,
even those may not control, Racket’s contract system pushes programmers to split the contract into multiple
contracts spread across a number of components. For simplicity, however, we treat all of these pieces as
the single contract of a component. In fact, recent updates to Racket’s contract system have introduced a
mechanism (called contract-in) that make this treatment more natural.

sieve-contracts : racket

3333333333333 (a) contracts for sieve 3333333333333 333
;5 (a.1) a tag-checking contract for sieve

(-> stream? stream?)

;5 (a.2) a type-like contract for sieve
(-> (streamof integer?) (streamof integer?))

;5 (a.3) a very precise contract for sieve
(-> (streamof integer?) sieved-stream/c)

5535333555555 (b) contracts for sift ;;55555555555355555
;5 (b.1) a type-level contract for sift
(-> integer? (streamof integer?) (streamof integer?))

;5 (0.2) a very precise contract for sift
(->i ([n integer?]
[st (streamof integer?)])
[result (n)
(streamof (and/c integer?
(not/c (divisible-by/c n))))])

Figure 4.2: A precision progression of contracts for (a) sieve and (b) sift.

sieve-contracts : racket

(define sieved-stream/c
(stream/dc integer?
(A (first)
(-> (sieved-simple-stream-following/c first)))))
(define (sieved-simple-stream-following/c sieved-n)
(and/c (streamof (and/c integer? (not/c (divisible-by/c sieved-n))))
(stream/dc any/c
(A (first)
(-> (sieved-simple-stream-following/c first)))))

Figure 4.3: Definition of sieved-stream/c.

37

38

Further increasing the precision of the contract requires considering the expected be-
havioral properties of sieve beyond “type-level” descriptions. In particular, sieve should
produce a stream where no integer in the stream is divisible by any of its predecessors. To
check this property, the last contract for sieve in figure 4.2, (a.3), replaces the range of the
previous contract, (a.2), with the custom contract sieved-stream/c. The contract verifies
that the stream’s tail contains only numbers indivisible by its head; then it attaches itself
recursively to the tail of that stream, thereby building up the property that no element of
the stream is a factor of any subsequent element. For the interested reader, figure 4.3 shows
the full definition, which uses a custom dependent stream contract combinator stream/dc;
stream/dc accepts first a contract for the head of the stream and second a function which
computes a contract for the tail thunk of the stream when given the head.

Given this precise contract, which captures the functional correctness of sieve, inspecting
the first few elements of primes leads to a new contract error that blames sieve. Blame does
not yet detect the faulty sift but at least it now draws the attention of the programmer
to a point earlier in the path of the faulty value from sift to primes; it singles out the
intermediary sieve. In this way, blame shifts closer to the location of the bug.

Since an inspection of sieve confirms that the bug is not there, the next step is to revisit
the contracts of sift, the component from which sieve receives values. The bottom part of
figure 4.2 shows how we can gradually enhance the precision of the contract of sift to obtain
a contract that, similar to the last one for sieve, precisely describes the expected behavior
of the function. This dependent contract, (b.2), uses the function contract combinator ->i
instead of ->. The former supports naming the arguments and result values of a function to
use them to construct other portions of the contract. In this case, the contract for the result

of sift depends on the argument n, and uses it to enforce that the elements of the result are

39

not divisible by n.® Hence it is now sufficiently precise to detect the bug and blame finally
shifts to sift, the definition that contains the bug.

In sum, based on an intuitive understanding of blame and established practice of debug-
ging with contracts, we have translated blame into the location of a bug. This blame-shifting
process consists of following blame through the program, strengthening the contracts on each
blamed component to shift the blame to another one. Eventually, the shifting stopped on

the buggy component in our example.

4.2 The Blame Shifting Hypothesis

Section 4.1 describes how, based on an intuitive understanding of blame, a programmer can
translate blame from contract systems into the location of a bug by shifting blame. This
blame shifting process consists of following blame through the program, strengthening the
contracts on each blamed component to shift the blame to another one. Eventually, the
shifting stops on the buggy component.

This chapter describes a rational programmer experiment that essentially tests the hy-
pothesis that this process is generally able to translate blame from contract systems into the

location of a bug. In other words, the hypothesis is that
blame shifting always results in blame settling on the faulty component.

To test this hypothesis, according to the outline of the method from chapter 2, we must
lay out a procedure that precisely captures the blame shifting process. The next section

distills the ideas of section 4.1 into an automated procedure.

5Indeed, the contract for the result of sift is identical to the non-recursive portion of sieved-stream/c
from the last contract for sieve except that the latter uses the head of the result of sieve instead of n.

40

4.3 The Blame Shifting Procedure

In informal terms, the procedure is as follows. For a given scenario, the procedure starts
from the scenario’s initial contract violation and attempts to repeatedly shift blame until it

no longer can. Specifically, the procedure consists of the following steps:
1. run the program to get a contract violation blaming some component A;

2. try to shift blame by making A’s contracts more precise, if possible, and go back to

step 1;

3. otherwise, blame cannot be shifted any more, so check that A is the buggy component.

Blame shifting succeeds if this is true, and fails otherwise.

The next step in the outline of chapter 2 is to construct a large scale automated ex-
periment to test this procedure. In order to do that, however, we need to first overcome
the challenge identified in section 3.1 of automating the addition of contracts (sec. 4.3.1).
Subsequently, we revisit the informal procedure description and formulate it in precise terms

(sec. 4.3.2) before moving on to the experiment design in the next section (sec. 4.4).

4.3.1 Capturing Contract Choices with the Configuration Lattice

Inspired by Greenman [2023], Greenman, Takikawa, et al. [2019], and Takikawa, Feltey, et
al. [2016], the blame shifting process can be understood as exploring a space of configura-
tions of a buggy program, which are instances of that program with a particular choice of
contract for all of its components. Specifically, alongside a program P, we define a contract

map: a mapping from each component to an ordered sequence of possible contracts for that

41

component. For example, for some P with components A and B, we write

{A — [ca1, Ca2, Ca3], B — [cb1, Cb2, 3] } (4.1)

to represent the contract map where each component has three possible contracts. Those
contracts are sorted in ascending order of precision, such that c,; < caa < cu3 for instance.®
A program configuration of P is therefore represented by a mapping from each component
to a choice of one contract from the corresponding sequence, such as {A > cu0, B — ¢p1}-
The set of all such configurations can be partially ordered by lifting the precision ordering
on individual component contracts to configurations, forming a lattice L[P]. The top of
the lattice is the configuration mapping all components to their most precise contracts, and
the bottom configuration the inverse. Figure 4.4 illustrates the lattice for the example from
section 4.1 with three components.

The contract map succinctly captures the pre-baked possible contracts (sec. 3.1) that
enable automating the blame shifting procedure. With the map in hand, we can trivially

increase the precision of contracts around any component, thereby sidestepping the challenge

of automatically generating precise contracts.

4.3.2 The Blame Shifting Procedure, Formally

With the terminology of configuration lattices, we can describe the blame shifting procedure
precisely. We describe the entire process of blame shifting with a blame trail. A blame trail
is an ascending path through the configuration lattice (i.e. a sequence of configurations)

starting from any configuration in the lattice that raises an error; we call the starting config-

6A contract cy is more precise than another contract c;, written ¢; < cg, iff a program using ¢, instead of
c1 signals a contract violation whenever the program using c¢; does so. Intuitively, cs should check everything
that ¢; checks, and possibly more.

42

primes =~ MaXprines
sift = MaXsife
sieve = MaXsieve

primes ~ maXpripes primes =~ mMaXprines primes ~ typesS,ines
sift ~ typesgife sift = MaXgife sift = MaXsife
sieve ~ MaXgjeve sieve ~ typesSgjee sieve ~ MaXgjeve
primes = MaXprines primes = MaXpripes primes ~ MaXprimes primes ~ none primes ~ typesprines primes ~ typesprines
sift - none sift - typesgis sift » maXsire sift = maxsise sift » maXsire sift - typesgife
sieve ~ MaXgjeve sieve = typeSgieve sieve ~ none sieve ~ MaXgjeye sieve ~ typesScieve sieve ~ MaXgjeve
primes = maXprimes primes ~ mMaXprines primes ~ types;rines primes ~ typesS,rines primes ~ none primes ~ types;rines primes ~ none
sift ~ none sift = typesgist sift = MaXsjft sift = typesgis sift = MaXsjft sift - none sift = typesgist
sieve ~ typesSgiee sieve ~ none sieve ~ none sieve ~ typeSgiee sieve - typeSgiee sieve - MaXgieve sieve = maXsieve
primes ~ maXprines primes ~ types; ines primes - none primes ~ types;rines primes - none primes - none
sift = none sift - typesgif: sift = MaXsife sift ~ none sift ~ typesgist sift ~ none
sieve ~ none sieve ~ none sieve ~ none sieve ~ typesSgese sieve ~ typesSgjeve sieve ~ MaXgjeve
primes - typesprines primes ~ none primes ~ none
sift ~ none sift ~ typesgist sift ~ none
sieve ~ none sieve ~ none sieve ~ typesgese

primes ~ none
sift -~ none
sieve ~ none

Figure 4.4: Lattice for the Sieve program.

uration of a trail a debugging scenario. Every configuration in a trail has exactly one elevated
component with respect to the previous configuration, which is the component blamed by
the previous configuration. An elevated component is a component that is mapped to a
more precise contract in the successor configuration than in the predecessor. The elevated
component may increase its contract precision by only one step from those listed in the con-
tract map. An increase in precision of more than one step or of more than one component is
not valid in a blame trail. Thus blame trails consist of a sequence of steps with one elevated
component per step, thereby forming a path through the lattice. Figure 4.5 illustrates the
blame trail followed in the Sieve program example from section 4.1 in these terms.
Formally, we define the blame shifting procedure as a mode of the rational programmer.
There is one wrinkle in this definition that the prior section’s example does not cover. It

may be that none of the contracts in some debugging scenario are strong enough for the

43

Trail end

primes - maXyrines
sift ~ maXgist
sieve ~ MaXgjeve

Blame sift
sift elevated

primes ~ maXprines

sift ~ typesgist

sieve - MaXsieve 4\

Blame siev% sieve elevated
\primes elevated

primes - mMaXprines
> | sift - typesgis
/ sieve ~ typeSsiee
I//

Blame primes
primes ~ types, ines Debugging
sift - typesgis f
scenario

1
1
1
i
sieve +~ typeSgieve
A

'

I

1
successor

predecessor----~

Figure 4.5: Blame trail for the Sieve program.

44

contract system to detect the problem, and so running the scenario results in the program
producing an error from some runtime safety check rather than a contract violation error
(which has blame). In such situations, all that a programmer receives alongside the error
message (e.g. “division by zero”) is a stacktrace. The stacktrace is of a fundamentally
different nature than blame—it points to a sequence of all the components that happen to
be on the call stack of the program when it crashed—but it can be interpreted similarly (and
typically is, in practice) as pointers for where to look to debug the problem. Thus the blame
shifting procedure in our definition can fall back on this interpretation of the stacktrace in

the absence of blame, in order to make progress.

Mode definition: Blame
A Blame trail is a sequence of configurations s, ...s, of a program P such that
forall0<i<n-—1,s; < sjq and

{blame[P, s;]} if (the program for) s; produces a contract violation
elevated [[s;11, si] =

{exception [P, s;]} otherwise

where
1. blame[P, s] denotes the component (of P) that the contract violation from
running s blames, and

2. exception [P, s] denotes the first component in the stacktrace produced by s

that can be elevated.

45

4.4 The Experiment in Precise Terms

4.4.1 Success, Failure, and Usefulness

Blame trails as defined in 4.3.2 terminate when they cannot be extended any further, i.e.
the component identified by the error in the last configuration cannot be elevated. Once
terminated, trails can be either successful or failing depending on whether the component

identified by that last error contains the bug or not.

Definition: A blame trail s, ...s, in a lattice L[P] for which component M con-
tains a bug is successful iff it cannot be extended further and error[P, s,] = M
where error [P, s,] is the component identified either by blame or exception in-

formation produced by s,,.

A blame trail sy, .., s, in a lattice L] P] is failing iff it cannot be extended further

and error [P, s,] # M.

While a successful blame trail indicates that it pays off to heed blame—when available—
while debugging a scenario, it does not answer whether blame is a critical piece of the rational
programmer’s process. For instance, contract violations carry stacktrace information as well
as blame, so ignoring the blame and using the simpler stacktrace information alone might
be as useful as using blame. In other words, to understand the importance of blame we need
to compare blame trails against a corresponding mode that ignores blame information. We

therefore define a second mode of the rational programmer that uses exception information

46

only to establish a baseline.

Mode definition: Exceptions
An exception trail is a sequence of configurations s, ...s, of a program P such

that for all 0 < i <n—1, s; < s;41 and elevated [s;11, s;] = {exception [P, s;]}.

With this baseline, we define the usefulness of blame by comparing between blame trails

and exception trails that start at the same scenario sg.

Definition: Given a program P and a debugging scenario so in L[P], blame is
more useful than exceptions for debugging sqo iff the blame trail that starts at s

15 successful while the exception trail that starts at sy is failing.

4.4.2 Debugging Effort

In addition to success and failure information for the different modes of the rational program-
mer, there is a different kind of information about trails that we can inspect to understand the
blame shifting process. The length of the trails, dubbed debugging effort, offers a secondary
metric of comparison to usefulness. For instance, effort can shed light on the difference be-
tween two modes’ trails which start at the same debugging scenario and both succeed—one
may reach success faster, which is obviously preferable.

Besides serving as a kind of tie-breaking comparison, measuring effort can also reveal
whether the observed effectiveness of the rational programmer is an artifact of pure chance.
In particular, the effort distribution for one mode can be compared with that of the random
mode that ignores error information entirely and instead selects which component to elevate
randomly. Since each mutant has a finite number of components, random mode trails are

always successful. However, the random mode’s effort distribution should be thinly spread

47

out across the range of trail lengths possible in the set of debugging scenarios. In contrast,
the effort distribution of other modes should be quite different if their effectiveness is not

coincidental.

4.4.3 Experimental Questions

Blame trails and their properties provide the tools for a rigorous examination of blame. In
terms of the kinds of questions outlined in table 3.1 (page 27), this examination collects data
to answer questions corresponding to the first and third columns. The second column is not
relevant here, because there is only one technique under evaluation: blame from contracts.
In the first column, which in this context refers to questions about whether blame is

better than its baseline, there are two related flavors of experimental question:
1 Is blame information useful?
()2 How much more (or less) useful is blame compared to exception information?

()1 has a positive answer if there are any trails for which blame is more useful than
exceptions. More useful here refers to the definition in section 4.3.2. Such trails constitute
evidence that there exist interesting scenarios that the rational programmer manages to
debug because of blame information. Hence, answering it is a simple matter of checking for
the existence of any such a trail.

Answering ()2, however, requires a more nuanced head-to-head comparison of the per-
centage of scenarios where blame is more useful than exceptions and the inverse. From that
comparison a judgment of degree can then be made. However, the two proportions may be
similar, in which case the answer to () may not be clear cut.

Drawing from the third column of table 3.1, with the debugging effort metric, provides a

48

way to break ties in (). In particular, if the proportion of trails where blame is more useful
than exceptions is similar to that where exceptions are more useful than blame, blame may
still be useful if it reduces the number of modules the rational programmer needs to inspect
in order to locate a bug.

In total, the process to answer the experimental questions boils down to the following

plan:
1. Create a large and diverse corpus of debugging scenarios;
2. Collect the trails for each mode of the rational programmer;

3. Compare the successes and failures of each mode’s trails.

4.5 Obtaining Debugging Scenarios for Contracts

Putting the rational programmer experiment described in the prior section to work in the con-
text of Racket demands several steps. Foremost of those is obtaining debugging scenarios—
i.e. buggy programs with contract maps—on which to test the rational programmer.
Following the insight of chapter 3, we use mutation to inject synthetic bugs in correct
programs. Using mutation, the process entails generating many mutants and turning those
into debugging scenarios. The process must start with a suitable collection of representative
programs, with contract maps (sec. 4.5.1). Then, we apply mutators to inject synthetic
faults (sec. 4.5.2). That unfortunately results in too many debugging scenarios to test them
all, so we sample the space (sec. 4.5.3). As a reference along the way, figure 4.6 provides an

overview of the resulting experimental process.

49

e v success AN -
-7 Tl
e X failure \1 S
e S
e f AN
< N cee
. ¥ -
N 1 e
AR / P
S t Pae
"~ _ debugging t -7

debugging -~

~~scenario 1 - B
N scenario 2

EEEEREN, s n e
s e
mutant
Legend
mutator A mutator Z [] = component

| | | | | | | | D = buggy component

@ = component with Nth
contract from map

gtp benchmark [] = blamed component

t

Figure 4.6: Experiment overview

20

Table 4.1: Benchmarks summary

program | description (author) features exercised

dungeon | An imperative program that generates floor | lists, structs, first-class
maps for an RPG game. (Vincent St-Amour) | classes, objects, vectors,

mutable hashes

forth An interpreter for the Forth programming | lists, classes, objects, lists,
language using the object-oriented command | ho functions
pattern. (Ben Greenman)

kcfa A functional implementation of a control | structs, lists, hashes, sets
flow analysis for the lambda calculus. (Matt
Might)

mbta An imperative, object-oriented knowledge | lists, classes, objects, hashes
base that answers queries about the Boston
transit system. (Matthias Felleisen)

morsecode| An imperative implementation of the Leven- | lists, vectors, hashes, ho
shtein distance algorithm plus some Morse | functions
coding. (Neil Van Dyke and John Clements)

sieve Defines a simple stream data type and uses | structs, lists
it to implement the Sieve of Eratosthenes.
(Ben Greenman)

snake A functional implementation of the classic | structs, lists

Snake game using basic recursive list process-
ing. (David Van Horn)

o1

Table 4.2: Summary of mutators

name description example
constant swaps a constant with a similar value | 0 — 1
arithmetic | swaps arithmetic operators + = -
relational | swaps relational operators < — <=
logical swaps logical operators and — or
conditional | negates conditional test expressions (if (=x0) t e)
— (if (not (= x 0)) t e)
statement deletes expressions from sequences (begin x y z)
— (begin x z)
argument swaps function argument order (f xy)
— (f y x)
hide-method | hides public methods (class object?
(define/public (m x)
x))
— (class object,
(define/private (m x)
x))

4.5.1 Starting Programs from the GTP suite

We begin with a set of seven programs from the gradual typing performance benchmarks
of Greenman [2023|, Greenman, Takikawa, et al. [2019], and Takikawa, Feltey, et al. [2016],
selected from the full set of twenty to representatively capture the diversity of their features.
Some of those programs are highly imperative, some are functional, and others follow an
object-oriented design. Furthermore, the programs combine a wide range of Racket con-
structs such as first class functions, classes, objects, and mutable data. These programs
therefore exercise a correspondingly diverse set of Racket’s contract system features. Each
benchmark comes with an included driver that runs the program on pre-determined inputs,
which do a good job of covering the programs; according to Racket’s coverage tool, the inputs

achieve at least 90% expression-coverage. Table 4.1 summarizes the choice of benchmarks.

52

For this experiment, we define components to be the modules of the benchmarks. With
this definition, the benchmarks provide configuration lattices ranging in size from 9 con-
figurations to over 65,000. Note. This is a different choice than Lazarek, A. King, et al.
[2020], who treat top-level definitions as components, for two reasons. First of all, Racket
encourages programmers to treat modules as components, and Racket’s contract system is
largely designed around that perspective. Second, modules are the more standard choice
among Racket programmers.

Finally, we construct the contract maps manually with three levels of precision per com-
ponent. The first level, none, is the trivial correctness property that holds for any compo-
nent; we have implemented it using Racket’s any/c, the contract that accepts all values.
The second level, type, captures type-like properties. For this level, since the programs
originate from Typed Racket’s performance evaluation benchmark suite, we have translated
the Typed Racket types of their definitions into contracts. The third level, max, aims for
partial functional correctness; it consists of the most precise specification we can express
for each definition using Racket’s contract DSL of combinators and predicates, and without
duplicating the component’s implementation as much as possible.

The max level of contracts aims to capture the strongest specification that satisfies some
reasonable constraints or criteria. As such, this level does not aim to be the maximum
precision contract that can possibly be implemented, nor do we require them to be so. For
instance, we did not implement any contracts that use state to monitor extra-functional
properties such as how many times a function is invoked. Instead, our selection of contract
levels reflects our effort to understand blame in Racket when programmers take full advan-
tage of its contract DSL to express functional specifications, and adhere to common-sense

engineering and design principles. Avoiding duplication of the specified component’s imple-

23

mentation is the most prominent such principle; although at one level it is a straightforward
way to specify exactly the original, assumed-correct behavior of the component, especially
when that behavior is highly nuanced, this kind of repetition is problematic and unreal-
istic. Such contracts offer no practical value in the real-world for bug detection—because
bugs in the implementation end up in the spec—and the duplication of code creates obvious
maintenance problems.

It is worth noting, however, that it is not always possible for a programmer to write a
sufficiently precise contract to detect a problem without re-structuring their program. That
said, for this study, we elect to consider how we can increase the precision of contracts while
leaving the program proper intact. In other words, we examine the relation between blame
and bugs within the margins of the expressive power of a contract system and a fixed set of

programs.

4.5.2 Injecting Bugs with Mutation

Following section 3.3, we draw inspiration from mutation testing to inject synthetic bugs in
the GTP suite. This provides a convenient and partially automatic method to obtain a large
corpus of debugging scenarios, where each has a single known bug. In this experiment, we
use a standard set of mutation operators from the mutation testing literature, summarized
in table 4.2. Those operators produce thousands of mutant programs that may make a
suitable starting point for the experiment. The determining question is whether the mutant

programs capture an interesting and diverse set of bugs.

o4

mbta morsecode kefa
ettt et +

07 B

arithmetic'uprswap«\»

buuleanruprswap-ﬂ

class:publicltyD

constant-swap

-

comparison-op-swap

negate'cunmtiunal{:

begin-drop

position-swap

L A R A R

10 20 30 40 50

T

sieve dungeon snake
"t
arithmetic-op-swap

—

boolean-op-swap:

class:publicity

constant-swap

comparison-op-swap

negate-conditional

begin-drop

|

position-swap |
S s e |
30 40 50

Rl I G |

=
o
8]
=}

0 10 20 30 40

5]
=}
-
o
%]
S
[
S
=
5
v
=

Each plot shows a breakdown of interesting mutants by mutator. Each mutator corresponds
to a bar representing the number of interesting mutants generated by that mutator. The
counts are cut off at 50, so those bars reaching the edge of the plot represent 50 or more
interesting mutants.

Figure 4.7: Breakdown of interesting mutants by mutator, per benchmark.

5}

4.5.2.1 Are These Mutators Interesting?

While mutation is well-known for producing huge numbers of mutants, a meaningful experi-
ment requires mutants that are interesting. A mutation is interesting if running the mutant
with all contracts removed raises a run-time error. Mutants that fail to meet this condition
may not contain a bug at all (equivalent mutants); mutants that do, however, clearly change
the behavior of the program, since all GTP benchmarks normally complete without errors.
Thus, this condition provides a convenient filter to ensure that the experiment only involves
mutants that we are certain change program behavior.

Of course, the filter is a conservative one, also removing from consideration mutants that
change program behavior without causing it to crash. Since contracts may be able to detect
such mutants (and raise a contract violation), this choice leaves some portion of decidably
non-equivalent mutants off the table for the experiment. Section 4.7 quantifies and discusses
what this choice means for interpreting the experimental results.

The definition of interesting mutants creates a powerful filter. All together, the listed
mutators produce 3,329 mutants, of which 360 are interesting; see figure 4.7 for an overview.
Broken down by benchmark, the mutators produce at least 50 interesting mutants for every
benchmark (except sieve, which is quite small), and these mutants originate from at least
three different mutators per benchmark. Thus, the mutators result in a sizable and diverse
population of scenarios for every benchmark. Furthermore, every mutator contributes inter-
esting mutants in at least one benchmark. Some mutators apply only to a few benchmarks,
because they target rather specific features; for instance, the class-focused mutators are

mainly effective in a program that makes extensive use of object-oriented features.

26

4.5.3 Sampling to make the experiment feasible

When using mutation to obtain debugging scenarios, the configuration lattices and number of
mutants can both become so large as to make the full experiment computationally infeasible.
With 360 interesting mutants and up to dozens of components in each, mutation provides
nearly 500,000 interesting debugging scenarios for this experiment—far too many to try them
all in a reasonable time frame. Following section 3.3, we use stratified random sampling of
debugging scenarios to make the experiment feasible.

With the specifics of this experiment in hand, we can describe stratified random sampling
in concrete terms. Figure 4.8 depicts an overview of the groups we use to stratify the full
population of debugging scenarios described thus far. The first level of grouping that arises
naturally from mutation is to group all of the debugging scenarios generated from the same
source program. Then, within those program-groups, we group by the mutator that injected
each scenario’s bug. Within those mutator-groups, we finally group by mutant, making each
final group the set of all scenarios in the configuration lattice for a given mutant. We perform
standard uniform random sampling within those final groups.

Random sampling makes the experiment computationally much lighter, but it requires
extra care for comparing the results across modes. Since the results for each mode now gen-
eralize with some confidence and margin of error to the entire corpus, directly comparing the
aggregate results of two modes is complex to reason about. Instead, a simpler to understand
and statistically sound approach is to standardize the sample of debugging scenarios (i.e.
select the same sample for all modes) and make the desired comparison on a per-scenario
basis. The methods of answering the experimental questions described in the prior section
capture this approach.

Concretely in terms of this experiment, we perform stratified random sampling with one

Scenario corpus, from all
programs and mutants

Source program 1

Mutator A

Mutant 1 Mutant 2 v
,ﬁ ,ﬁ
‘E?’ ‘E?’

Figure 4.8: Stratification groups for stratified random sampling when using mutation.

57

o8

level of stratification across the population of scenarios corresponding to the 360 interesting
mutants, grouping scenarios by mutant. Within each group we sample one hundred de-
bugging scenarios to explore, and thereby obtain a sample corpus of over 45,000 debugging
scenarios. This sample size is enough to obtain a confidence of 0.95 (with margin of error
0.05) about the answers to our experimental questions. See appendix A for the details of the
calculations for the sufficient size of samples for this estimate. Exploring more of the lattice
would yield higher confidence in the generalizability of our results to the entire population of
mutants’ debugging scenarios, but our choice of random sample size reflects the (informal)

standard practice of estimating results to 95 percent or higher confidence.

4.6 Results

We ran the experiment giving each debugging scenario a 10 minute timeout and a 6 GB
memory limit. In aggregate, following all trails required thousands of compute hours.

Figure 4.9 shows the high level success rate estimates of each rational programmer mode
for the debugging scenarios of the experiment. These success rates illustrate points that
form the basis of the rest of our analysis. The blame and stack modes have roughly the same
rate of success at just under 90% of the scenarios, and the null mode has a slightly higher
rate at just over 90%. While this may at first glance seem surprising, an understanding of
the causes of failed trails for each of the modes clarifies these results.

In the blame mode, the rational programmer fails to locate the bug in just under 5,000
scenarios, for two reasons. The first reason is at first glance straightforward: running the
scenario results in an exception from language safety checks rather than blame. In the
absence of blame, the blame mode falls back on stacktrace information to make progress. In

these failing scenarios, however, the stack consists entirely of components already configured

29

90T
80—+

70+
60+
50+
40+
30+

% of scenarios successful

20—+
10+

@ o
=~ ¥ o >
stjq,Q Q;’O

The upper bound margin of error is
0.03%.

Figure 4.9: Percentage rates of success.
with max-level contracts. The rational programmer therefore has no indication of where to
look next, so it is stuck. Unhelpful stack traces account for just over 3,800 of the blame
mode’s failing trails.

The remaining roughly 1,100 failures, on the other hand, all correspond to one underlying
problem with Racket’s contract system. In particular, all of the corresponding mutants have
bugs which affect the order in which different components of the dungeon GTP benchmark
call a function that produces a stream of numbers; the order of such calls turns out to be
critical for the functional correctness of the program. For the sake of coherence, we defer an
in-depth discussion of the problem to subsection 4.6.1; the interested reader can either jump
to the subsection and then return, or continue to finish the overview of the results before
digging into the causes of problems like this one.

Turning now to the other two modes, it is straightforward to describe the reasons for their
failures. All of the stack mode’s approximately 5,100 failures are due to unhelpful stack traces
of the same nature as the blame mode’s first 3,800—the additional roughly 1,200 are trails

where blame was available but ignored. And the null mode’s approximately 2,500 failures

60

are captured also primarily by unhelpful stack traces in the final (top) configuration, as well
as 600 trails that are thwarted by the aforementioned problem in the dungeon benchmark,
and 131 trails that hit resource limits.

The prevalence of unhelpful stack traces thwarting even the null mode of the rational
programmer in these results suggests that a significant number of the mutants in our corpus
have bugs that the contract system does not detect at all, even in the topmost configuration.
Indeed, that is the case for roughly two-thirds of the mutants; correspondingly, roughly
two-thirds of even the blame mode’s successful trails see no blame at all.

There are two plausible reasons why a mutant may cause a runtime error but not a
contract violation: one is that these mutations cause the programs to crash before they
affect any inter-module interactions mediated by contracts, and the other is that our max-
level contracts are too weak to detect them. The first case accounts for 2,200 of the failing
null mode trails. Closer investigation of the remaining trail failures reveals that they all
belong to two mutants, which exhibit an interesting problem in the formulation of contracts
that are strong enough to shift blame in the GTP benchmark mbta. That challenge is
summarized in subsection 4.6.2.

In order to dig into the actual effect of blame information, the rest of the section will
drill down to the one-third of the mutants (corresponding to 13,800 trails) for which the
contract system is able to detect the bug. It is worth noting that the original iteration
of this experiment [Lazarek, A. King, et al. 2020] did not identify these mutants, despite
using essentially the same set of mutators, programs, and contracts, because the scenario
construction of that experiment filtered them out a-priori; interesting mutants were defined
there to be only those for which the top configuration has blame, as opposed to any runtime

error.

Blame
10
— 94 -
&
2 0l ’
] 71 1
=~
g o ’
2 57]
g 4t]
©
5 3t]
S 2l]
Gy
] 1+ i
X
0__ i
z 1 —
3 ol]
=1
2 37 1
L a4l i
8
& 57]
S 6 -
5 8]]
X ol]
10 = =
@ S
&
Q,x@& Q»oo
@
<k

The plot compares the blame mode (named above the plot) to every other mode; in this case,
the only other interesting mode is the exceptions mode (see chapters 5 and 6 for the general case
of this figure structure). The green bars above 0 depict the estimated percentage of scenarios
where the named mode has more useful information than the other. The red bars below 0
conversely depict the estimated percentage where the named mode has less useful information.
The upper bound margin of error is 0.11%.

Figure 4.10: Head to head usefulness comparisons.

61

62

Figure 4.10 gives a head-to-head account of the success rates of the modes to shed light
on the comparative utility of the sources of error information available to the rational pro-
grammer. Specifically, the plot compares the estimated percentage of scenarios where the
named mode uses more (and less) useful information than each mode named along the x-axis;
that comparison illustrates that in about 4% of the scenarios, blame provides more useful
information than stack traces, but in another (different) roughly 6% of the scenarios, the
inverse is true.

These results offer answers to the experimental questions from section 4.4.3. Concretely,
we can answer question ()7 in the affirmative: blame is useful. There are hundreds of
scenarios where the blame mode improves over the stack mode. That said, there is a similar
proportion of scenarios where the inverse is the case, all due to Racket’s missing support for
protocols.

The answer to ()2 however, is not clearly affirmative based on the data of figure 4.10. The
proportion of scenarios where blame improves over the stack mode is similar to the inverse.
In this situation, the length of successful trails helps to clear some of that uncertainty.
Figure 4.11 depicts the distribution of trail lengths for each mode, where each bar is also
colored according to the proportion of successful and failing trails. There are two main
takeaways from this data. The first is that)2 can be answered slightly in favor of blame,
since it has a higher concentration of mass on shorter trails (of length 2 or less). That
said, even here the answer is not entirely clear, because the stack mode does have significant
portions of trails for which it succeeds in 0 or 1 steps while the blame mode has no such trails.
The second takeaway from figure 4.11 is that both blame and stack information clearly have
non-random influence on the blame shifting process, because the distribution of trail lengths

for each differ from that of the Random mode.

% of trails with length

Random

100
o 80+
)

o

o
2
< 60T
p=t

2
A
‘s 40+
B
Gy

o
R 50l

2

0 789101112131415161718

Blame Exceptions
100 100
80+ - 80+
)
o))
=
2
60+ < 60—+
] E
2
40+ ‘® 40+
B
Gy
o
20+ = 20+
0 S e
012345678910 012 3456 78 910

Each plot depicts the distribution of trail lengths for the mode named above. The
proportion of successful trails (bottom of each stacked bar) and failed trails (top) are
also indicated by color (green for success and red for failure). The upper bound
margin of error is 0.24%.

Figure 4.11: Trail length distributions per mode.

63

64

4.6.1 A Weakness of Racket: Missing Protocol Contracts

To make the discussion concrete, consider the simplified program inspired by dungeon in
figure 4.12. Its next-number! function produces numbers from a pre-defined sequence and
functions asks-for-2-small-numbers and asks-for-1-small-number use next-number!’s
results to call small-number-please. The latter requires that its arguments are less than 10,
and it has a contract that captures this constraint. The first function (asks-for-2-small-
numbers) obtains numbers from the sequence and passes them to small-number-please in
a loop that iterates twice; it does not verify that the numbers are appropriately sized. The
second function (asks-for-1-small-number) does the same but only once. The original
version of the program completes without issue because the sequence of numbers is con-
structed to start with three small numbers. asks-for-2-small-numbers provides the first
two of those to small-number-please, and asks-for-1-small-number provides the third.

However, the mutation noted in asks-for-2-small-numbers causes a failure. It changes
the number of iterations of the loop from 2 to 3, resulting in asks-for-2-small-numbers
obtaining all three small numbers from the sequence. As a result, asks-for-1-small-
number receives 30 from next-number! and the contract of small-number-please blames
asks-for-1-small-number. The bug, however, is in asks-for-2-small-numbers, and
none of Racket’s contract combinators can be used to create a contract for asks-for-
1-small-number that shifts the blame to asks-for-2-small-numbers. Hence, the blame
settles on asks-for-1-small-number despite it not being the faulty component, causing the
trail to fail.

In effect, the program assumes a protocol specifying the number of calls of next-number!,
and Racket’s contract combinators cannot express that protocol. While it is possible to write

contracts that communicate using shared state to enforce the protocol, Racket’s combinators

example : racket

(define numbers (1 2 3 30))

(define (next-number!)
(define n (first numbers))
(set! numbers (rest numbers))
n)

(define/component (small-number-please n)
((<=/c 10) . -> . void?)
#| omitted |#)

(define (asks-for-2-small-numbers)
(for ([i (in-range 2 #| mutate to 3 [#)])
(small-number-please (next-number!))))

(define (asks-for-1-small-number)
(small-number-please (next-number!)))

(asks-for-2-small-numbers)
(asks-for-1-small-number)

Figure 4.12: Simple program inspired by dungeon that defeats blame shifting.

65

66

provide no support for specifying such properties. As a result, the bug evades the contracts
of the components of dungeon and eventually changes the functional behavior of some com-
ponent unrelated to the bug. The contracts therefore do detect the deviation from functional

correctness, but the contract system cannot trace it back to the faulty component.

4.6.2 Buggy or Ill-Structured Benchmarks?

The mbta benchmark exhibits particular behavior that poses a challenge for this experiment.
At a high level, the benchmark exhibits irregular behavior in its output, and the structure
of the benchmark prevents formulating contracts that both satisfy the constraints described
in section 4.5.1 and are precise enough to fully describe that behavior. In detail, mbta
(see table 4.1) generates paths telling a user how to take the various MBTA subway lines
to travel from a starting station to a destination station. To make the path more easily
interpretable, the program adds commentary explicitly identifying points in the path where
the user must switch train lines. Figure 4.13 illustrates an example path containing this
kind of commentary. An intuitive and simple contract describing the correctness of such
paths specifies (among other things) that there must be such a message between all points
in the path where the specific train line changes. The actual implementation of mbta fails
to add this commentary, however, or adds apparently spurious commentary, under certain
edge conditions. Critically, capturing those conditions requires essentially reproducing the
private internal code that produces the commentary. As a result, mbta fails to live up to
the intuitive contract, and a contract that is precise enough to specify its actual behavior
violates our design constraints—namely, the requirement that contracts do not reproduce
the computation they specify. The contracts we use for the experiment resolve this tension

by specifying the commentary behavior at a high level, but weakly enough to be satisfied by

67

station A, take blue
station B, take blue
——- switch from blue to red
station C, take red

Figure 4.13: The shape of paths generated by mbta.

the benchmark’s original behavior. Unfortunately a consequence of this weak specification
is that there is a class of mutants that change the commentary behavior of mbta, causing
test failures, but no amount of contract strengthening allows blame shifting to locate the
injected bugs.

There are at least two reasonable perspectives for interpreting this problem. One in-
terpretation is that mbta exhibits a problematic structure for thorough specification with
contracts, where the behavior of a component may not support a high-level description of
correctness independent from its implementation. That is, specifying the correctness of some
components may truly demand reproducing some or much of the component’s implementa-
tion itself, and/or restructuring the original program to expose private details. Because this
kind of duplication and exposure is obviously problematic (see the end of sec. 4.5.1), the de-
mand for it may be an indication that the component itself is poorly designed; if there is no
high level, self-contained description of its correctness, then perhaps it represents a failure to
design a good abstraction. In the case of mbta in particular, the complexity and irregularity
of the commentary behavior, as well as the restrictiveness of the interface by which it is
exposed to the rest of the program, support this perspective. In more detail, mbta’s anno-
tation behavior is exposed to the program by a component with a bare-bones interface that
transforms strings (start and destination station names) to a string (describing the path)—

using the private, internal representation of the subway graph to compute the path and then

68

add appropriate annotations. That component is wrapped, however, in another one that
also maps strings to strings by delegating to the first component, creating a scenario where
the outer component lacks the information necessary to formulate a contract strong enough
to support blame shifting without duplicating the inaccessible annotation computation. In
simpler cases than mbta, however, this pattern of duplication between contracts and code for
small and simple components may also indicate an opportunity for improvement in contract
system design, in creating a way for contracts to be specified as part of or integrated with a
component’s implementation in a way that minimizes duplication.

Another interpretation of the problem is that the irregularity in mbta represents a bug
in the program. One could reasonably argue that the program ought to live up to the
aforementioned intuitive contract, and the fact that it doesn’t directly indicates a problem
with the program. From this perspective, the choice to manually write contracts for the
benchmark programs provides an unforeseen additional benefit: the process serves as a
check for the correctness of the original programs (which the experiment assumes). Indeed,
this perspective could just as well be applied to the protocol problem described in the prior
section; a reasonable judgment of figure 4.12’s program (and the original benchmark) is that
the users of next-number! are buggy because they fail to check or ensure the appropriateness
of the number they supply to small-number-please. Ultimately, whether these problems
indicate bugs or something else depends on perspective, but the discovery of these potential-
bugs is in many ways a validation of the experimental design as a whole. This is a useful
check in light of the experimental design’s assumption that mutated programs contain only
a single bug. Indeed, blame shifting in the context of multiple bugs cannot be expected to

locate a particular one of those bugs, for blame may reasonably settle on any one of them.

69

4.7 Lessons Learned

The experimental results suggest a few takeaways about the value of blame in Racket’s
contract system. First, blame is useful for locating bugs via the process of blame shifting.
However, plain stack trace information appears to be just as useful on the whole.

That said, the causes of failure for the blame mode of the rational programmer bring up
a useful direction for improvement of Racket’s contract system. In particular, the failures
exemplify an expressiveness problem for Racket contracts. Racket’s contract combinators
cannot, express protocols like the one identified in Dungeon, even though they are quite
common in real programs. For example, file system APIs implicitly come with protocols
about when operations can be applied to a file, and in what order: an open file cannot be re-
opened, a closed file cannot be read or written to, and so on. Protocols do not only describe
temporal properties, but also other restrictions on the proper use of components, such as
security. Thus, protocols are a natural extension for Racket’s contract system. In general,
there have been some steps towards protocol contracts [Dimoulas, New, et al. 2016; Disney
et al. 2011; Heidegger et al. 2012; Moore, Dimoulas, Findler, et al. 2016; Moore, Dimoulas,
D. King, et al. 2014; Scholliers et al. 2015], including recent work adding them to Racket in

the time since the original publication of this experiment [Moy and Felleisen 2023].

4.7.1 Threats to Validity

The validity of these conclusions are subject to two categories of threats. The first category
of threats concern the experimental setup. Some of those are described in preceding sections,
namely: (i) the GTP programs we use may not be truly representative of all programs in the

wild; (ii) our bugs may not be truly representative of all mistakes programmers make; and

70

(iii) our manually-written selection of contracts for the experiment may not be representative
of all contracts that programmers write. While the design of the experiment attempts
to mitigate these threats with the careful design and analysis of the scenario generation
(sec. 4.5), the reader must keep them in mind when drawing conclusions.

The second category consists of external threats due to the philosophical underpinnings
of the experimental design. Most fundamentally, the rational programmer itself does not

necessarily reflect the way real programmers use contracts and blame.

4.7.2 Threat: The Rational Programmer is not a Human Programmer

Programming language researchers know quite well that despite their simplified nature, mod-
els have an illuminating power. Consider Standard ML or R6RS Scheme, two languages with
highly rigorous, extensive formal definitions [Milner, Harper, et al. 1998; Milner, Tofte, et al.
1990; Sperber et al. 2009]. Each model simplifies the language to an extremely small kernel,
excluding most of what programmers find useful (e.g., the libraries, the runtime). Yet, many
theory papers use models like this to prove theorems about their designs and thus guide lan-
guage evolution (think Classic Java [Flatt et al. 1998], Featherweight Java [Igarashi, Pierce,
et al. 2001]). Similarly, empirical PL research has also relied on highly simplified mental
models of program execution for a long time. As Mytkowicz et al. [2009] report, ignorance
of these simplifications can produce wrong data—and did so for decades. Despite this prob-
lem, the simplistic model acted as a compass that helped compiler writers improve their
product substantially over the same time period.

Like such models, the rational programmer is a simplified one. While the rational pro-
grammer experiment assumes that a programmer takes all information into account and

sticks to a well-defined, possibly costly process, a human programmer may make guesses,

71

follow hunches, and take shortcuts. Hence, the conclusions from the rational-programmer
investigation may not match the experience of working programmers. Further research that
goes beyond the scope of this thesis is necessary to establish a connection between the be-
havior of rational and human programmers.

That said, the behavioral simplifications of the rational programmer are analogous to the
strategic simplifications that theoretical and practical models make, and like those, they are
necessary to make the rational programmer experiment feasible. Despite all simplifications,
section 4.6 demonstrates that the rational programmer method produces results that offer a
valuable lens for the community to understand some pragmatic aspects of the semantics of

blame and contracts, and it does so at scale and in a quantifiable manner.

4.8 Summary

This chapter describes a straightforward application of the rational programmer framework
to evaluate blame in Racket’s contract system. The results of that experiment support three
different conclusions. First, they confirm that blame provides useful information for locating
bugs via blame shifting. Second, they highlight a key weakness of Racket’s current contract
system (protocols) and emphasize the value of addressing it. Finally, they cast doubt on
the value of blame overall, because stack trace information appears to be just as useful for
locating bugs.

As a first application of the rational programmer framework, these results are promising.
They offer new insights into the pragmatics of contracts in the context of debugging. A next
natural question is how the method applies to the pragmatics of debugging in the neighbor-
ing field of gradual typing, which employs a range of checking techniques—some based on

contracts, and others completely different. The next chapter answers this question.

72

CHAPTER 5
EXPERIMENT 2: GRADUAL TYPES AND TYPE-LEVEL BUGS IN CODE

This chapter demonstrates how to instantiate the rational programmer framework to eval-
uate the pragmatics of gradual typing in the context of debugging. In this setting, there
are multiple competing semantics for the language, each providing its own kind of blame
or other debugging information, which we compare head-to-head. Because several of the
ingredients for this experiment are essentially the same as the prior chapter, this chapter
focuses on describing the differences and new challenges involved in this one. The chapter
is an adaptation of Lazarek, Greenman, et al. [2021] and joint work with Ben Greenman,
Matthias Felleisen, and Christos Dimoulas.

The chapter begins with the essential background on gradual types (sec. 5.1) before
describing the key challenges associated with this new setting (sec. 5.2), instantiating the
pieces of the framework (secs. 5.3-5.6), describing the results of the experiment (sec. 5.7),

and discussing them (secs. 5.8-5.9).

5.1 Background: Gradual Types

Gradual typing is an approach to merging the worlds of static and dynamic typing in the
hopes of getting the best of both worlds. In the world of static typing, programmers annotate
their program with type annotations describing the type of data it uses and produces. Then,
a type checker checks that the annotated program does not have any inconsistencies, such
as applying a function with the type Int — Int to a value of type String, and rejects

any program it cannot prove to be consistent. Thus the annotations serve as a form of

73

documentation that is directly tied to the code, and the type checker provides a measure of
early error detection before the program runs. Furthermore, IDEs and compilers can leverage
the type information from annotations to provide improved tooling (like type-directed code
completion) and optimizations (based on knowledge of types’ memory representation [Chou
et al. 2018; Dillig et al. 2011; Essertel et al. 2019; Lattner and Adve 2005; McMichen et al.
2024; Walker and Morrisett 2000; Wang et al. 2018]).

Despite the benefits of types, dynamically-typed languages remain extremely popular
among programmers for a variety of reasons. The restrictiveness that makes static type
checking useful also rules out many correct programs, simply because the type checker isn’t
sophisticated enough to prove their consistency. Dynamic languages allow programmers
the freedom to write such correct programs without worrying about how smart the type
checker is. Along the same lines, dynamic languages allow for faster prototyping because
programmers need not satisfy the type checker at every step of the way. This flexibility can
also make extending existing code easier for the same reason.

Gradual typing was born from a recognition that both static and dynamic typing offer
different kinds of benefits, so it could be useful to have the best of both worlds [Flanagan
2006; Gray et al. 2005; Knowles and Flanagan 2010; Matthews and Findler 2007, 2009; J. G.
Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006].

Gradual typing attempts to achieve this fusion by allowing programmers to partially an-
notate programs, mixing and matching statically and dynamically typed code as they please.
One approach to make this a reality is to make the type checker more flexible. Specifically,
gradual type checkers are augmented to allow untyped code, assigning it a special “dynamic”
type, and to optimistically allow the interactions of statically typed code with dynamic code

by making the dynamic type compatible with all other types. For instance, a gradual type

74

checker would allow a function of type Int — Int to be applied to a dynamically-typed
value, because it’s possible that the dynamically-typed value will be an integer. Thus the
gradual type checker optimistically allows untyped code to mix with typed code. An alterna-
tive approach, that of Typed Racket [Tobin-Hochstadt and Felleisen 2008], does not support
interactions via a dynamic type, but instead requires developers to choose between static
and dynamic types at the granularity of whole modules; typed modules can import untyped
code via explicit developer annotations describing its expected type, which the type checker
trusts.

Type systems are meant to preclude certain classes of mistakes, however, such as applying
a function to values of the wrong type. Indeed, many of the benefits of static typing arise
specifically from this preclusion (e.g. early error detection, optimization), so the gradual-
type-checker’s optimistic judgments about untyped code may benefit from some kind of
enforcement at runtime in order to maintain the benefits of static types. In other words,
gradual programs could have checks to catch mismatches between the expectations of typed
code and the actual values it receives at runtime. By catching the mismatches with targeted
checks, the gradual type system can both protect the benefits of static types and provide
information to help the programmer locate and fix the mistake causing the mismatch.

These type-value mismatch checks can be implemented in many ways, or not at all, even
all within the same exact type system, giving rise to a multitude of different designs, called
semantics, for gradually typed languages. The various choices available affect the guarantees
available to programmers about types [Greenman and Felleisen 2018; Greenman, Felleisen,
and Dimoulas 2019], the performance of gradually typed programs [Campora, Chen, and
Walkingshaw 2018; Greenman and Felleisen 2018; Greenman and Migeed 2018; Greenman,
Takikawa, et al. 2019; Takikawa, Feltey, et al. 2016; Vitousek, J. G. Siek, et al. 2019,

5

and the debugging information available when type-value mismatches occur [Greenman,
Felleisen, and Dimoulas 2019; Vitousek, Swords, et al. 2017]. Furthermore, these various
concerns are interconnected, making it so that all of the semantics select different trade-offs
between them, and even making it potentially useful to combine semantics within a single
language [Greenman 2020].

Faced with all of the semantics for gradually typed languages, how can language designers
pick between them? Is any way of checking for type-value mismatches more useful than
others for debugging such problems? While theoretical work clearly distinguishes some of
the approaches as offering stronger guarantees and tailored information for debugging than
others, performance analyses show that those benefits come at great cost [Greenman and
Felleisen 2018; Greenman, Felleisen, and Dimoulas 2019; Takikawa, Feltey, et al. 2016]. Is
the price worth paying for the debugging benefits?

The next two subsections illustrate the major differences between the semantics from the
lens of this question, demonstrating how how each affects the error information they provide

in the face of two quite different kinds of bugs.

5.1.1 Three Flavors of Gradual Typing

In this work, we focus on the three most prominent approaches to enforcing static types in
gradual typing. These can be divided into two groups: academic and industrial. Academic
implementations of gradual typing consider the meaning of type annotations important, so
they insert dynamic checks enforcing the annotations at run time, and emphasize the safety
properties that these semantics offer. The Natural semantics translates types into contracts
protecting typed code in all interactions with untyped code (and not in the interactions of

purely typed code, since those are already checked by the type checker) [Tobin-Hochstadt

76

and Felleisen 2006]. An alternative academic semantics called Transient enforces types by
directly translating type annotations into checks in all typed code [Vitousek, Swords, et al.
2017]. Industrial implementations (e.g. Flow, Hack, or TypeScript!), on the other hand,
almost universally forego enforcement of types. These languages use the Erasure semantics,
in which the type annotations exist for best-effort type checking and IDE tooling, and the
implementation’s compiler erases the types after type checking as if they did not exist. In
addition to the differences in checking, each of these semantics offers completely different
error information to help programmers debug type-value mismatches.

The remainder of this section summarizes the differences between the Natural, Transient,
and Erasure semantics with one illustrative example using (Typed) Racket syntax.

Consider the program sketch in figure 5.1. Each box represents a module: the top bar

lists the name and whether it is using typed (blue) or untyped (red) syntax.

pack-1ib (at the top right) represents a library that provides, among others, a function
pack. The documentation says this function consumes JSON data and packages it in
an association list. In reality, though, the function returns a hash table instead of the

association list.

types (at the top left) is one of three modules that overlays types onto this library. This

specific module defines types in common to the two other typed libraries.

typed-pack-1ib (at the mid-level on the left) imports pack and re-exports it as typed-pack
asserting that it is a function that consumes JSON and returns a list associating Symbols

with Strings. In other words, it formalizes the comments in pack-1ib.

crypto-pack-1ib (at the bottom left) also imports pack and ascribes it the same type as

!See https://flow.org, https://hacklang.org, and https://www.typescriptlang.org, respectively.

https://flow.org
https://hacklang.org
https://www.typescriptlang.org

types : typed/racket

(provide Entry Entries)

(define-type Entry
(Pairof Symbol String))

(define-type Entries
(Listof Entry))

typed-pack-lib : typed/racket
(provide typed-pack)
(require types)

(require/typed pack-lib
[pack (-> JSON Entries)])

(define typed-pack pack)

crypto-pack-lib : typed/racket
(provide crypto-pack)

(require types)
(require/typed pack-1ib
[pack (-> JSON Entries)])

(: crypto-pack (-> JSON Entries))

(define (crypto-pack d)
(pack (encrypt d _ _ _)))

pack-lib : racket

(provide pack _ _ _)
(require types)
dependencies
_ and definitions
(: pack (-> JSON Entries))
(define (pack d)
;3 process JSON data and
;; package as a dictiomary
;; (association list)
(make-hash _ _ _)) ;; BUG!

client : racket

(require json)

(require typed-pack-1ib)
(reqired crypto-pack-1lib)
other dependencies

_ and definitions

;; and share securely

(define public-data
(typed-pack
(read-json
"public-records")))

(define secret-data
(crypto-pack
(read-json
"medical-records")))

_ rest of client _ _ _
;3 (length public-data)
;; (length secret-data)

Figure 5.1: One mixed-typed program, three interpretations.

;3 read data from files, pack

7

78

typed-pack-1lib. It applies the function in the definition of the exported crypto-pack

function, which encrypts its input before passing it to pack.

client (at the bottom right) uses pack indirectly. Specifically, it goes through the two inter-
mediary typed modules to use it. This setup reflects circumstances where a programmer
relies on the types in the blue modules as checked documentation but prototypes the

client in the untyped language.

The mistaken comment in pack-1ib causes a type-value mismatch, with which each of the
three semantics deals differently. As discussed briefly above, under the Natural semantics,
functions imported into and exported from typed modules are wrapped in proxies that enforce
the static type discipline with run-time checks and track responsibilities [Tobin-Hochstadt
and Felleisen 2008; Tobin-Hochstadt, Felleisen, et al. 2017]. Thus, when pack is imported
into a typed module, the run-time system checks that it is a function and wraps it in a
protective proxy, which in turn enforces the type of the function result with run-time checks.
Analogously, the run-time system wraps each exported function of a typed module such as
crypto-pack in a proxy that checks its arguments. These checks protect functions exported
from typed modules against applications to wrong arguments in untyped code.

As this analysis implies, if a return-type check fails, the problem is that the untyped
module, here pack-1ib, supplied a function that is not a match for the type ascribed by the
typed module. Hence either the type at the boundary between the two modules is wrong
or, if the programmer trusts the type, the untyped module is at fault. If the check of an
argument’s type fails, responsibility lies with client. After all, either the type it ascribes to
the argument is wrong or the argument it produces clashes with the type. Due to proxies,
Natural can easily track the boundary, type, and responsible parties that correspond to each

check. Thus, in the example of figure 5.1, as pack returns, the return-type check fails and

79

Natural blames the boundary of pack-1ib with typed-pack-1ib and crypto-pack-1lib,
respectively, for the two defines in client.

Under Transient, typed code is compiled so that all entry points to functions check their
arguments at run time and all function calls check their return values against the expected
type [Vitousek, Swords, et al. 2017]. Furthermore, Transient uses shallow checks, meaning
they inspect only the top constructor of a value [Greenman 2020]. Since retrieving a value
from within a structure (or list, array, hash table etc.) is performed via a function call, the
content of a complex value is checked on a piecemeal basis.

As a result, the call to typed-pack does not signal an error because it takes place in the
untyped client module, which is compiled in the usual manner. Because pack is called in
the crypto-pack-1ib module, Transient’s inlined checks make sure that the imported pack
is a function and that its result is a list. This last check fails in client’s call to crypto-pack.

In order to locate the corresponding boundaries for failed checks, Transient maintains a
map from values to the boundaries between typed and untyped modules that they cross, plus
the corresponding types. In the example, the map records that pack crosses from pack-1ib
to typed-pack-1lib and from pack-1ib to crypto-pack-1ib with the type that appears in
the required/typed forms in the example. Since the failed check corresponds to the return
type of pack, assuming that the type is correct, the responsible party is the source of the
two boundary crossings: pack-1lib. In general though, Transient blames more than one
boundary. In fact, the theoretical work of Greenman, Dimoulas, et al. [2023] and Greenman,
Felleisen, and Dimoulas [2019] shows that for some programs Transient constructs a blame
sequence that excludes responsible parties and includes modules irrelevant to the failing
check.

Under Erasure, the compiler checks the specified types and then discards them when

80

Table 5.1: Summary

public-data secret-data
Natural error, blaming the boundary between error, blaming the boundary between
pack-1ib and typed-pack-1lib pack-1lib and crypto-pack-1lib
Transient | no error error, blaming the boundaries between

pack-1ib and typed-pack-1lib/
pack-1lib and crypto-pack-1lib

Erasure no error* no error*
*but Erasure does signal an error on list access

it generates code. The generated code includes whatever checks the underlying language
uses for its run-time system. Hence, in the Racket code of the example, neither the call to
typed-pack nor the call to crypto-pack signals an error due to the gradual type system.
If at some later point client tries to inspect the elements of the lists that typed-pack and
crypto-pack are supposed to produce (such as in the commented code at the end), Racket’s
safety checks signal a violation and point to some place in client. The information in this
exception, plus its stack trace, may help the programmer find the source of the type-value
mismatch between the specified types of pack in the two typed modules and its actual results.

Table 5.1 summarizes the illustration. Fach cell describes the result of evaluating the

column’s definition (in client) under the row’s semantics.

5.1.1.1 Debugging with Gradual Blame

How can a type-value mismatch error provided by Natural, Transient, or Erasure help a
programmer locate the mistake? To simplify the question, let us first assume that all type
annotations in a program are correct, so the mistake can only lie in the code of a component.
In the next chapter, we consider the alternative where type annotations themselves contain

mistakes.

81

In the context of gradual typing, a programmer has two pieces of information when a
type-value mismatch signals exceptional behavior: the error message and the state of the
program. Hence, a way for a programmer to make progress is to use the available information
from the error to improve the program. Specifically, the programmer can translate the
Wadler—Findler slogan into a debugging method, searching for the source of the type-value
mismatch by adding type annotations to some of the untyped parts of the program identified
in the error. If the type checker rejects an annotation derived from the context, the rational
programmer has found the source of the problem. Otherwise, the programmer can conclude
that the just-annotated parts are not the problem and re-runs the program—which must, by
the slogan, blame a different location for the problem. At this point, the programmer can
iterate the process.

The idea is best illustrated with an example in Typed Racket’s migratory type system.
Imagine a code base with dozens of modules in plain Racket. A developer who opens a
module for maintenance purposes must study the module’s design and, as part of the process,
is bound to re-construct the types that went into the module’s creation. To help future
maintainers, the developer should report these insights as type annotations. Over time, the
code base migrates into a mix of typed and untyped modules. As Tobin-Hochstadt, Felleisen,
et al. [2017] report though, it is equally common that developers add typed modules that
depend on the existing modules in the code base.

Now consider the concrete (and simplistic) example of figure 5.2. Initially the code base
consists of the two red modules on the left plus the blue module at the bottom; red indicates
untyped, while blue means typed. When a typed module imports an untyped module, it

must assign types to the imported identifiers for the type checker’s sake. Here main specifies

(define-type NPR Nonpositive-Real)

server : racket

(provide neg-abs)

(define (neg-abs x) (- x)))

layer : racket

(provide na-client)

(require (submod ".." server))

(define (na-client x)
(* 4 (neg-abs x))))

main : typed/racket

(require/typed

(define x (na-client -10))
(displayln x)

server-typed : typed/racket

(provide neg-abs)

(: neg-abs (Real -> NPR))
(define (nmeg-abs x) (- x))

layer-typed : typed/racket

(provide na-client)

(require/typed
(submod ".." server)
[neg-abs (-> Real NPR)])

(: na-client (-> Real NPR))
(define (na-client x)
(* 4 (neg-abs x)))

[na-client (-> Real NPR)])

Figure 5.2: A simplistic debugging scenario.

82

83

that na-client consumes a Real number and produces a non-positive one.? A program

execution ends in this error:

na-client: broke its own contract
promised: (<=/c 0)
produced: 40
in: (-> any/c (<=/c 0))
contract from: (interface for na-client)
blaming: (interface for na-client)

(assuming the contract is correct)

The referenced contract is the compilation of the type of na-client. The definitive hint
is “plaming: (interface for na-client)” with the caveat “(assuming the contract
is correct).”

Assuming the programmer trusts the type of na-client, the next step is to inspect the
layer module and to equip it with type annotations. The result is the blue module in the
middle, and main’s import is now re-directed there by (submod ".." layer-typed). As
predicted by the theory, running the modified program (in the same way as before) yields a

different error message:

neg-abs: broke its own contract
promised: (<=/c 0)
produced: 10
in: (-> any/c (<=/c 0))

contract from: (interface for neg-abs)

2Racket’s type system reifies reasoning about subsets of numbers, not machine-level representations [St-
Amour, Tobin-Hochstadt, et al. 2012].

84

blaming: (interface for neg-abs)

(assuming the contract is correct)

Lastly, the programmer assigns types to server and re-directs the import of layer-typed
to (submod ".." server-typed). Now the type checker objects to the conjectured type of
neg-abs, i.e. the source of the type-value mismatch is found. How to fix it is a separate
question.

In sum, the design of blame-assignment mechanisms explicitly advertises the blame in-
formation as helpful for debugging type-value mismatches. The error messages of blame-
assignment mechanisms include suspect locations at the boundary of typed and untyped
code fragments. The Wadler—Findler slogan suggests that the source of the problem is con-
cealed due to a lack of types, so adding types to the untyped fragment should lead to the

source of the type-value mismatch.

5.2 Challenges

Instantiating the rational programmer method in this setting poses two new challenges. The
first concerns the comparison of the effect of blame on the rational programmer across three
different mechanisms; the second challenge is about finding a large number of representative
debugging scenarios; and the third is the resulting huge space of possibilities. A coincidental
challenge is the need for distinct and diverse implementations of gradually typed languages.
We therefore use Racket, which is the only language in which all three major semantic
variants are available in a robust and comparable manner [Greenman, Lazarek, et al. 2022]:
Typed Racket implements Natural, Shallow Racket implements Transient, and plain Racket
implements Erasure.

The first challenge stems from the differences between the blame assignment mechanisms

85

of the three semantic variants. While Natural assigns blame to one component, Transient
assigns blame to a sequence of components. The Erasure semantics does not blame com-
ponents per se, but it comes with an exception location and a stack trace, which implicitly
suggest potentially-buggy locations. Each strategy triggers different reactions by the rational
programmer (and real ones, t00).

We reconcile these differences within the rational programmer framework using modes
that represent the different types of information the rational programmer takes into account
when debugging a scenario (chap. 3). Intuitively, different blame strategies correspond to
different modes of operation. For instance, one Transient mode may assign types to the oldest
element of a blame sequence because it corresponds to the earliest point in the execution
that can discover a type-value mismatch. Another mode may opt to treat the sequence as a
stack and add types to its newest element. If both modes are equally successful in locating a
type-value mismatch, measuring the rational programmer’s debugging effort with each mode
may answer which is the most effective.

The second challenge is to find a representative, curated collection of programs with type-
value mismatches. The type-value mismatches must represent mistakes that programmers
accidentally create and that the run-time checks of academic systems catch. In other words,
the experiment calls for a collection of mistakes in mixed-typed programs that is represen-
tative of those “in the wild.” Unfortunately no such collection exists, and with good reason.
The kind of mistakes needed are typically detected by unit or integration tests; even if it
takes some time to find their sources, these mistakes do not make it into code repositories
with appropriate commit messages.

Following the prior chapter, we use mutation analysis to generate a suitable corpus of

programs, but conventional mutation analysis is useless. Mutation analysis traditionally aims

86

to inject bugs that challenge test suites, and it discards those that yield ill-typed mutants as
incompetent. Indeed, mutation analysis frameworks are fine-tuned to avoid them, and yet,
it is precisely those mutators that are needed for evaluating blame assignment strategies.

Based on a related experience, Gopinath and Walkingshaw [2017] write, “existing mu-
tation frameworks ... do not generate the kinds of mutations needed to best evaluate type
annotations” and, worse, “it is surprisingly difficult to come up with mutants that actually
describe subtle type faults.” While the goal of their work—to evaluate the quality of types
in Python—is unrelated to blame, the mechanism is related. And their judgment confirms
our experience.

Hence, an experimental analysis of blame in this setting needs a mostly new set of mu-
tators. Roughly speaking, the new mutators inject type errors into fully typed programs.
Applying such a mutator to any typed component produces a mutated component. A de-
bugging scenario results from removing the types from the mutated component. For the
design of such mutators, the authors relied on their own extensive programming experience
though not without discovering a major pitfall: some of their original mutators systemati-
cally produced programs that immediately revealed the source of the type-value mismatch.
All of the remaining ones yield interesting debugging scenarios (see sec. 5.6.3).

The next three sections explain how to overcome these challenges within the framework

of sections 2 and 3.

5.3 The Hypothesis for Gradual Types

Section 5.1.1.1 describes how, based on an intuitive understanding of blame, a programmer
can translate errors from a gradual type system into the location of a bug by adding type

annotations. This process consists of following error-provided hints through the program,

87

adding types to the components guided by the error information from the system. Eventually,
the new annotations allow the type checker to discover the problem statically.

This chapter describes a rational programmer experiment that tests the hypothesis that
this process is generally able to translate gradual typing error information into a static error.

Specifically, the hypothesis is that

for a program containing a type-level mistake in the code, adding type annota-
tions guided by the error information available reliably leads to a static type-

checker error.

To test this hypothesis, according to the outline of the method from chapter 2, we must
lay out a procedure that precisely captures the debugging process. The next section distills

the ideas of section 5.1 into an automated procedure.

5.4 The Procedure for Gradual Types

Section 5.1.1.1 explains how a migratory type setting helps with finding the source of a
type-value mismatch. Roughly speaking, it encourages the rational programmer to equip a
module with types if it is blamed in an error message.

In other words, and at a high level, the procedure is essentially the same as that of the
prior chapter, but using types instead of contracts. It uses blame to identify a component,
and adds a specification for that component in the form of type annotations. However,
in this setting, these new type annotations may then allow the type checker to detect the
problem statically, providing a new way for the procedure to terminate in success.

Putting these pieces together, the new procedure is:

1. run the program under one of the semantics to get an error identifying some component

88

A;

2. try to annotate A with types, turning it into a typed component if possible, otherwise

A is already typed: terminate in failure;
3. type-check the resulting program—if it type checks, go back to step 1;
4. otherwise, we now have a static error: terminate in success.

Following the prior chapter, we define modes that precisely describe this procedure as

tracing a path through a lattice of type migration.

5.4.1 The Type Migration Lattice

Like chapter 4, we follow Greenman [2023], Greenman, Takikawa, et al. [2019], and Takikawa,
Feltey, et al. [2016] to describe the set of all possible type migrations with a lattice. The
lattice describes the space in which the modes of the rational programmer search for bugs.
Unlike for contracts, however, the lattices in this setting differ from those in the preceding
chapter in two ways.

First, the “contract map” in this setting maps each component of a program to just two
levels: untyped, or typed. In this simpler setting, we can equivalently describe configurations
as the set of components that are typed; the bottom configuration, which before we described
by a map from every component to the untyped level, is more succinctly described here as
the empty set, and the top configuration as the set of all components in the program. For
the remainder of this chapter we use this equivalent, simpler notation for configurations.

The second difference is that for all debugging scenarios in this setting, the mutated

module is ill-typed. So at all configurations that type the mutated module, the type checker

89

immediately points out the type-level mistake in the mutated component. Those configura-
tions are a-priori uninteresting as debugging scenarios, because there is no work to be done

by our procedure, so we rule them out.

5.4.2 How to Make Comparable Rational Programmers

Each mode in this setting receives different kinds of information and thus may construct
different paths in the lattice. As section 5.2 outlines, evaluating blame relies on comparing
modes of the rational programmer within the same semantics and across different semantics.
Hence the task at hand is to define modes that correspond to different semantics and process

different kinds of information, but all operate within the common structure of blame trails.

5.4.2.1 The Natural Rational Programmer

The Natural semantics assigns blame to exactly one boundary. A blame assignment has the
following specific meaning: the typed module may make incorrect type assumptions about
the untyped module in its interface, or the correct interface exposes a bug in the untyped
module (or its dependencies). Our setup rules out the first alternative (but see sec. 5.9),
and therefore the rational programmer extends the trail to a scenario that swaps out the
untyped module for its typed counterpart.

The definition of the mode that uses Natural’s blame therefore closely mirrors that of

section 4.4. The only difference is that in this setting, we parameterize the blame and

90

exception metafunctions with the semantics used by the mode.

Mode definition: Natural blame
A Natural blame trail is a sequence of scenarios sq,...s, of a program P such

that for all 0 <i<n—1, s; C ;11 and

\ {blame[P, s;]} if (the program for) s; produces blame
Sit1 \ S =
{exceptiony g 1P, Si]]} otherwise

where

1. blame[P, s] denotes the component (of P) that s blames under the Natural

semantics, and

2. exceptionygura 1P 8] denotes the first untyped component in the stacktrace

produced by s under the Natural semantics.

5.4.2.2 The Transient Rational Programmer

The Transient semantics assigns blame to a sequence of modules. The blame assignment
says that the value witnessing the type-value mismatch may have crossed the boundaries
between elements in the sequence, and that each crossing checked the value’s type in a
shallow manner.

This ambiguity in Transient blame raises the question of how the rational programmer
should react when the language produces a blame sequence. Our answer is that the rational
programmer has at least two reasonable options. The first one is to select the untyped
module that is added to the blame sequence first and assign types to only that one—after

all, if fully checked, the types of this first module should be able to detect a type-value

91

mismatch earlier in the evaluation of a program than the later ones. The second option is

to select the module that is added to the blame sequence last, effectively interpreting the

blame sequence as a boundary-aware stack.

These two modes of rationalizing give rise to two different notions of trail.?

Mode definition: Transient first blame

A Transient-first blame trail is a sequence of scenarios sq,...s, of a program P

such that for all0 <1 <n-—1,s; C s;11 and

{first[multiblame [P, s;]|} if s; produces blame
Sit1 \ i =

{exceptionpyynsient 1> Si]|} otherwise
where

1. first[multiblame [P, s]] is the first untyped module that Transient adds to

the blame sequence for s under the Transient semantics, and

2. exceptionqynsient 15 8] denotes the first untyped component in the stacktrace

produced by s under the Transient semantics.

Mode definition: Transient last blame
A Transient-last blame trail is analogous to a Transient-first blame trail, but

selects the last untyped module from multiblame [P, s;] that Transient adds to

the blame sequence rather than the first.

3A reader may wonder whether the rational programmer should just equip all modules in the Transient
blame set with types. That might accelerate the search for the type-value mismatch, but if so it would also
impose a large migration cost for just one step.

92

5.4.2.3 The Erasure Rational Programmer

Since gradually typed languages with Erasure semantics do not come with blame assignment,
a rational programmer can only hope that the underlying safety checks and their exceptions
are helpful. Thus, the Erasure rational programmer has a single mode, the Erasure exception

mode, and its definition follows that for the Natural exception mode.

Mode definition: Erasure
An Erasure trail is a sequence of scenarios s, ...s, of a program P such that for

all0<i<n-—1,s C sy and si41 \ $; = {exceptiong,,eure [P si] }-

5.5 The Experiment in Precise Terms

5.5.1 Success, Failure, and Usefulness

As in the preceding chapter, the actions of the rational programmer create a blame trail in
L[P] starting from a debugging scenario. However, a trail in this setting ends successfully
when it reaches a scenario that contains the mutated module, because the type checker
rejects its typed version outright. At this point, the source of the type-value mismatch is
identified. Hence, a trail that ends at an ill-typed scenario successfully pinpoints the location

of the bug.

Definition: A Natural blame trail s,...s, in a lattice L[P] is successful iff
(the program for) its last scenario s, does not type check. A Natural blame trail
50y .-y S 0 a lattice L[P] is failing iff (the program for) s, type checks and the

trail cannot be extended further.

That is, failing Natural blame trails are those that end in a scenario that does not reveal the

93

bug statically, yet also does not blame an untyped module. Thus the rational programmer
has no further hints on how to continue the search for the bug.

Following section 4.4, we also define a Natural exceptions mode to serve as a baseline
against which to judge the value of Natural’s blame. This mode uses the Natural semantics,
so it has all the same checks as the Natural blame mode, but ignores blame information and

only uses stacktraces.

Mode definition: Natural exceptions
A Natural exception trail is a sequence of scenarios sy, ...s, of a program P such

that for all 0 <i<mn—1,s; C siy1 and s;11 \ $; = {exceptiony e [P si] }-

The definition of success for a Natural exception trail follows that for a Natural blame
trail. Together, the definitions for the two modes allow the comparison of the usefulness
of blame with that of mere exceptions for debugging a scenario in the context of Natural

semantics in exactly the same way as in section 4.4.

Definition: Given a program P and a root sy in L[P], Natural blame is more
useful than Natural exceptions for debugging so iff the Natural blame trail that
starts at so 1s successful while the Natural exception trail that starts at sg is

failing.

Similar to the Natural rational programmer, we define Transient exception trails to serve
as a baseline for isolating the usefulness of Transient-first and Transient-last blame. The

definitions of Transient exception trails and the usefulness of the two interpretations of

94

Transient blame are analogous to those formulated for Natural.

Mode definition: Transient exceptions
A Transient exception trail is analogous to a Natural exception trail, but using

the Transient semantics rather than Natural.

The definition of success/failure and usefulness of the two interpretations of Transient

blame are obvious adaptations of the definitions for Natural, so we omit them here.

5.5.2 Experimental Questions

In line with the discussion so far, the examination collects data to answer three initial

questions for interesting debugging scenarios:
()1 Is blame useful in the context of Natural?
()2 Is first blame useful in the context of Transient?
@3 Is last blame useful in the context of Transient?

Furthermore, the experiment allows a comparison of the relative usefulness of blame

information:

Q. Is blame for X more useful than blame for Y (for X, Y in Natural, Transient, or

Erasure)?

In terms of the space of experimental questions of table 3.1 (page 27), Q1 through Q3
capture the first column of questions, and @), the second column, with information from the

third column (i.e. debugging effort) being a useful tie-breaker.

95

‘ Natural ‘ Transient ‘ Erasure

Blame Q1/Q«

First blame Q2/Q+

Last blame Q3/Qx
Exceptions Q1 Q2/Q3 Q«

Figure 5.3: Experimental questions and their relevant modes.

Now that there are both multiple techniques and modes in play, it is a little trickier
compared to chapter 4 to keep track of which are involved in answering which experimental
questions. Table 5.3 summarizes how each question relates to different kinds of trails/modes
of the rational programmer. For example, experimental question (); asks whether blame
is valuable for Natural and the experiment uses the Natural blame and exception trails to
answer it, so ()1 shows up in the cells for Natural blame and Natural exceptions.

Analogous to the experimental question of section 4.4, (); and (3 map to the first col-
umn of table 3.1 (page 27). Answering them therefore demands analogous comparisons of
the success of, for example, Natural blame and Natural exception trails for all debugging
scenarios.

In detail, figure 5.4 summarizes this experimental process for one mode of the rational
programmer and connects it with the mutations from section 5.6. The process is repeated for
the same roots with the Natural-exceptions mode. After completing, the test bed reports the
success/failure results of the trails to determine the proportion of scenarios where Natural-
blame is more useful than Natural-exceptions. Question (); has a positive answer if a root
exists where the above is true because it is evidence that there is at least one interesting
scenario that the rational programmer manages to debug because of blame information. The
process is analogous for)2 and ()3, using the respective modes.

For Q,, the process is a bit more involved. Answering this question calls for a compar-

ison of the percentage of scenarios where one mode is more useful than the other and the

96

EEEE K

typed mutant
-~ Success if

R E

end of trail RN -
-%‘

RN N debugglng scenario _-~ -
~< (root)

L1 [[]

untyped mutant

lattice of
scenarios

CEEEE
typed mutant
mutator A mutator B
=untyped component
|x|x|x|x‘x|x| typedcomponent

|:| =buggy component
typed benchmark

Figure 5.4: The experimental process for one mode of the rational programmer.

inverse. For instance, deciding whether blame for Natural is more useful than Transient-first
requires comparing the percentage of scenarios where Natural-blame is more successful than
Transient-first with the percentage where Transient-first is more successful than Natural-
blame. Repeating the whole process for every pair of modes produces a complete picture of

the comparative usefulness of blame.

5.6 Obtaining Debugging Scenarios for Gradual Types

Putting the rational programmer to work means generating many mutants and turning those
into debugging scenarios. The process must start with a suitable collection of representative
programs (sec. 5.6.1). Since existing mutators do not generate useful mutants, the next step
is to develop new mutators (sec. 5.6.2) and to validate their suitability on the benchmarks

(sec. 5.6.3).

97

5.6.1 The Experimental Benchmarks

As in the preceding chapter, the benchmark programs for this rational-programmer experi-

ment must
1. vary in size, complexity and purpose;
2. be fully typed so that the choice of types is fixed;
3. take advantage of the variety of typing features of a gradually typed language; and

4. have a decent number of type-able modules and a variety of module dependency graphs
because mixing of typed and untyped code in Typed Racket takes place at the module

level.

In fact, the same suite of programs used in the prior chapter—Greenman, Takikawa,
et al. [2019]’s collection of Typed Racket programs called the GTP benchmarks—forms a
suitable basis that satisfies these criteria. Particularly relevant in this new setting, the
benchmark suite consists of fully typed, correct programs, written by a number of different
authors who had maintained and evolved these programs over time. The programs range
widely in size, complexity, purpose, origin, and in programming style. They rely on many
Typed Racket features: occurrence typing [Tobin-Hochstadt and Felleisen 2010], types for
mutable and immutable data structures [Prashanth and Tobin-Hochstadt 2010], types for
first-class classes and objects [Takikawa, Strickland, et al. 2012], and types for Racket’s
numeric tower [St-Amour, Tobin-Hochstadt, et al. 2012]. Finally, all of the programs are
deterministic, so any changes in the programs’ behavior between runs can be solely attributed

to the actions of the rational programmer.

98

Table 5.2: Summary of benchmarks

name description author loc | mod.

acquire object-oriented board game implementation M. Felleisen | 1941 9

gregor utilities for calendar dates J. Zeppieri 2336 13

kcfa functional implementation of 2CFA for A calculus M. Might 328 7

quadT converter from S-expression source code to PDF M. DButter- | 7396 14
ick

quadU converter from S-expression source code to PDF B. Green- | 7282 14
man

snake functional implementation of the Snake game D. Van Horn | 182 8

synth converter of notes and drum beats to WAV V. St- | 871 10
Amour

takeb mixin-based card game simulator M.Felleisen 465 8

tetris functional implementation of Tetris D. Van Horn | 280 9

suffix- algorithm for common longest subsequences between | D. Yoo 1500 6

tree strings

Table 5.2 describes the ten benchmark programs that meet all the criteria, and further-
more come with the largest dependency graphs of the twenty programs in the suite. This
additional filter reflects that Typed Racket requires that entire modules be either typed or
untyped, and so finding errors in benchmarks with small dependency graphs would be trivial

for the rational programmer.

5.6.2 How to Mutate Code for Type-level Mistakes

For the evaluation of a blame strategy, mutators must produce type-level mistakes that the
run-time checks of gradual typing systems or the safety checks of the underlying language
can detect. Once detected, the rational programmer should be able to locate the mistake by
gradually adding types to blamed modules. In other words, the suitability of the mutators
hinges on their ability to generate interesting debugging scenarios (see sec. 5.6.3).

Table 5.3 describes 16 mutators that satisfy these constraints. As the last column indi-
cates, some specialize or generalize chapter 4’s mutators, which in turn are borrowed from

the vast literature on mutation testing [Y. Jia and Harman 2011]. Only two are directly

Table 5.3: Summary of mutators

name description example origin
swaps a constant with another of | 5.6 — 5.64-0.0i ¥
constant i
different type
deletion deletes the final expression from | (begin xy z) T
a sequence — (begin x y)
ition swaps two sub-expressions (f a 42 "b" 0) r
" ° — (f a 42 0 "b")
1ist replaces append with cons append — cons new
top-level-id swaps identifiers defined in the| (f x 42) — (g x 42) new
same module
imported-id swaps identifiers imported from | (f x 42) — (g x 42) new
the same module
nethod-id swaps two method identifiers (send o f x 42) new
— (send o g x 42)
field-id swaps two field identifiers (get—flel'd o f) new
— (get-field o g)
swaps values of class initializers | (new ¢ [a 5] [b "hello"]) |new

class:init

— (new ¢ [a "hello"] [b 5])

replaces the parent of classes| (class a)% (super-new)) new
class:parent| . 0 . 0
with object — (class object’
(super-new))
. | makes a public method private | (class object’ 4+
class:public . . .
and vice versa (define/public (m x)
x))
— (class object%
(define/private (m x)
x))
(class a%
removes super-new calls new
class:super (super-new))
— (class aj, (void))
- - P
arithmetic swaps arithmetic operators — ++
boolean swaps and and or and — or I
negate-cond negates conditional test expres-| (if (= x 0) t e) T
& sions — (if (not (= x 0)) t e)
replaces conditional test expres-| (if (= x 0) t e) new

force-cond

sions with #t

— (if #t t e)

I inherited from, + specializes one of, ++ generalizes one of chapter 4’s mutators

99

100

(: deal-with [(U Real False) -> Reall)
(define (deal-with optional-result)
(if optional-result
(+ optional-result OFFSET)
DEFAULT))

(define DEFAULT 40)
(define OFFSET 11)

Figure 5.5: Example program using occurrence typing.

inherited; many mutators are brand new. For the latter, we relied on our decades-long expe-
rience of making type-level mistakes in Typed Racket, some of which take non-trivial effort
to debug.

Most of the mutators are self-explanatory. The first six apply to all gradually typed
languages; the next six to those that include classes and objects. The last four target distin-
guishing features of Typed Racket’s type system, specifically its sophisticated type system.
For example, one mutation produced by arithmetic replaces a + with a - in an attempt
to change the type of the arithmetic expression; +’s result is a Positive-Integer when all
arguments are positive integers, while - yields Integer [St-Amour, Tobin-Hochstadt, et al.
2012]. The other three also aim to confound the occurrence type system. Figure 5.5 illus-
trates how this confusion works. The function deals with an input that is either a Real or
#false; the conditional deals with the first type in the then branch and the second type
in the else branch. If a mutator wraps (not -) around the test of the conditional, the
resulting mutant is ill-typed and, when run, this function eventually causes a run-time type

check to signal a type-value mismatch.

101

5.6.3 Are These Mutations Interesting?

A type-level mutation is interesting (1) if the type checker rejects the fully typed version
of the mutant, (2) running the mutant with all type annotations removed raises a run-time
error, and (3) that error’s stack trace contains source locations from at least three of the
benchmarks’ modules.

Here is the rationale for these three conditions:

1. A type-value mismatch is a clash between the type ascription of one module’s imports
and another module’s exports. Hence, type checking should fail for an interesting

mutant.

2. The goal of a comparative evaluation is to give the rational programmer a chance to
debug the same scenario using different pieces of information. In the case of gradual
typing semantics, a meta-theorem due to Greenman and Felleisen [2018] says that if
a program raises an exception under Erasure, it also errors under all other semantics.
Hence, a comparison of blame information insists that an interesting mutant raises a

run-time exception under Erasure.

Note While this choice favors Erasure over Transient and Natural and, for the same
reason, Transient over Natural, some form of bias towards one or the other semantics
is unavoidable. As it turns out, the effect of this bias is small; section 5.8 discusses the

bias in detail and quantifies it.

3. If the evaluation of a mutated module immediately raises an exception because of
the changes, there is no work for the rational programmer. Indeed, if the stack trace
contains source pointers to two modules, the scenario is still uninteresting. Every or-

dinary benchmark program comes with a main module that acts as a driver, whose

102

takeb kcfa acquire quadU suffixtree

P TR T S T S S—— A S RS-

constant-
deletion-
‘position

list-

—

1

1

tnp-level-icl-j | | |

I

L]

1

1

]

1

imported-id
method-id-
field-id+
class:init
class:parent-
class:public
class:super-
arithmetic-

i

in

I
boolean- :I
negate-cond 1]]]

force-cond | 4 N N | H]
0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

quadT tetris gregor snake synth
constant] s . L L i s . L L i s L L L i T R
deletion|]
position] | |) — —
list
top-level-id-]]] [
imported-id | | L]
method-id-
field-id+
class:init
class:parent-
class:public
class:super-
arithmetic |] 1
boolean{ |
negate-cond-]

force-condy e RN NN RN I
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Each plot shows a breakdown of interesting mutants by mutator. Each mutator corresponds
to a bar representing the number of interesting mutants generated by that mutator. The
counts are cut off at 50, so those bars reaching the edge of the plot represent 50 or more
interesting mutants.

Figure 5.6: Breakdown of interesting mutants by mutator, per benchmark.

source is guaranteed to be included in the stack trace. Hence, the definition of inter-
esting mutation insists on the presence of three different modules in the stack trace.
This guarantees that the debugging scenario demands a sufficiently sophisticated ef-
fort, due to the interaction between the buggy module with its context. In these cases,
the rational programmer must contend with at least two modules involved in a faulty

interaction.

The definition of interesting mutants creates a powerful filter. All together, the listed

mutators produce 16,800 interesting mutants across all benchmarks; see figure 5.6 for an

103

overview. Broken down by benchmark, the mutators produce at least 40 interesting mutants
for every benchmark, and these mutants originate from at least four different mutators per
benchmark. Thus, the mutators result in a sizable and diverse population of scenarios for
every benchmark. Furthermore, every mutator contributes interesting mutants in at least
one benchmark. Some mutators apply only to a few benchmarks, because they target rather
specific features; for instance, the class-focused mutators are mainly effective in a program
that makes extensive use of object-oriented features.

The goal of filtering for interesting mutants guided countless iterations of adding, remov-
ing, and refining mutators in table 5.3. For an illustrative example, consider a candidate
mutator that casts the tests of conditionals to the Any type. Like the example explained at
the end of the preceding subsection, this mutant would suppress occurrence typing. But, it
would not be interesting because an execution would not raise a run-time error, for the static
type of a conditional expression does not affect its runtime behavior. Hence this candidate

mutator is not included in the final set.

5.6.4 Sampling the Space of Debugging Scenarios

As is, the chosen mutators generate approximately one million debugging scenarios for the
chosen benchmarks. This number of scenarios is far too large to even identify the interesting
ones among them. Hence, this experiment follows the same stratified random sampling strat-
egy from the prior chapter to render the experiment computationally feasible. Specifically,
the experiment samples 80 interesting mutants per benchmark, evenly-distributed across all
of the mutators that contribute mutants for the benchmark. Some benchmarks have less
than 80 mutants with interesting scenarios, in which case the only choice is to include them

all. The result is a total of 752 interesting mutants across all benchmarks. Finally, the third

104

level of sampling randomly draws 96 debugging scenarios from each configuration lattice

with replacement. The final sample thus consists of 72,192 interesting scenarios.

5.7 Results

We ran the experiment giving each debugging scenario a 4 minute timeout and a 6GB memory
limit. Running the experiment on all debugging scenarios took over 30,000 compute hours
or roughly three-and-a-half compute years.

Figure 5.7 summarizes the overall success rates of every mode. The success rates illustrate
a few points that underlie the rest of the analysis. The first notable piece of information
from this figure is that every mode has failed debugging scenarios, not just Erasure. This
should not come as a surprise to the astute reader. Running a rational programmer mode on
a scenario may result in an exception that carries no useful information about which module
to equip with types next. For instance the stack trace of the exception may not contain
frames from any untyped module of the program. This can happen at any point along a
blame trail, causing it to fail.

While most blame trail failures follow the above pattern, a few do not. Breaking down
the failure reasons for Natural blame (1748 in total) reveals an additional cause. For a small
set of debugging scenarios (40), Natural produces a run-time type error blaming a non-buggy
already-typed module. All these cases are due to known open issues with Typed Racket and
class contracts.

In Transient, similar to Natural, most failures are due to unhelpful exception information
(1851 for both Transient first and last blame). However, Transient also has a substantial
number of failures because scenarios hit the time and/or memory limits of the experiment

(7770 scenarios). Additionally, there are nearly 1,000 cases where Transient reports an

105

100+ T

% of scenarios
(<))
=)
Il
i

2 o 2’ <
M
9 a* 5 o <
oF @ [d
> & & &
& 9 o°
\go & s ,bi\v
<5 << <¢

The upper bound margin of error is
0.02%.

Figure 5.7: Percentage rates of success.

empty blame set, leaving the rational programmer without hints about how to proceed.
Sections 5.8.4 and 5.8.5 address these causes of failure for Transient and how they affect the
experiment.

The second key observation from figure 5.7 is that the modes that use blame all outper-
form those that do not. In particular, Natural and both of Transient’s blame modes succeed
in 85 - 90% of the scenarios, while their corresponding exception modes succeed in less than
80% of them, and so too for Erasure. The only exception is that the random programmer al-
ways succeeds; the figure omits this mode because it just reflects the fact that every scenario
has finitely many modules, so the random programmer eventually types the buggy module.

Figure 5.8 depicts a head-to-head comparison of every mode’s performance against every
other mode (except Random). The comparison answers the four questions from section 5.5.2.
Each plot shows the proportion of scenarios where one mode performs better or worse than
each other mode. In particular, each bar above zero represents the proportion where the

plot’s named mode succeeds and the mode on the x-axis fails; the corresponding bar below

% of scenarios

% of scenarios

106

Natural Transient last blame Transient first blame
14—+ T 14+ T 14—+
12+ - 12+ T 12+
10+ - 10+ T 10+
8+ - 8+ L 8+
6. L 6l L 6l
4+ oy 4+ I =
l 8 l 3 l
2+ 5 2t F s 2t
| g | g |
01 g 9 g 0
21 + 8 21 + 8 21
4t L2 4] L= 4]
6= L 6 L e
8+ T 8+ T 8+
10+ + 10+ + 10+
12+ T 12+ T 12+
14+ i i i t - 14— i I i t - 14+ t I i i i
> o @ C) o > C) C) C) o > o C) @
i & & s > <& > <° >
> & & S &) o @ 2 o &) o> 2 & 8 3
2 Q@Q‘J\ 4}«0\ 6'36\ C,QQQ Qﬁo ¥ Q@Q‘\ & > e‘&‘é\ QQQ‘O Qf’o il c,G’/Q.0 & > @“o\ QQQ‘\ Qﬁo
A & Gl & AF
\z Y X N X N 9 %
&@ 6-@0 & &@ 29 & . &@ P U R
< & & < S R
&3 <3 <5 & K3 <5 K5 <% <3
Natural exceptions Transient exceptions Erasure
14+ T 14+ T 14—+
12- L2 L2
10+ T 10+ T 10+
8+ 1 8+ 1 8+
6+ L el L el
4+ e 4+ + o 4+
l 8 l 8 l
2+ ‘ ‘ 5 2t TE 27
| g | g |
| 3 ? |
24 -3 24 S 24
4] L 4] L 4]
6 L 6] L e
8 T 8 T 8
104 + 104 + 104
12+ + 124 + 12+
14 — } t | | t] — 14+ t 1 | t —t 14— t 1 | t |
> S e C) o > G C) C) o >) C) C] o @
& & & &S & & &S S <® & o
x> A0 D AL &0) o A0 AL AC S > A AC O S
I R o S R o S TS o
g N s 5 g N $ & 2 N $ &
> x A x © O [
& & & & & & &S &S &S
06} ‘\@\ CJ\@ Qg\e & ‘\@\ Qc)\@ 9\0 & ‘\6\ 09\@ 09\0
= <% & RS Gl W T <

Each plot depicts a head-to-head comparison of the mode named above the plot vs. every other mode.
The (green) portion above 0 is the estimated percentage of scenarios where the named mode is more
useful than the other. The (red) portion below 0 is the estimated percentage of scenarios where the
named mode is less useful than the other. The upper bound margin of error is 0.02%.

Figure 5.8: Head to head usefulness comparisons.

107

Erasure Natural Erasure Transient Erasure Transient
last blame first blame

1.8%

74.6% 74.6%

Natural Transient

Transient
exceptions exceptions exceptions

Each diagram shows the overlap of the successful scenarios for three modes. For example, in the
leftmost diagram, all three modes succeed on the same scenario 75.7% of the time, only Natural and
Natural exceptions succeed on 11.6% of the scenarios, only Natural and Erasure succeed on 1.8%, and
Natural alone succeeds on 9.2%. The upper bound margin of error is 0.02%.

Figure 5.9: Blame usefulness analysis

zero represents the proportion of the inverse case. For example, the plot titled “Natural”
shows that Natural outperforms Natural exceptions in about 11% of the scenarios, and the
inverse (Natural performs worse than Natural exceptions) never happens. Similarly, the plot
titled “Transient last blame” shows that Transient last blame outperforms Natural exceptions
in about 9% of the scenarios, but conversely it performs worse than Natural exceptions in
about 2% of the scenarios.

The figure answers questions ()1, (2, and (3 affirmatively. In all three semantics, blame
modes outperform their corresponding exception mode by about 10%. The Natural excep-
tions mode is never more useful than Natural blame, and Transient exceptions are more
useful than Transient first and Transient last blame in less than 1% of the scenarios.

Figure 5.8 also provides answers for (J.. Blame for all three semantics is significantly more
useful than Erasure exceptions—by almost 12% for Natural and almost 9% for Transient.

Natural blame is more useful than both versions of Transient blame by a small percentage

108

(about 4%). The Transient first and Transient last blame are practically indistinguishable.
Finally, Natural exceptions are more useful than Transient exceptions, although only in a
small percentage of scenarios (about 2.5%). A rare few scenarios (about 0.5%) show the
opposite, despite the theoretically advantageous additional checks of Natural.

An alternative way to understand the answers for questions (J; to (Y3 is to analyze
the success of each semantics in comparison to Erasure. Figure 5.9 depicts the results of
this analysis. Specifically, the figure shows one Venn diagram per mode of the rational
programmer that uses blame. Each diagram shows the overlap of successful scenarios for
the blame mode, its corresponding exception mode, and Erasure. For example, the leftmost
diagram (Natural) shows that all three modes succeed on 75.7% of the scenarios, only Natural
and Natural exceptions succeed on 11.6% of the scenarios, only Natural and Erasure succeed
on 1.8%, and Natural alone succeeds on 9.2%. This analysis highlights the success trade-offs
each semantics offers against Erasure, with and without blame. For instance, the analysis for
Natural clearly illustrates that, when choosing between Natural blame, Natural exceptions,
and Erasure, Natural blame is the absolutely most successful: all of the successes of the other
two modes are subsets of Natural’s successful scenarios. On the other hand, Transient’s blame
modes fare similarly but the choice is not so clear-cut.

Turning to programmer effort, figure 5.10 shows the estimated distribution of blame trail
lengths for the interesting debugging scenarios. There are two immediate takeaways from
the figure. First, the effort for successfully debugging interesting scenarios (in green) for the
random mode of the rational programmer is highly spread out, as expected. In contrast, in
the other modes, successful effort coalesces at the left side of the plot, meaning that in most
cases the programmer needs to type a single module to debug a scenario.

Figure 5.11 provides head-to-head comparisons of effort. The comparison between two

% of trails

% of trails

Random
100-
80+
= 60+
o]
B 1
)
e 40+
R |_,—_|D
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Natural Transient Transient
last blame first blame
100 100 100
80—+ N 80—+ 80+
60+ 2 60+ Z 60+
e} ©
! B 1 B !
G L)
[=] [=]
40+ e 40+ e 40+
20+ 20— 20+
==l == oEEL A I e omml WL P
o 1 2 3 4 5 6 7 0o 1 2 3 4 6 7 o 1 2 3 4 5 6 7
Natural Transient Erasure
exceptions exceptions
100 100 100
80+ 80+ 80+
60+ 2 60+ | | 2 60+ | |
o] ©
B B
G Y4
[=] =]
40~ < 40+ £ 40+
20—+ 20—+ 20—+
0 ’_| P — (}’f| SIS e S — o= == T ——
0o 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7 0o 1 2 3 4 5 6 7

109

Each plot depicts the distribution of trail lengths for a given mode across all benchmarks. The upper

bound margin of error is 0.05%.

Figure 5.10: Programmer effort

% of mutually-successful scenarios

% of mutually-successful scenarios

110

Natural vs Natural Natural vs Transient Natural vs Transient
exceptions last blame first blame
100+ T 8 100+ T 8 100+ T
90~ - 8 90+ - 8 90+ -
80~ - - & 80+ - - & 80+ — -
70+ + 8 70+ + 8 70+ -
15|60+ - ~ & 15]60— - ~ & 1560+ - +
12.5+ - ﬁ 12.5+ - ﬁ 12.5+ -
Q Q
10 - 8 10+ - 8 10+ -
= =
@ @
7.5 - B 75+ T2 757 T
| |
5 + B 5+ L 2 5L 1
= =
o o
0 —»——o—:|—.—|:|—o——o——»— ES 0 :ll:l —.—D$+—o—— ES 0 -::-m Lo
e -3 -2 -1 001 2 3 4 e -3 -2 -1 001 2 3 4 e -3 -2 -1 001 2 3 4=
trail length difference trail length difference trail length difference
Transient vs Transient Transient vs Transient Transient vs Transient
last blame first blame last blame exceptions first blame exceptions
100 2 100 2 100
90+ - & 90+ - & 90+ 1
80~ - - & 80+ - & 80+ -
70+ + 8 70+ — + 8 70+ — -
15|60+ - ~ & 15]60— - ~ & 15/60— - <
12.5+ T “':fa, 12.5+ T “':fa, 12.5+ +
[[
10+ - 8 10+ - 8 10+ -
= =
¢ ¢
7.5+ - = 7.5 - = 7.5 T
3 3
5+ + B 5 + B 5 -
= =
2.5+ ’_‘ LB a5 ﬂ LB a5 ﬂ i
o o
0 —~¢ED S| I I ol A IFIFA =m g S PPN (| S o P s
e -3 -2 -1 001 2 3 4 e -3 -2 -1 001 2 3 4w e -3 -2 -1 001 2 3 4=
trail length difference trail length difference trail length difference

Each plot depicts the distribution of scenarios with trail length differences ranging from -3 to 3. A
—uz difference denotes that the first mode’s trail is x steps shorter than the second mode’s trail for
the same scenario; a positive difference denotes the inverse. A difference of oo indicates one mode’s
trail succeeds while other mode’s fails. The 15—60 on the y-axis indicates that the axis is truncated
between 15 and 60%. The upper bound margin of error is 0.03%.

Figure 5.11: Effort comparisons

111

modes boils down to the difference in length between their trails for all scenarios where
they both succeed. Hence, each plot in the figure shows the distribution of scenarios with
length differences ranging from -3 (the first mode’s trail is 3 steps shorter than the second’s)
to 3 (the first mode’s trail is 3 steps longer than the second’s). The figure offers several
insights about how modes compare in terms of effort that complement the insights about
how they compare in terms of success rates from figure 5.8. First, Natural blame rarely pro-
duces shorter trails than Natural exceptions, and occasionally produces slightly longer ones.
Hence, the experiment provides evidence that blame helps the rational programmer debug
more scenarios but does not shorten the debugging process compared to exceptions. Second,
Natural relatively often (close to 8% of the scenarios) produces shorter trails than both Tran-
sient blame modes, and sometimes the trails are significantly shorter. Finally, Transient’s
blame modes share the characteristic with Natural that blame sometimes produces longer

trails than their corresponding exception modes.

5.8 Lessons Learned

Interpreting the numeric summaries and aggregations of the preceding section demands an
intuitive understanding of what blame trails look like in practice. A concrete example of
blame trails and programmer modes is a good basis for synthesizing this kind of intuition.
Figure 5.12 summarizes one particularly interesting debugging scenario from the takeb
benchmark. The module dependency graph of this benchmark is shown in the top left of the
figure. Its mutated player module provides a method under a different name than the client
module, dealer, expects. In Typed Racket’s gradual type system, this mistake corresponds
to a type-value mismatch—and all rational-programmer modes come to different conclusions

(besides the two Transient blame modes).

(R

}@

the dependency graph

Natural-blame

%\»

.‘--"“~>

Transient-first-blame,

Erasure

112

=

the paths taken by each mode through the configuration lattice

Root Step 1 Step 2 Success?
Mode config result stack config result stack config result
Natural Lyf main Tx \/
-blame player main
Transient LT EEE z},‘;g dealer Ly dealer Tx \/
-first-blame dealer player
and dealer dealer
main
Erasure LT EEE %33 dealer % dealer X
dealer dealer
dealer dealer
main main
Natural 1T EEE O main X
-exceptions main
ENENEEEE %33 dealer O dealer X
dealer
dealer
main
Legend
config Each box corresponds to a module and indicates (with x) if it is typed. The mutated module
is gray.
It
7nesusyrnbol denotation
[y the configuration signals a dynamic type check failure, blaming the module(s) below
Tx the configuration does not type check

3§
v

the configuration fails a check by the runtime system

the configuration signals a dynamic type check failure for which blame is ignored

Figure 5.12: An example scenario from takeb, with every mode’s resulting trail.

113

The rest of figure 5.12 illustrates the blame trails for every mode of the rational program-

mer (except Random) for the debugging scenario in two different ways:

e The top right shows the blame trails produced by every mode of the rational pro-
grammer as paths through the configuration lattice starting at the root (leftmost)
configuration. Each configuration is represented by a sequence of boxes correspond-
ing to modules in the program, with an x indicating that the module is typed. The

mutated module has a gray box.

e The table in the middle expands the information in the diagram with the details of
every step in each trail. Every row of the table represents the trail of one mode. The

middle-three columns depict the steps of a blame trail:

Root describes the result of running the root configuration in this row’s mode.

Step 1 displays the result of the rational programmer’s reaction to the outcome of

running the root.

Step 2 shows the result of reacting to the outcome of running the step-1 configuration,

if any.
Finally, the Success? column summarizes whether exploring the trail succeeds.

To make this table concrete, compare rows 1 and 4. The first one shows that running
the root configuration under the Natural-blame mode fails due a dynamic type check and
blames the player module; typing that module and running again then results in a type
error, and hence the trail is successful. By contrast, the Natural-exceptions mode (row 4)
yields stack information for the root configuration that is unhelpful; it identifies only main,

which is already typed. Hence, this trail immediately gets stuck.

114

In short, this figure concretely demonstrates how the rational programmer behaves in
different modes. In this case, the behaviors differ from each other in five of the six modes
(the two Transient blame modes behave the same). The reader may keep the illustration in

mind for the following discussion of the numeric results.

5.8.1 Interpreting the Results

The results of the experiment suggests a number of high-level conclusions about blame
strategies in the gradual typed world, at least for mistakes occuring in code rather than
type annotations. First, all modes with run-time type checks have a fairly high success
rate, regardless of whether these checks assign blame or throw plain exceptions. That said,
the success rates of the modes without blame are on par with that of the Erasure mode.
Second, error messages with blame assignments are more helpful than those without. The
results also indicate, though, that blame is not critical in a majority of cases, and these two
points together suggest investigating whether run-time type checking and blame tracking are
worth the performance cost. Third, the Natural approach fares better than the Transient
approach, but only by a small margin. Since Natural offers complete and sound path-based
blame while Transient offers incomplete but sound heap-based blame [Greenman, Felleisen,
and Dimoulas 2019], the results call for a study concerning the relative strengths of the two
models of blame. Fourth, given that Transient’s sound but shallow run-time type checks do
not seem to hamper debugging, a language that supports both Natural and Transient might
help reduce the number of wrappers and thus address the well-known performance issues
of sound gradual typing [Greenman 2020, chapter 6]. Fifth, the fact that both modes of
the Transient rational programmer are equally successful suggests that returning the whole

blame sequence may not be beneficial. If so, Reticulated Python could limit the size of blame

115

sequences to attempt to mitigate its serious performance problems (see below).

5.8.2 Threats to Validity

The validity of these conclusions is threatened in two distinct ways. The first set of threats
concerns aspects of the experimental setup discussed in preceding sections: (i) the represen-
tativeness of the benchmarks; (ii) the relation between the mutations and real programming
mistakes; and (iii) the sampling strategy. Although the experimental setup attempts to miti-
gate these threats, the reader must keep these limitations in mind when drawing conclusions.

The second set of threats questions four rather different aspects. To start with, just
like the experiment of chapter 4, the rational programmer is an abstract model subject to
questions about how it corresponds to the real world (sec. 4.7.2), and similar questions apply
to the definition of “interesting scenarios” (sec. 5.8.3). Then, the generalization of these
results to languages other than Typed Racket may not be direct, due to differences in design
and runtime implementation that affect error messages (sec. 5.8.6). The remaining threats

are about the accuracy and cost of Transient blame, respectively (secs. 5.8.4 and 5.8.5).

5.8.3 Threat: Is the Definition of Interesting Scenarios Reasonable?

Section 5.6.3 defines criteria for interesting mutations, one of which limits the scenarios
under consideration to those with mistakes that raise a run-time error under Erasure. In
other words, the experiment is Erasure-biased: it only considers the usefulness of blame when
the safety checks of the underlying language alone are sufficient to detect the mistake. In
reality, some mistakes require run-time type checks to be detected [Greenman, Felleisen, and
Dimoulas 2019], and it is possible that blame has more to offer for these kinds of mistakes.

If that is the case, then the results of the experiment on a population of scenarios including

116

such mistakes should be different.

In fact, we have reproduced the experiment with the opposite bias and the results demon-
strate that the choice of bias does not affect the conclusions in a significant manner. Specif-
ically, we filter to select only scenarios that raise a run-time error under Natural. Corre-
sponding versions of the result figures are in appendix B, but at a high level the takeaway is
that the Natural-blame mode improves over all other modes in slightly more scenarios (on
the order of a few percent). Somewhat more interestingly, the exception modes, including
Erasure, improve over both Transient blame modes in about 5% more scenarios in this varia-
tion. Thus Transient’s blame appears even less useful in comparison with simple stacktraces,

but only by a small measure.

5.8.4 Threat: Why Does Transient Lose Blame?

The execution of the experiment reveals that Transient produces empty blame sequences for
967 scenarios. An empty blame sequence means a lack of boundary crossings for the witness
value. In theory, an empty sequence should not occur, because it means a typed module is
blaming itself—something that can happen only if the type checker (or system) is unsound.

An investigation of these empty blame cases reveals problems with tracking blame for
higher-order functions and conversely suggests three improvements for the Transient algo-
rithm. To illustrate, consider the call (filter f xs). First, the blame map should know
that inputs to £ may have come from the xs list; concretely, the blame-map entry for f
should point to xs as a parent. Second, there should be two parents for f instead of one,
because both xs and filter are responsible for sending correct input to £. Third, the blame
map should work equally well in programs that rename filter or that replace the identifier

with an expression. This third point suggests a need for type-like specifications that guide

117

the construction of the blame map, instead of the identifier-based matching in Reticulated

and Shallow Racket.

5.8.5 Threat: Is the Transient Blame Assignment Mechanism Realistic?

The results in section 5.7 also show that the cost of Transient blame is quite high. Under
the Transient semantics, some of the debugging scenarios exceed the 4-minute timeout or
the 6GB-memory limit. To put those limits into context, the fully typed and fully untyped
benchmarks all normally complete in a few seconds with minimal memory usage. Further-
more, none of the mixed Natural configurations hit these limits, and with the blame map
turned off, the Transient semantics also runs these programs in a short amount of time and
well within the memory limit. In short, even though the Transient rational programmer
appears to do well in the experiment, the implementation of the Transient blame strategy
might be unrealistic.

At first glance, these measurements seem to contradict the results of Vitousek, Swords,
et al. [2017]. They report an average slowdown of 6.2x and a worst-case slowdown of 17.2x
on the fully-typed Python benchmarks in Reticulated Python when the blame map gets
enabled. Unfortunately, the average slowdown of 133x and the worst-case slowdown of 560x
due to blame in Shallow Racket seems closer to the truth. There are at least three broad

factors that skew Vitousek et. al.’s results:

1. The 2017 implementation of Reticulated fails to insert certain soundness checks® and

blame-map updates® from the paper.

2. While Reticulated attempts to infer types for local variables, the impoverished nature

4Missing check (accessed April 2024): https://github.com/mvitousek/reticulated/issues/36
SMissing cast (accessed April 2024): https://github.com/mvitousek/reticulated/issues/43

https://github.com/mvitousek/reticulated/issues/36
https://github.com/mvitousek/reticulated/issues/43

118

of its type system does not allow the ascription of precise types and often resorts
to type Dynamic [Greenman 2020, section 5.4.4]. Code with type Dynamic has fewer
constraints to check at run-time—and much less information to track in the blame

map.

3. Vitousek, Swords, et al. [2017] use small benchmarks. Four have since been retired
from the official Python benchmark suite because they are too small, unrealistic, and
unstable.® On the flip side, all the benchmarks in the GTP suite are larger than the
official Python benchmarks. Reticulated Python runs the translation of the smallest
GTP benchmark in approximately 40 seconds without blame but times out after 10

minutes with blame.

More work on Transient blame is needed to make an informed decision about its prospects

as a viable production-level approach.

5.8.6 Threat: Different Languages, Different Types, Different Checks

The results described in this chapter depend upon the language at hand; other languages
may have different type systems and different runtimes, each of which affect the errors and
accompanying messages that type-value mismatches produce. For instance, consider the
differences between Typed Racket (which we use in this chapter) and TypeScript (which is the
most popular gradually typed language available today). While the type systems of Typed
Racket and TypeScript are quite similar, their run-time safety checks differ significantly. The
former is well-known for its informative run-time error messages and stacktrace information
(due to its origins in education); the latter is a derivative of JavaScript, which famously

ignores run-time errors as much as possible and produces different stack traces than Racket.

6Release notes (accessed April 2024): https://pyperformance.readthedocs.io/changelog.html

https://pyperformance.readthedocs.io/changelog.html

119

Hence, the results for an analogous study of TypeScript may make the Natural and Transient
semantics look much stronger than the Erasure semantics.

An attempt to replicate the experiment in the context of Typescript (or any other lan-
guage) is needed to clarify whether the conclusions of this work transfer from one linguistic
setting to another. This dissertation offers a blueprint and techniques to researchers that
would like to take up this challenge. While the ideas and techniques we use should be useful
for replication in any linguistic context, details such as the specific mutators that are relevant

and the adaptor implementation approach will vary across contexts.

5.9 Summary

The interviews of Tunnell Wilson et al. [2018] suggest that programmers prefer the run-time
checking of Natural over other soundness methods. But, the opinion of a random set of
programmers does not mean that blame assignment adds value. Similarly, researchers and
language designers have implicitly answered this question one way or another without evi-
dence for the blame-strategy dimension. The experiment presented in this chapter provides
some justification for the programmers’ leanings and helps language creators revisit their
decisions. Of course, the design choice remains a trade-off along several dimensions, and the
presented experiment sheds light on only one of them.

This chapter does not address a problem in the gradually typed world that was pointed
out early on by practical researchers [St-Amour and Toronto 2013; Feldthaus and Mgller
2014; Williams, Morris, Wadler, and Zalewski 2017] and that has recently received theoreti-
cal attention [Campora and Chen 2020; Greenman, Felleisen, and Dimoulas 2019]: mistakes
in type annotations themselves. Developers use gradual typing to move an untyped code

base into the typed realm, and to this end, they need typed APIs for the vast repositories

120

of already-existing libraries. Instead of converting the libraries themselves, language imple-
mentors merely create facade modules that import untyped functions and export them with
type annotations, like typed-pack-1ib in figure 5.1. With those facades, the compiler can
type-check typed modules, but these retroactive additions of types to a library may result
from a misunderstanding of the code. In short, any retroactively ascribed type may thus be
a mistake itself.

The cited evidence suggests that this scenario is quite common and largely unaddressed.
Hence, the next chapter applies the rational programmer framework to evaluate the prag-

matics of error information when mistakes occur in type annotations.

121

CHAPTER 6
EXPERIMENT 3: GRADUAL TYPES AND BUGS IN TYPE
ANNOTATIONS

This chapter follows up on the prior chapter’s investigation to demonstrate how to close the
open thread of what the pragmatics of gradual types are in the context of debugging bugs in
type annotations rather than code. It is an adaptation of Lazarek, Greenman, et al. [2023]
and joint work with Ben Greenman, Matthias Felleisen, and Christos Dimoulas.

The chapter begins with the essential background on the problem of buggy gradual types
(sec. 6.1), instantiating the pieces of the framework (secs. 6.2-6.5), describing the results of

the experiment (sec. 6.6), and discussing them (secs. 6.7-6.8).

6.1 Background: Gradual Types Can Be and Often Are Wrong

The preceding chapter describes and compares the process of debugging with error informa-
tion provided by the three semantics for gradual typing in the face of type-level mistakes
in one’s code. However, the notion of migratory typing [Tobin-Hochstadt, Felleisen, et al.
2017]—which describes a process in which developers retroactively ascribe types to existing
codebases in the process of maintenance, extension, or reuse—inherently allows a quite dif-
ferent type of problem to arise, where type annotations themselves may contain mistakes. In
that setting, it is not necessarily clear that the gradual typed semantics’ error information
would be as useful in the original setting. The following subsections describe this different

setting and offer an intuition for debugging there.

122

6.1.0.1 Wrong Gradual Types

TypeScript is the most well-known and widely-used implementation of gradual typing, with
over 500k dependent packages on GitHub.! It adds a syntax for optional type annotations to
JavaScript and a type checker for those annotations. Importantly, TypeScript programs mix
seamlessly with JavaScript libraries due to the DefinitelyTyped repository,? which supplies
crowd-sourced type interfaces for thousands of JavaScript libraries. More precisely, the
repository contains declaration files for the types of the exports of libraries, which the type
checker employs to confirm the (type-)consistency between the client and its libraries.

Unsurprisingly, the authors of these type interfaces, who are often not the authors of the
corresponding libraries, make mistakes. Indeed, academic researchers have published a fair
number of results identifying, analyzing, and cataloging these mistakes [Cristiani and Thie-
mann 2021; Feldthaus and Mgller 2014; Hoeflich et al. 2022; Kristensen and Mgller 2017b;
Williams, Morris, Wadler, and Zalewski 2017]. The problem is not unique to TypeScript.
Typed Racket, a language with a similar type system plus a crowd-sourced set of type in-
terfaces for libraries, suffers from similar mistakes, even in the run-time library [St-Amour
and Toronto 2013].

This situation raises a natural question:

How well does a gradual type system assist developers with diagnosing errors due

to mistakes in type interfaces for untyped libraries?

Formulated this way the question points once again to the differences between industrial

uses of gradual types and academic research. While the first insists on erasing types when

https://github.com/microsoft/TypeScript/network/dependents?dependent_type=PACKAGE (ac-
cessed July 2023)
’https://github.com/DefinitelyTyped/DefinitelyTyped

https://github.com/microsoft/TypeScript/network/dependents?dependent_type=PACKAGE
https://github.com/DefinitelyTyped/DefinitelyTyped

123

the program runs, the second has investigated various approaches to run-time checking the
boundary between typed and untyped pieces of code.

As described earlier, TypeScript is an industrial product that erases types and thus does
not offer any special support to help programmers in the face of wrong type interfaces. The
point is to keep type annotations from interfering with performance, or as the TypeScript
website advertises, “TypeScript becomes JavaScript via the delete key” [Microsoft n.d.].

By contrast, academic implementations of gradual typing, (e.g., Typed Racket [Tobin-
Hochstadt and Felleisen 2006, 2010, 2008; Tobin-Hochstadt, Felleisen, et al. 2017] and Reticu-
lated Python [Vitousek, Kent, et al. 2014; Vitousek, J. G. Siek, et al. 2019; Vitousek, Swords,
et al. 2017]) compile types to run-time checks that aim to discover type-value mismatches be-
tween types imposed on untyped code and the latter’s actual behavior. Moreover, when such
run-time checking systems catch a type-value mismatch, they blame the boundary where a
type interface and an untyped value (closure, object, class) are out of sync. Like in the pre-
vious setting, the question is whether the blame information from the Natural and Transient
semantics offers useful hints, that is, hints that describe the cause of the mismatch and thus
assist the developer with the debugging task.

Figure 6.1 sketches a program that illustrates the differences among the three semantics
in the context of type interface mistakes concretely. The program is organized with a client-
interface-library architecture: the top third is the client side, the bottom third is the library

side, and there is a type interface in the middle. Specifically,

1. client/main (top left) is the untyped entry point of the program. It uses a library to

restructure some JSON user data and then summarizes part of the data.

2. client/summarize (top right) is a typed component that implements one helper func-

tion, summarize-ages. It works with the types that the type interface declares.

client/main : racket

(require json)
(require json-unpack-interface)
(require client/summarize)

;; read data, analyze
(define user-data
(json-unpack
(read-json "users")
"details"))
(define summary

(summarize-ages user-data))

124

client /summarize : typed/racket

(provide summarize-ages)

(define-type UserInfo (HashTable String Any))

(: summarize-ages ((Listof UserInfo) -> Integer))
(define (summarize-ages user-data)
(define ages : (Listof Integer)
(for/list ([user-info (in-list user-data)])
(define age (hash-ref user-info "age"))
(cast age Integer)))
(apply max ages))

json-unpack-interface : typed/racket

(require/typed/provide json-unpack-1lib
[json-unpack (JSExpr String ->

(Listof (HashTable String JSExpr)))])

json-unpack-lib : racket

(provide json-unpack)

;; Find JSON objects mapped by ‘key‘, and convert them into

;; association lists

(define (json-unpack a-json key)

(define selected-objects (find-objects-with-key a-json key))
(map json-object->assoc selected-objects))

;5 Jjson-object->assoc :

JSExpr -> (Assoc String Any)

(define (json-object->assoc j))

The type in json-unpack-interface does not match json-unpack’s actual type; see comments.

Figure 6.1: One program with an incorrect type interface, three interpretations.

125

3. json-unpack-interface (middle) is the type interface (like those in DefinitelyTyped)

that declares types for an untyped library.

4. json-unpack-1ib (bottom) is the untyped library.

The type interface mistakenly declares that the result type of json-unpack is a list of hash
tables. A close look at the library—specifically the purpose statement of json-unpack-1lib—
shows that the function returns an association list. The client, however, has been pro-
grammed using the interface type because the client programmer has no knowledge about the
(possibly large) implementation of the library. That is, summarize-ages accesses user-data
as a list of hash tables.

With the Erasure semantics, the type-value mismatch causes the program to crash. A
safety check in the runtime fails while applying hash-ref in client/summarize, and the
resulting error informs the developer that hash-ref received something other than a hash ta-
ble. That error also carries a stacktrace to help the developer understand where it happened;
it has client/summarize at the top, followed by client/main. Thus the error information
suggests to the developer that there is a problem with the client.

With the Natural semantics, the json-unpack function from the type interface is wrapped
in a contract-proxy that enforces the interface-imposed types with dynamic checks and
tracks responsibilities for those types [Tobin-Hochstadt and Felleisen 2008; Tobin-Hochstadt,
Felleisen, et al. 2017]. Since the function comes from an untyped component, the proxy
assigns responsibility for its result type to the boundary between the type interface and
json-unpack-1lib. Analogously, since the function is exported to an untyped component,
the proxy assigns responsibility to the boundary with client/main for supplying argu-
ments of the appropriate types. Hence, when json-unpack returns from its application in

client/main, the proxy checks that the result is a list of hash tables, which fails, and it

126

blames the type interface/json-unpack-1ib boundary.

Finally, with the Transient semantics, typed code is rewritten to verify the shapes of func-
tion arguments and results [Vitousek, Swords, et al. 2017]. The shape roughly corresponds
to the outermost constructor of a value; for example, a (Listof String) parameterized
type turns into a check that the argument is a list. Compound data is deconstructed via
function calls, so the contents of a value have their shape checked as the pieces are extracted.
Thus summarize-ages is rewritten to assert at the function-entry point that user-data is a
list and in the loop-entry point to assert that user-info is a hash table. The second check
fails and blames the boundary between client/main and client/summarize—suggesting a
problem in the client component.

Thus, when a developer debugs the code in figure 6.1, the chosen semantics matters,
because three different semantics deliver three different hints. How can these hints be used

to debug the program?

6.1.0.2 Debugging Type Interface Mistakes

The objective is to track down an incorrect type interface. To this end, a programmer can
exploit feedback from the gradual type system and the error messages it produces to modify
the program and obtain more information. The modifications aim to directly identify the
incorrect type interface or to make a change that provides new information.

The modification strategy is like the one presented in section 5.1.1.1, based on the theory
of gradual typing. The central blame theorem of gradual typing states that, assuming types
are correct, a blamed component must always be untyped [Tobin-Hochstadt and Felleisen
2006; Wadler and Findler 2009]. Therefore equipping that component with types should

either (1) allow the type checker to discover a mismatch between the type interface and the

127

component or (2) result in a blame assignment of some other untyped component. In the
first case, the process has uncovered a flaw in the type interface.

Hence the programmer adds type annotations to a blamed component; re-runs the re-
sulting program if it type checks; and repeats this process until it obtains a program that
does not type check. By testing this process on a large corpus of realistic scenarios, we can
collect data about how blame information aligns with the theoretical predictions that inform
its design. Those scenarios where blame information translates eventually to a static type
error constitute evidence that validate the design rationale behind the semantics; scenarios
where the programmer does not obtain useful hints from blame about how to further modify
the program form examples where blame information does not live up to its intended role.

To make this discussion concrete, take a second look at the program in figure 6.1. Under

the Natural semantics, the program terminates with this error:

json-unpack: broke its own contract
promised: hash?
produced: ’(("age" . 42))
in: an element of
the range of
(-> any/c any/c (listof (and/c hash?)))
contract from: (interface for json-unpack)
blaming: (interface for json-unpack)
(assuming the contract is correct)

at: json-unpack-interface

The key to deciphering the error message is the phrase “interface for json-unpack.” It
says that the Natural semantics has discovered a type-value mismatch between the untyped

json-unpack and the declaration of its type in json-unpack-interface, the type interface

128

of json-unpack-1lib.

The information clearly identifies the problem: json-unpack’s result type doesn’t match
the values it actually returns. A programmer may deduce that the type in json-unpack-
interface must be wrong, for instance based upon the warning “assuming the contract
is correct”, or by knowing that the underlying untyped library has been in use for a long
time. To analyze the issue and conclude for sure what is going on, the programmer may
attempt to construct the function’s correct type from the source of json-unpack-1ib or
submit a bug report to the developers of the type interface.

A simpler process can indirectly simulate this outcome as well. Specifically, the program-
mer acts on the phrase “assuming the contract is correct” in the blame assignment issued
by the Natural semantics and temporarily gives the interface the benefit of the doubt. That
is, the programmer assigns blame to json-unpack-1ib. In response, it adds types to this
library, mimicking a programmer that attempts to provide a type interface for the library. Of
course, equipping json-unpack-1ib with type annotations allows the type checker to stati-
cally identify the mismatch between the correct type in json-unpack-1ib and the incorrect
one in the interface.

If the programmer were to use the Transient semantics instead, the process would fol-
low the same pattern, only using Transient’s flavor of blame instead. With Transient,
the original program terminates with blame on the boundary between client/main and
client/summarize. The programmer therefore equips client/main, the untyped of the
two, with types and runs the resulting program. That, in turn, terminates with blame on
the boundary between json-unpack-1lib and the type interface. Again the programmer
gives the interface the benefit of the doubt, annotates json-unpack-1ib, and reaches a type

error.

129

A programmer using Erasure is out of luck. The Erasure semantics exclusively relies on
the safety checks and failure messages of the untyped language, mostly stacktraces. The
programmer must therefore interpret the trace as blame assignment; a straightforward in-
terpretation is to select the topmost untyped module to annotate. The Erasure semantics of
the original program is a stack identifying first client/summarize and then client/main.
Equipping client/main with types does not produce a type error, and since the types are
simply erased, the additional annotations do not change the exception information. In short,
the programmer using Erasure is stuck at this point.

In sum, essentially the same debugging process from section 5.1.1.1 appears to be appli-

cable in the face of type interface mistakes as well.

6.2 The Hypothesis for Type Interface Mistakes

Section 6.1.0.2 describes how, based on an intuitive understanding of blame, to translate
errors from a gradual type system into the location of type interface mistakes by adding type
annotations. This process consists of following error-provided hints through the program,
adding types to the components guided by the error information from the system. Eventually,
the new annotations allow the type checker to discover the problem statically.

This chapter describes a rational programmer experiment that tests the hypothesis that
this process is generally able to translate gradual typing error information into a static error

identifying type interface mistakes. Specifically, the hypothesis is that

for a program containing a type-interface mistake, adding type annotations guided

by the error information available reliably leads to a static type-checker error.

To test this hypothesis, according to the outline of the method from chapter 2, we must

130

lay out a procedure that precisely captures the debugging process. The next section describes

it in detail.

6.3 The Procedure for Type Interface Mistakes

The procedure in this setting is exactly the same as the preceding chapter. Furthermore,
this chapter’s experiment requires all the same modes as the preceding chapter. That said,
there are subtle differences in the definition of the modes, so their definitions are provided

in full.

6.3.1 The Type Migration Lattice

Like chapter 5, we follow Greenman [2023], Greenman, Takikawa, et al. [2019], and Takikawa,
Feltey, et al. [2016] to describe the set of all possible type migrations with a lattice. The
lattice describes the space in which the modes of the rational programmer search for bugs.
Once again, however, there is a minor difference between the lattices traversed by the rational
programmer in this experiment compared to those of the preceding chapter.

Just like in the preceding chapter, we define configurations of program P as a set of those
components in P that are typed. However, in this setting, one of the typed components, Z,
plays the role of the (wrong) type interface between the library and its clients as described
in section 6.1.0.1. Since this component is always typed, we exclude it from the set of
components that describe a configuration. Hence, the bottom of L]P] is the empty set, the
top one consists of typed versions of all components in P (except Z). The configurations in

between these two extremes determine the mixed-typed variants of P.

131

6.3.2 How to Make Comparable Rational Programmers

Just like in the preceding chapter, a blame trail is simply an ascending chain of configu-
rations of P starting at a debugging scenario. Unlike the preceding chapter, however, any
configuration in this setting sq of L[P] can be a debugging scenario.

While extending the trail, the rational programmer eventually encounters a scenario s,

that is the end of the trail. In this setting, there are three such cases:

1. When the rational programmer reaches a scenario s,, where the type checker rejects the
program, the rational programmer has managed to identify the source of the type-value

mismatch. The trail ends in success. See section 6.1.0.2 for an example.

2. Due to the actual implementation of the experiment, the rational programmer may
succeed in a different way. Namely, running s, may terminate with a run-time type
error that identifies a boundary between the type interface Z and itself. This situation
may arise because the implementation realizes type interfaces as three modules: two
typed ones surrounding an untyped adapter module. Section 6.5.3 explains this design

and its rationale in detail.

3. When the trail ends because the run-time error from s, does not identify one of the
untyped components of P or the components of Z, the rational programmer has failed.
In essence, the trail goes cold and provides no further hints about how to migrate the

program in order to get additional information about the type-value mismatch.

Besides this difference in the termination of blame trails, the modes of the rational

programmer are defined in essentially the same way as in the preceding chapter.

132

6.3.2.1 The Natural Rational Programmer

This experiment uses the same definition of Natural blame trails as the preceding chapter.

Mode definition: Natural blame
A Natural blame trail is a sequence of scenarios sg,...S, of a program P such

that for all 0 <i<n-—1, s; C s;41 and

\ {blame[P, s;]|} if (the program for) s; produces blame
Si+1 \ Si =
{exceptionyra 1P; i)} otherwise

where

1. blame[P, s] denotes the component (of P) that s blames under the Natural

semantics, and

2. exceptionygua [P S| denotes the first untyped component in the stacktrace
produced by s under the Natural semantics.
6.3.2.2 The Transient Rational Programmer

Just like the preceding chapter, we define two interpretations of Transient’s multiple blame:

one that selects the first untyped component in the blame sequence, and another that selects

133

the last. The definitions are the same as before, reproduced here for completeness.

Mode definition: Transient first blame

A Transient-first blame trail is a sequence of scenarios sq,...s, of a program P

such that for all0 <1 <n—1, s; C s;11 and

{first[multiblame [P, s;]||} if s; produces blame
Sit1 \ 8 =

{exceptionpansient [P Si]} otherwise
where
1. first[multiblame [P, s]] is the first untyped module that Transient adds to

the blame sequence for s under the Transient semantics, and

2. exception pansient 12> S| denotes the first untyped component in the stacktrace

produced by s under the Transient semantics.

Mode definition: Transient last blame
A Transient-last blame trail is analogous to a Transient-first blame trail, but

selects the last untyped module from multiblame [P, s;] that Transient adds to

the blame sequence rather than the first.

6.3.2.3 The Erasure Rational Programmer

In contrast to the Natural and Transient semantics, the Erasure semantics produces no blame

information. The only kind of error information from Erasure is a stacktrace, so the Erasure

134

rational programmer has a single exception mode.

Mode definition: Erasure
An Erasure trail is a sequence of scenarios sy, ...s, of a program P such that for

all0<i<mn-—1,s Csiy1 and s;i1 \ $; = {exceptiong,,ere [P, Si] }-

6.4 The Experiment in Precise Terms

6.4.1 Success, Failure, and Usefulness

As the Natural rational programmer extends a blame trail it may encounter a scenario that
does not type-check or blames Z in P. Both situations mean that the rational programmer
has located the source of the bug in P. The blame trail ends in success. In contrast, a
Natural blame trail ends in failure if the rational programmer reaches a scenario that does
not reveal the bug statically, yet its terminating exception also does not point to an untyped
module (either as blame information or as part of the stacktrace information). Thus the

rational programmer has no further hints on how to continue the search for the bug.

Definition: A Natural blame trail sy, ...s, in a lattice L[P] is successful iff
error[P, s, = Z or (the program for) s, does not type check,
where error [P, s,] is the component identified either by blame or exception in-

formation produced by s, under the Natural semantics.

A Natural blame trail so, .., s, in a lattice L[P] is failing iff s,, type checks and

the trail cannot be extended further.

Just like the preceding chapter, we define a Natural exceptions mode to serve as a baseline

135

against which to judge the usefulness of blame.

Mode definition: Natural exceptions
A Natural exception trail is a sequence of scenarios sy, ...s, of a program P such

that for all 0 <i<mn—1,s; C siy1 and s;11 \ $; = {exceptionyaura [P Si] }-

With this baseline, the usefulness of Natural blame boils down to the comparison between

Natural blame trails and Natural exception trails that start at the same scenario sq, just like

the preceding chapter.

Definition: Given a program P and a debugging scenario so in L[P], Natural
blame is more useful than Natural exceptions for debugging so iff the Natural

blame trail that starts at sy is successful while the Natural exception trail that

starts at sqg is failing.

Likewise, we define a baseline mode for Transient blame trails and use it to define the

corresponding usefulness of Transient blame.

Mode definition: Transient exceptions

A Transient exception trail is analogous to a Natural exception trail, but using

the Transient semantics rather than Natural.

The definition of success/failure and usefulness of the two interpretations of Transient

blame are obvious adaptations of the definitions for Natural, so we omit them here.

6.4.2 Experimental Questions

We can now state the experimental questions in precise terms:

136

1 Is blame information useful in the context of Natural for type interface mistakes?
Q> Is first-blame useful in the context of Transient for type interface mistakes?
Q3 Is last-blame useful in the context of Transient for type interface mistakes?

Q. Is blame in the context of X more useful than blame in the context of Y for type

interface mistakes (where X, Y in [Natural, Transient, Erasure])?

In terms of the space of experimental questions of table 3.1 (page 27), @)1 through Q3
capture the first column of questions, and (), the second column, with information from the
third column (i.e. debugging effort) being a useful tie-breaker—all the same as the preceding
chapter.

Since the questions and experimental setup at a high level are the same as the preceding
chapter, the procedure for answering them is also the same. Rather than repeating it all
here, it suffices to recall that the process to answer these experimental questions boils down

to the following plan:
1. create a large and diverse corpus of debugging scenarios;
2. collect the blame trails for each mode of the rational programmer;

3. compare the successes and failures of each mode’s blame trails.

6.5 Obtaining Debugging Scenarios with Type Interface Mistakes

While there are plenty of wrong type interfaces for untyped libraries in the wild, they are
not a suitable basis for a corpus of debugging scenarios. In addition to a library and a wrong

type interface, a debugging scenario consists of clients that interact with the library as if

137

the type interface were correct and in such a way that the type-value mismatch manifests
itself. However, no curated collection of such buggy programs with client-interface-library
architecture exists.

To create a corpus of such debugging scenarios, we proceed in four steps. First, we identify
a diverse set of fully-typed correct Racket programs as the seed for the scenario corpus
(section 6.5.1). These programs can be naturally split into components that implement a
library, a thin component that plays the role of the library’s type interface, and the library’s
clients that interact with the library through the interface. This architecture matches the
needs of our experimental design. Second, we mutate each seed program to inject mistakes
into its type interface. Historically, though, mutation analysis does not provide mutators
for types. We therefore invent type mutators and validate their effectiveness (section 6.5.2).
Third, we add dynamic adaptors to each mutated program so that client components interact
with the program’s library according to the mutated type interface rather than the original
one (section 6.5.3). Just like the preceding chapter, all these adapted mutants have the
same migration lattices because they all share the same type-able components, and these
lattices can be computed in a straightforward manner from the type annotations of their
corresponding fully-typed seed program. Finally, we sample the extensive space of generated
debugging scenarios in much the same way as the preceding chapter to obtain a sufficiently

large and diverse but computationally feasible corpus for the rational programmer experiment

(section 6.5.4).

6.5.1 The Seed of the Scenario Corpus

Our starting point is the same set of programs as the last chapter: Greenman, Takikawa,

et al. [2019]’s GTP collection of Typed Racket programs.

138

In their original state, however, the ten chosen programs are not suitable for generating
debugging scenarios. Specifically, they lack dichotomous client and library sides, with a
type interface component between those. It is easy, however, to identify library and client
portions in all of them and to modify them to consolidate the connections between the two
in a new type interface component.

While a simple modification of the GTP programs thus suffices to obtain programs with a
client-interface-library architecture, many of the resulting type interfaces lack the key feature
of interesting type declarations. In particular, they cannot include data structure definitions,
i.e., the type for Racket’s structs. The reason is that structs in Racket are by default gen-
erative, and the type for a given struct is generated by its definition. Hence, on one hand,
the type interface cannot be their definition site because typically library components depend
on the data type too, not just the library’s clients. On the other hand, due to generativity,
the type interface cannot re-export structs from the library side because ascribing those
types would duplicate the data type definitions, creating new and incompatible types. In
sum, as Greenman, Takikawa, et al. [2019] describe, data types used by multiple components
must reside in a so-called adaptor module. Greenman’s adaptor modules make it impossible,
however, to mutate the data type definitions, a kind of mutation that is an essential ingre-
dient for the generation of non-trivial debugging scenarios. With this mutation, the library
equipped with a type interface and its client components get different views of the same data
type.

Fortunately, Racket offers a work-around that is applicable to most of the chosen pro-

grams.® The key is to change all structs to so called pre-fabricated structs. These are

3Unfortunately, this change is not feasible for the acquire, kcfa, and suffixtree programs; contracts
generated by Typed Racket for prefabricated structs result in impractical slowdowns for those programs.
Hence, we use adaptor modules and do not mutate their data type definitions.

139

non-generative data types which are equivalent to any other pre-fabricated data type with
the same structure. In other words, a pre-fabricated struct allows every component that
uses instances of the data type to re-declare its type definition. Thus, the type interface may
also contain definitions for the data types, which opens up their mutation for the creation

of incorrect views for client components.

6.5.2 Mutating Interface Types

With suitable seed programs in hand, we use mutation to transform them into debugging
scenarios. Recall that in a debugging scenario, the type interface ascribes an incorrect type
to some value(s) that cross from the library to the client components. Therefore turning
the seed programs into debugging scenarios requires mutating type annotations in their type
interfaces.

Standard mutation operators are useless for this purpose, for they mutate code rather
than types. Instead, we develop a new set of operators targeting the language of types. The
goal of these new operators, listed in table 6.1, is to make small syntactic changes to a type
interface so as to create an inconsistency between the mutated interface and the actual types
of library components. The operators’ design draws inspiration both from the authors’ own
experience in making mistakes in type specifications and their observations about mistakes
students make in a variety of programming-oriented courses.

Table 6.1 presents the mutators:

e The first two capture the generic situation where the programmer has accidentally
used the wrong type in some place, for example, ascribing (Integer -> String) to a
function from Integer to Integer. Rather than arbitrarily picking an alternative type,

these mutators use the type Any to generically represent some other (incompatible) type

140

Table 6.1: Summary of mutators

name description example

base->Any swaps a base type with | Integer — Any
Any

composite->Any swaps a composite type | (List Player) — Any
with Any

arg-swap swaps two of a func-| (A B C -> D)

tion’s (or method’s) ar-| — (C B A -> D)
gument types

result-swap swaps two of a func-| (A -> (Values B C D))
tion’s (or method’s) re-| — (A -> (Values C B D))
sult types
struct-swap swaps two of a struct’s| (struct pair ([id : Natural] [content : String]l))
field types — (struct pair ([id : String] [content : Naturall))
class-swap swaps two of a class’s| (Class (field [id : Natural] [content : String]l))
field types — (Class (field [id : String] [content : Naturall))

than the one originally in the same place at the interface.

e The second pair, arg-swap and result-swap, correspond to the specific mistake when
the programmer forgets the proper order of positional arguments or results of a function

and thus puts the types in the wrong order.*

e The last two swap fields in a structure type or class type definition.

6.5.2.1 Are These Mutators Interesting?

The answer has two distinct dimensions. The first is a philosophical dimension. It questions
how these mutators correspond to the mistakes programmers actually make or encounter
in type interfaces. The second is a technical one, namely, whether the mutators create

variants of GTP programs whose type interfaces ascribe the wrong type to values such that

4In Racket, expressions may produce multiple values. Typed Racket’s type language therefore supports
describing the types of each result in function types.

141

a program-run signals a type-related exception.

Along the first dimension, these mutators effectively simulate the kinds of mistakes that,
according to recent work by Hoeflich et al. [2022] and Williams, Morris, Wadler, and Zalewski
[2017], actually appear in DefinitelyTyped type interfaces. For instance, Hoeflich et al. [2022]
found that one of the most common mistakes is the misspelling of field names in record types.
This mistake means that clients attempt to access a non-existent field, only to find out that
it is missing. In JavaScript this failed access results in undefined, a special and useless
placeholder. The base->Any and composite->Any mutators simulate this scenario as they
transform field types, thereby rendering the field unusable by client components. Similarly,
the typical off-by-one function arity mistake is simulated by transforming the last argument
of a function’s type to the opaque Any type, because in JavaScript missing arguments are
filled in with undefined opaque values.

Along the second dimension, it is necessary to run the mutants produced by the mutators
in order to understand their quality. Unsurprisingly, our mutators do not always create
type interfaces that cause type-value mismatches. For example, replacing a type with Any
typically causes a type error, because Any is the top type encompassing all types, but not
always. Fortunately, the GTP benchmarks make it easy to check whether a particular mutant
is ill-typed. Specifically, if the mutation introduces a type-value mismatch, the type checker
signals a static type error for the top configuration of the migration lattice for the mutant.
This type error identifies the mismatch between the interface and the corresponding library
component.

Once an ill-typed mutant is identified, the next step is to confirm its suitability as a source
of debugging scenarios. A type-value mismatch alone may not change the run-time behavior

of a program. For instance, the mismatch may be in the type of a function that is never used.

142

The Natural semantics provides an appropriate filter for such mismatches. Since Natural is
a complete monitor and signals strictly more errors than Transient or Erasure [Greenman,
Felleisen, and Dimoulas 2019], it guarantees to signal an error if the type-value mismatch
affects the program’s behavior. We therefore further select only those mutants for which the
Natural semantics signals an error in the bottom configuration of the migration lattice.
After all, any error arising while running this configuration must be due to a contract re-
sulting from the type interface, because those types are the only ones enforced. That said,
this choice introduces a small degree of bias against the other semantics, which sections 6.6
and 6.7.1 quantify and discuss.

All told, the mutators create just under one thousand mutants from the ten selected
GTP programs. Of those around 400 are ill-typed, and 294 have observable changes in
dynamic behavior. Hence we end up with 294 suitable mutants for the rational programmer
experiment.

Figure 6.2 illustrates that these mutants form a diverse population, capturing a wide
array of mistakes in many different shapes of types. Each bar depicts the number of mutants
where the mutation falls into the category named on the x-axis. The categories correspond to
a path down the spine of the mutated type, from the outermost level down to the location and
specific change introduced. For example, the category (-> struct base) collects mutations
that change the base type (to Any) of a struct field which is the argument or result of a

function type.

6.5.3 Adapting Mutants to Debugging Scenarios

Mutating the type interface of the GTP programs alone does not suffice to create interesting

debugging scenarios. In particular, since the programs are correct with respect to the types

143

60

path tag | meaning
base | a base->Any mutation
composite | a composite->Any mutation
fun-swap | a arg-swap or result-swap mutation
struct-swap | a struct-swap mutation
class-swap | a class-swap mutation
struct | in a struct field type
-> | in a function argument or result type
class-mtd | in a class method type
— typedef | in a type definition
container | in a data structure type (e.g. Listof)
class-fld | in a class field type

501 —

40+

30+

count

20+

10+

\ Al Al)) Al Al Al >N Al Al) Al > Al > Al Al > Al > Al
S A FFT S FFF TP AT F IS TS T T
N T T S & & & & ¢ S N 5 L s
& & ¢ o & & & & F & &7 &S 7 & & & F & & & FH & &S
© < & & 7§ ® & S8 7 N & & & $ & TS S S
\a"—‘e & dQQ < & & \fz{”% < & 0"'& % \@e 0\\, 0\° &a&o \000 &@ ﬂo 70 0\@6 & < 6&\6
© < FCN ESR «® &P = & 7 & &
& N ~ @ @Q o Rgpr & &
< o & G g
N N $ & < 2
N & & &
N R

Figure 6.2: Type mistakes captured by final mutant population.

of the original interface, mutating the interface creates a disconnect between the client com-
ponents and the types described by the mutated interface. Figure 6.3 illustrates the problem
with a simplistic example. While the interface has been mutated to swap the argument
types of £, the client uses f according to its original type. An interesting debugging scenario
requires, however, that the client’s code aligns with the mutated interface types. Fixing this
mutation-induced discrepancy represents the key technical challenge for the design of our
rational programmer experiment.

We solve this challenge with the introduction of mutation adaptors. Conceptually, a
mutation adaptor adjusts the client to align with the mutated type interface. From an

architectural perspective, it is an interposition layer between the mutated interface and the

144

client : t/r ti : typed/racket e racket
(require ti) (require/typed/provide lib (provide f)
;; arguments are swapped (define (£ ch n)
(f #\c 5) [f (Integer Char -> Integer)]) (+ (char->integer ch) n))

Figure 6.3: A simple program illustrating the need for adaptors.

client side of the program, and it consists of a typed and untyped part:

1. a variant of the original type interface, with which the client interacts.

This variant imports the adaptor module and re-exports all elements at the original and
correct type. It thus decouples the clients from the mutated interface. Specifically, this
type interface ensures that all client components type-check according to their existing

type annotations from the GTP benchmark suite.

2. the untyped flow-adaptor module between the original interface and the mutated one.

The flow adaptor adjusts the flow of values at run time from the original type signatures
to the mutated ones, respectively. It simulates a client that uses an exported value

according to the mutated type.

The behavior of flow adaptors is specific to the mutation of the type interface. For
swapping mutators, the flow adaptor swaps the values of concern. For mutators that
replace types with Any, the adaptors replace the corresponding value with an opaque

sealed value to represent a value of unexpected type.

In short, the faulty type interface in a debugging scenario consists of three modules: the
mutated type interface, the flow adaptor, and a variant of the original type interface.
Let us return to the example in figure 6.3. Adapting this program requires the injection

of: a function that swaps the Char and the Integer argument to adjust the flow of values; the

145

mutated type interface; and the modification of the original type interface to import values

from the flow adaptor. The diagram in figure 6.4 represents the result of these modifications.

client : t/r ti : typed/racket i o macdket
(require ti) (require/typed/provide adaptor (provide f)
;5 original argument order (define (f ch n)

(f #\c 5) [f (Char Integer -> Integer)]) (+ (char->integer ch) n))
adaptor : racket mutated-ti : typed/racket
(require mutated-ti) A (require/typed/provide 1lib
(define wrapped-f (A (ch n) (f n ch))) ;; arguments are swapped
(provide (rename-out [wrapped-f f])) [f (Integer Char -> Integer)])

The adaptor creates the wrapper function wrapped-f and exports it as f, so that the rest of the
components are oblivious to the wrapper. The adaptor and the two interfaces (in blue) form the
actual interface of the library in the debugging scenario for the purposes of the experiment.

Figure 6.4: Adapting the program of figure 6.3.

While adaptors for the swapping mutators have a fairly obvious rationale, those for
base->Any and composite->Any demand some explanation. The point of replacing a type
with Any is to hand the library a value of a completely unknown and unexpected type. The
existing library code cannot deal with such a value, and it signals an error when it uses any
elimination operations on such a value. The flow adaptors therefore simulate this situation
by placing the value of the mutated type in an opaque container, ensuring that the library
is unable to inspect or use it in any way.

Implementing these program modifications—specifically the flow adaptors—is mostly
straightforward. The experiment framework generates flow adaptors that boil down to either
swapping or sealing. Technically speaking, the framework exploits Racket’s support for in-

terposition through impersonators and chaperones [Strickland, Tobin-Hochstadt, et al. 2012]

146

or makes adapted copies of values. The one exception to this approach are mutations that
swap class and object fields. Since Racket does not provide a mechanism for interposing on
field accesses, we manually changed the benchmarks to make all external field accesses go
through new getter and setter methods for which Racket does offer interposition features.
This manual change does not affect the behavior of the programs.

Finally, we can return to the remark (2) in section 6.3.1 (page 130). The program
modifications described here do not affect the generation of the migration lattice. Recall
that the lattice of a GTP program is built from the components that are either typed or
untyped. And, as specified in section 6.3.1, the construction of the lattice ignores the type
interface, which in this experiment consists of the mutated type interface, the flow adaptor,
and the variant of the original type interface. Consequently, the lattices for all mutants are

exactly the same as the lattices of the corresponding original program.

6.5.4 Sampling Debugging Scenarios

The 294 usable mutants across the selected GTP programs yield over two million different
mutant x configuration pairs, which are the debugging scenarios that the rational program-
mer can explore. Hence, to perform the experiment within a feasible time-frame, we must
once again sample this scenario space to obtain a reduced yet representative population.
We follow the same stratified random sampling approach as in chapter 5, using the same
stratification criteria, with only minor differences to account for the difference in setting.
We again filter out trivial scenarios, where the type checker directly identifies the type-value
mismatch between the mutated interface and the library. Such trivial scenarios come about
whenever the configuration uses the typed variant of a library component that provides a

value whose interface type has been mutated. In this situation, the type checker discovers

147

the conflict between the type annotations of the library and the interface. As before, filtering
out the trivial scenarios results in a computable sub-lattice of the migration lattice, in which
no configuration contains a typed variant of the library component with faulty interface
types. Thus we sample 100 interesting scenarios from that sub-lattice per mutant, just like
the preceding chapter, this time arriving at a final population of 29,400 debugging scenarios

for the rational programmer experiment.

6.6 Results

We ran the experiment giving each debugging scenario a 10 minute timeout and a 6 GB
memory limit. In aggregate, following all trails required thousands of compute hours.

Figure 6.5 shows the high level success rate estimates of each rational programmer mode
for the debugging scenarios of the experiment. These success rates illustrate points that
form the basis of the rest of our analysis.

First, the Natural blame mode far outperforms all other modes: the rational programmer
that heeds blame information from the Natural semantics explores successful blame trails
in nearly 90% of the scenarios. Second, the next closest modes, both at nearly 70% of the
scenarios, are the two Transient blame modes. The Erasure mode follows close behind with
just under 65%. Finally, the Transient exceptions mode performs ever so slightly worse than
Erasure, around 5% worse than its corresponding blame modes. Nonetheless, they all far
outpace the Natural exceptions mode that is successful for only about 45% of the scenarios.
Clearly, there are significant differences in the utility of the error information the rational
programmer relies upon—across both the different semantics and sources of error information
within each.

Digging deeper into the causes of failed trails for each of the modes offers some insight

148

% of scenarios successful
w
o

A & $?
\‘0\(0 Q’Q,Qp ‘0\0@ «&0& Q,Qo @{b@»
. X &
& \QJKS) & (o g
> > S X X
= (&0‘ ‘\C}e Qé«,@‘\’ 05\@0
w~ &{b «@ «{b

The upper bound margin of error is
0.08%.

Figure 6.5: Percentage rates of success.
into these differences. In the Natural blame mode, the rational programmer fails to reach a
static error in about 3,400 scenarios, all for the same reason, namely, running the scenario
results in an exception from the underlying language rather than blame. In the absence of
blame, the Natural blame mode falls back on stacktrace information to make progress; in
these scenarios, however, the stack contains no untyped modules in the program, giving the
rational programmer no indication of where to look next, so it is stuck.

Similarly the stacktrace information does not help the Natural exceptions mode in about
15,000 scenarios. Of those, 3,400 scenarios are the same as those that stymie the Natural
blame mode. In around 11,500 additional scenarios the Natural run-time type checks do
signal a type-value mismatch, but the Natural exceptions mode ignores the blame informa-
tion, and the stack is unhelpful. This is not altogether surprising, however, because the
checks likely occurred while a value of incorrect type passed across the boundary of the type
interface; at that point, the only modules likely to be on the stack are client components.
None of the client components (in any of the benchmarks) can ever cause a mismatch to

be statically detected, since the mismatch is by construction between the interface and one

149

or more library components. Thus, in the setting of this experiment, the Natural checks
produce unhelpful stack information most of the time.

The two Transient blame modes fail in the same ways, spread over a few broad causes.
Principal among them is unhelpful stack information, accounting for just under 6,500 failures.
More interestingly, over 1,000 failures occur because Transient checks fail to detect the
mismatch at all: the program completes (most probably with incorrect results). Finally,
around 600 scenarios end in failure when Transient checks signal an error, but Transient
blame is unhelpful. Specifically, the blame sequence is empty. The corresponding scenarios
are instances where Transient’s collaborative blame algorithm fails due to a fundamental
limitation in tracking blame for built-in higher order functions. Chapter 5 describes the
exact same problem in greater detail.

Finally, the Erasure mode fails in two ways: either the stacktrace information available
from the exceptions of the underlying language are unhelpful, or the program terminates
without any error. Unhelpful stacktrace information account for 8,700 of the Erasure mode’s
failures, and the program terminates with no error information in 1,200 of the scenarios
(again, likely with incorrect results).

Figure 6.6 gives a head-to-head account of the success rates of the modes to shed light on
the comparative utility of the sources of error information available to the rational program-
mer. Specifically, the figure names one plot per mode, where the plot compares the estimated
percentage of scenarios where the named mode uses more (and less) useful information than
each mode named along the x-axis. For instance, the top left plot illustrates that there are
no scenarios where any of the other modes have more useful information than Natural blame
mode for the same scenario. And while the Natural exceptions mode performs the worst in

terms of overall success rates, the bottom left plot clarifies that there are in fact scenarios

Natural blame

Transient last blame

3 45 3 45
§ 40 Ug-’ 40+
o 35+ o 35+
g 30+ g 30+
o 254 o 251
S S

‘g 20+ g 20+
£ £

8 15+ 8 15+
» 10 @ 10+
G G
s s O
N N

0 0

% of scenarios less useful
N
(2]
!

% of scenarios less useful
N
T

& & %2 &) s
& T S NN N SR
- A 3 U N N 9 <
<° SN ° 9 <° AN & S
¥ N & X 2 2 A\? N X 2
X < &S S ~ SN S N
’5& Qc} Q%x 0% ?},\} Qc} ng 0%\,
PR P PR <2
Natural exceptions Transient exceptions
- 4 = 4
E g
% 40 3 404
o 35+ o 35
g 30+ g 30+
o 251 o 254
<] <]
g 20+ g 20+
5] 5]
§ 15+ § 15
2 10+ 2 10+
=] 54 =] 54
ES 0 ES 0 I I] I
| I—
= = i
& 10] & 10]
= =
@ 157 @ 157
2 20 2 20
%2} %2}
Q 25+ Q 25+
— —
€ 30- € 30-
(] (]
S 354 S 351
S 40+ S 404
X 45 | | | | | | X 451+ | | |
@ o @ @ & < @ & @ @
& & & & & N & & & S &
S Q 9 9 Q < 9 Q 9 9 Q <
> o X X Q < > [X X 2
&° SN o 9 <° AN & g S
> S Y X > A\ X X
g > & g > o
~ &OQ & Qé\QQ (’\ﬂ} e S (&0}9 Q@@ Q@Q 0{;@0
é &,{b &{b &f:b é &{b &{b (q:b

Transient first blame

150

% of scenarios more useful

% of scenarios less useful
N
ol
f

Erasure

% of scenarios more useful

% of scenarios less useful
N
[}
f

Each plot compares the mode named above the plot to every other mode. The green bars above
0 depict the estimated percentage of scenarios where the named mode has more useful
information than the other. The red bars below 0 conversely depict the estimated percentage
where the named mode has less useful information. The upper bound margin of error is 0.08%.

Figure 6.6: Head to head usefulness comparisons.

% of trails with length

% of trails with length

Random
100
5 80+
(=}
[=]
2
< 60+
=
2
2
g 40+
G
o
o\j 20,,
0 1 2 3 4 5 6 7 8 9 10
Natural Transient Transient
blame last blame first blame
100 100 100
80+ o 80t o 80t
= =
=] =]
2 2
60+ g 60+ g 60+
E E
2 2
40+ T 40+ T 40+
5 5
201 X 20 X 204
01— : : t - 04— : : - 0= : :
0 1 2 3 4 0 1 2 3 4 0 1 2
Natural Transient Erasure
exceptions exceptions
100 100 100
80+ = 80t = 80f
= =S
=] =]
2 2
60+ = 60+ = 60+
= =
2 2
40+ T 40+ T 40+
- -
G G
(=] (=]
20- X 20t X 20t
0 T T T + + 0 T T T T + 0 T T T
0 1 2 3 4 0 1 2 3 4 0 1 2

Each plot depicts the distribution of trail lengths for the mode named above. The
proportion of successful trails (bottom of each stacked bar) and failed trails (top) are

also indicated by color (green for success and red for failure). The upper bound

margin of error is 0.01%.

Figure 6.7: Trail length distributions per mode.

151

152

where the Natural exceptions mode is more successful than each of the other modes except
for the Natural blame mode.

These results offer answers to the experimental question from section 6.4.2. Concretely,
we can answer question (); in the affirmative: blame is useful in the context of Natural.
There are a wealth of scenarios where the Natural blame mode improves over the Natural
exceptions mode, and none to the contrary; indeed, the same is clear for the Natural blame
mode compared to all others, answering the (), questions concerning the Natural blame mode
as well. Questions ()2 and ()3 are similarly answered in the affirmative, though there is a
tiny proportion of scenarios where Transient exceptions improve over each interpretation of
Transient blame. Both Transient blame modes improve over Erasure in a small proportion
of scenarios, and the converse is only true in a tiny proportion. Thus the (), questions
concerning Transient and Erasure can be answered in favor of Transient’s blame, though not
by much. However, neither Transient blame mode appears preferable over the other.

The length of successful trails helps to clear some of that uncertainty. Figure 6.7 depicts
the distribution of trail lengths for each mode, where each bar is also colored according to
the proportion of successful and failing trails. The main takeaway from this data is that the
Q. questions about Transient first and last blame can be answered slightly in favor of the
last blame interpretation, since it has a significantly higher proportion of successful trails

with length zero.

6.7 Lessons Learned

An intuitive understanding of the rational programmer’s workings is instrumental to inter-
preting the aggregate results of the previous section. Figure 6.8 provides a detailed account

of one scenario from the GTP program synth, which offers a useful illustration of how each

153

2, 22,8 9, >) o,
B HRBE, B
PG T Rnny
0y S 8, & <,
% e
o 2
oo, v v
R
=2

Erasure,

Transient-exceptions

- LT T=] =] 1=] Tx] HENEREEEENE LT Ix[=I0=] T T 1x]
type interface 2’09\,&\ DA 3.0;\9\),\1‘ DAL AN 6.9;\9\,0‘ DA
% PO % PO % O
° EX AN - BN - RN
ENIC ENC X
)))) w, “
(ol 2 (el 2 (el 2
Erasure,
Transient-exceptions,
Natural-blame Transient-last-blame,
Transient-first-blame
Natural-exceptions
G (TR EE T
2%2.99 FUAUNS
% BR%
> R%y%
96@(}(\l‘/ad‘
R ReY
the dependency graph the paths taken by each mode through the configuration lattice
Root Step 1 Step 2 OK?
Mode config result stack config result stack config result
Natural w drum T \/
-blame array-struct
Transient %‘;& synth w synth Tx \/
-first-blame main array-struct main
Transient 3% synth @ synth \/
-last-blame main type-interface main
Erasure %‘3 synth %33 synth %‘:3 X
main main
Natural) drum | CeCEmrrm U drum X
-exceptions
Transient EEECECEEEED %‘;3 synth % synth % X
-exceptions main main

It .
Tesusyrnbol denotation

Legend
config Each box corresponds to a module and indicates (with x) if it is typed. The gray box is the
type interface.

w the configuration signals a dynamic type check failure, blaming the module(s) below
Tx the configuration does not type check
3% the configuration fails a check by the runtime system
U the configuration signals a dynamic type check failure for which blame is ignored

Figure 6.8: An example scenario from synth, with the trails that each mode explores.

154

mode of the rational programmer works. The top left of the figure illustrates the program’s
dependency graph, and the rest of the figure details the trails that each mode explores.

In this scenario, the type interface has been mutated so that the type of an Integer field
in an Array data structure definition is replaced with Any. Locating this mistake takes the
modes of the rational programmer on five different paths through the migration lattice of
the (adapted) mutant, illustrated in the top right of the figure.

The table in the middle of the figure details how each of those paths play out, step by
step. Each row of the table corresponds to a mode. Each column describes a point in the
trail, starting from the root debugging scenario, with the result of running the correspond-
ing configuration. The following column to the right then describes the configuration the
rational programmer examines next in response to those results, and the results of that new
configuration respectively; and so on. Finally, the OK? column summarizes whether the
trail ends in success or failure.

For instance, compare the first and third rows of the table. The first row, for the Natural
blame mode, shows that the root configuration results in blame on the array-struct module.
So the rational programmer types that module to obtain the configuration in the next column,
which does not type check. In contrast, the Transient-last-blame mode’s row shows that the
root configuration does not result in blame but in stacktrace information, where synth is
the top module. The rational programmer types that module, and the result of that new
configuration is blame on the type interface. Readers familiar with the Transient semantics
may wonder how blame can land on the interface, because it is a typed module. In fact,
due to the adaptation described in section 6.5.3, the interface really consists of two typed
modules sandwiching the untyped flow-adaptor module. This latter component is what

Transient blames, and we interpret that as successfully identifying the interface. In practice,

155

this situation corresponds to one where there is an untyped library module in between the
buggy type interface and the typed library module that detects the mismatch, which would
be blamed, and which, once annotated, would make the mismatch apparent to the type

checker. Thus the two modes take different paths to success in this scenario.

6.7.1 Interpreting the Results

The experimental results suggest a few takeaways about the value of blame when types
are mistakenly ascribed in gradually-typed programs. First, the information from run-time
type checks—sans blame—is on the whole less helpful for the rational programmer than
the information that would have been available from (possibly later) exceptions from the
underlying language. This stands in contrast with chapter 5’s finding that gradual run-time
type checks offer the rational programmer comparable value to the regular safety checks of
the underlying language. Of course, in practice working programmers won’t know a-priori
if they have made a mistake in types or code, so the contrast raises the question of whether
run-time type checks without blame offer debugging value for working programmers.

Unlike run-time type checks without blame, those with blame offer clearly valuable in-
formation, across all semantics. However, specifically in the context of mistakes in interface
types, Natural blame outpaces that of Transient significantly. Indeed, figure 6.6 shows that
Natural blame offers better information than all other modes in large proportions of the
scenarios. In contrast, Transient’s blame information improves over Erasure’s stacktrace
information on some occasions and on others is worse, making it overall a marginal improve-
ment over Erasure.

While Natural with blame thus appears the most useful in terms of the debugging infor-

mation it offers, its high overhead is well-known to be prohibitive for use in deployment. At

156

% of scenarios producing error
w
)

. & $?
\‘0\(0& Q‘Q,Qp 40\,&5‘ “0\0& Q&\o @{b%\s
X X)
& \e"‘*o & & o
> > S X X
= &p‘ ‘\é\e Qé@"\’ 05’@‘\
w~ &{b «@ «@

The upper bound margin of error is
0.01%.

Figure 6.9: Estimated percentage rates of bug detection (i.e. halting with an error).

the same time, the more performant options that perform type checks at run time but with-
out blame do not appear to offer debugging benefits over Erasure. So what should a working
programmer do? The results suggest a dual strategy: use Erasure for deployment, and—if
available—a Natural blame debugging mode during reproduction and debugging of mistakes
discovered in deployed software. This strategy requires that not too many type-value mis-
matches go entirely unnoticed when using Erasure, and the data in figure 6.9 suggests that
is probably the case.

Figure 6.9 furthermore directly quantifies the effect of our choice to filter mutants using
the Natural semantics, illustrating that the resulting bias affects at most four percent of the
scenarios we test. In detail, the main way that this choice of filtering (sec. 6.5.2) biases in
favor of Natural is that with the Natural semantics we may include scenarios that Natural
is able to detect, but the other semantics cannot. If there were many such scenarios in our
results, it would raise the question of whether the experiment is even an apples-to-apples

comparison of error message quality—as opposed to bug-detecting ability. However, the

157

proportion of these scenarios is significantly smaller than the size of the effects informing
our conclusions. To further underscore the insignificance of this bias, appendix C presents
the results of a reproduction of the experiment with a bias in favor of Erasure instead of
Natural; those results are at a high level identical to the preceding section, differing only by

small percentages.

6.7.2 Threats to Validity

The validity of these conclusions are subject to two categories of threats. The first category
of threats concern the experimental setup. Some of those are described in preceding sections,
namely: (i) the GTP programs we use may not be truly representative of all programs in
the wild; (ii) our synthetic type mistakes may not be truly representative of all mistakes
programmers make in ascribing types; and (iii) our adaptation of client-side behavior does
not match exactly the reality of program behavior with clients programmed against incorrect
type interfaces. While the design of the experiment attempts to mitigate these threats with
the careful design and analysis of the scenario generation (sec. 6.5), the reader must keep
them in mind when drawing conclusions.

The second category consists of external threats due to the philosophical underpinnings of
the experimental design. Most fundamentally, and just as in the other two experiments, the
rational programmer itself does not necessarily reflect the way real programmers use gradual
types or debug mistakes in type interfaces (sec. 4.7.2). Also like the prior experiment, the
results of this experiment do not necessarily translate directly to other gradually typed
languages, but the method of evaluation applies to any such other contexts (sec. 5.8.6). At

a more technical level, the experiment design assumes that the rational programmer can

158

100

% of scenarios successful
(o))
o

(]
& &
> O > 2 o~
X S X & F
> ® 2 & S <
PN AR S
3 S S
R G
SV ¢ > e
< <8 <¢

The upper bound margin of error is
0.04%.

Figure 6.10: Estimated percentages of trails that succeed without typing library modules.

inspect and annotate library components, which real programmers may not be able to do

(sec. 6.7.3).

6.7.3 Threat: Typing Library-side Modules

In the experiment, the rational programmer opens up and ascribes types to library compo-
nents in the process of hunting down a type-value mismatch. When working programmers
find themselves in the same situation, however, it is far from clear that they would be willing
or able to do the same. This is especially relevant in settings like DefinitelyTyped, where
the library in question is some third-party package on npm. In that case, the programmer
relies on the authors of the type declaration file or the package to respond to a bug report
and pick up the search of the bug. While anecdotal evidence suggests that it is common for
programmers to issue bug reports, and type declaration and package authors to respond with
fixes quickly [Hoeflich et al. 2022], assuming that they do so all the time is an experimental
simplification.

Hence, the simplification naturally raises the question of what the results would look

159

like if the rational programmer only modified client components. Figure 6.10 offers some
indication of the answer to this question based on the data already available. It depicts
the estimated overall success rates of each mode where the criteria for extending a blame
trail excludes adding types to library components. That is, the rational programmer fails
when error information points to a library component as the next point of focus of the
investigation.

This data draws a significantly different picture. While the Natural blame mode remains
by far the most successful, Transient-last-blame emerges here as the best alternative infor-
mation, and none of the modes using exception information, including Erasure, have any
success. This is not altogether surprising because, as discussed in section 6.6, even if stack-
trace information points to client components, adding types to client components can never
turn the type-value mismatch into a static type error.

This filter on the data does not tell the whole story, however. While it does suggest
that Natural blame offers the best debugging information in this setting too, and by a
significant margin, a followup experiment is necessary to see if that suggestion bears out for
true client-side rational programmer modes. For instance, a true client-side version of each
mode would simply filter library components from stacktrace information and pick the next
client component instead of failing when the top of the stack is a library component. Such
modes model programmers that question the correctness of type declarations and third-party
libraries as a last resort, and only after exhausting all possibilities that the problem stems

from their code.

160

6.8 Summary

When it comes to detecting type interface mistakes, all semantics are essentially equally
good, at least for the programs under consideration here. When it comes to locating those
mistakes, however, the Natural-with-blame mode is the clear winner. In fact, it is the only
combination that seems to provide a significant edge over industry’s Erasure semantics.
All other academic semantics with blame offer limited benefits over Erasure at providing
debugging hints. And notably, academic semantics without blame fare no better, or even
worse, than Erasure.

Combining these observations with the results of the preceding chapter suggests that
in industrial gradually typed languages, such as TypeScript, Erasure seems to suffice for
deployment. But, these languages would also significantly benefit from a Natural-with-blame

development mode.

161

CHAPTER 7
RELATED WORK

This chapter assesses related work along three different dimensions. First is the object-level,
encompassing related work on the objects of study in this dissertation, namely contracts,
gradual typing, and their error information. Second is the meta-level, referring to work re-
lated to the methods of this dissertation; that is, prior work on evaluating error/debugging
information as well as debugging strategies. Finally, the scenario construction for the experi-
ments of prior chapters employs or draws inspiration from a handful of Software Engineering
techniques that have storied research literatures. The rest of the chapter is accordingly

divided into three sections concerning each of these dimensions.

7.1 Contracts and Gradual Typing

7.1.1 Contracts

Eiffel is the first programming language to popularize the idea and practice of contracts with
the introduction of the “Design by Contract” methodology [Meyer 1991, 1992, 1988], which
systematizes ideas about using assertions to check function inputs and outputs (see Parnas
[1972]’s work). Findler and Felleisen [2002] use delayed checks to lift contracts to the world
of higher order functions, and introduce blame to pinpoint the component at fault when a
contract fails. This work has since led to a significant body of research on the design of higher
order contract systems; including support for various host language features [Degen et al.

2012; Greenberg et al. 2012; Hinze et al. 2006; L. Jia et al. 2016; Strickland, Dimoulas, et al.

162

2013; Strickland and Felleisen 2009a], extensions of the contract system’s expressiveness and
its efficient implementation [Disney et al. 2011; Feltey et al. 2018; Findler, Guo, et al. 2007;
Greenberg 2015; Keil and Theimann 2015; Moy, Dimoulas, et al. 2024; Moy and Felleisen
2023; Scholliers et al. 2015; Strickland and Felleisen 2009b; Strickland, Tobin-Hochstadt,
et al. 2012; Swords 2019; Swords et al. 2018; Williams, Morris, and Wadler 2018], and
applications and extensions of contracts for checking properties beyond partial functional
correctness or in different ways [Dimoulas, Moore, et al. 2014; Heidegger et al. 2012; Moore,
Dimoulas, Findler, et al. 2016; Moore, Dimoulas, D. King, et al. 2014; Waye et al. 2017;
Xu et al. 2009; C. Zhang et al. 2022]. Alongside and intermixed therein is work on various
aspects of contract system semantics [Blume and McAllester 2006; Degen et al. 2008, 2010,
2009; Dimoulas and Felleisen 2011; Dimoulas, Findler, Flanagan, et al. 2011; Dimoulas,
Tobin-Hochstadt, et al. 2012; Findler and Blume 2006; Findler, Felleisen, and Blume 2004].

Within the space of work on the semantics of contracts, Dimoulas, Findler, Flanagan,
et al. [2011] define formal correctness criteria for blame called Complete Monitoring; this
constitutes an effort to evaluate the specialized debugging information of higher-order con-
tracts at a theoretical level. In particular, Complete Monitoring gives meaning to blame as
a view of the flow of the witness of a contract violation. However, this semantic definition
does not shed light on the practical relationship between blame and bugs in programs, which
is the aim of this dissertation. That said, this work has been a primary source of inspiration

for the hypotheses that we test.

7.1.2 Gradual Typing

Gradual typing has been a topic of research interest for nearly two decades, beginning with

several related seminal ideas: combining the benefits of static and dynamic typing in a sin-

163

gle language [J. G. Siek and Taha 2006]; enabling a smooth, incremental transition from
a prototyping-friendly dynamic programming style to a maintenance-friendly type disci-
pline [Tobin-Hochstadt and Felleisen 2006]; safely interoperating between (different) dynamic
and statically typed languages [Gray et al. 2005; Matthews and Findler 2007, 2009]; and ex-
tending the flexibility of static specification analysis with the ability to offload checks to
runtime contracts [Knowles and Flanagan 2010]. These ideas have served as the foundation
for a significant body of research on and around gradual typing, including extending the
core idea to handle various language and type system features [Broman and J. G. Siek 2017;
Garcia and Cimini 2015; Igarashi, Thiemann, et al. 2019; Malewski et al. 2021; Miyazaki
et al. 2019; New et al. 2023; Rastogi, Chaudhuri, et al. 2012; J. G. Siek and Vachharajani
2008; Takikawa, Strickland, et al. 2012; Tobin-Hochstadt and Felleisen 2008; Toro and Tan-
ter 2017; Turcotte et al. 2020; Vitousek, Kent, et al. 2014; Wolff et al. 2011; Wrigstad et al.
2010; Ye and Oliveira 2023], and analyzing the performance of or efficiently implementing
runtime systems for gradual typing [Bauman, Bolz-Tereick, et al. 2017; Bauman, Bolz, et al.
2015; Campora, Chen, and Walkingshaw 2018; Campora, Khan, et al. 2024; Castagna et al.
2019; Chevalier-Boisvert et al. 2021; Greenman 2022, 2023; Greenman and Felleisen 2018;
Greenman and Migeed 2018; Greenman, Takikawa, et al. 2019; Greenwood-Thessman et al.
2021; Kuhlenschmidt et al. 2019; Moy, Nguyen, et al. 2021; Muehlboeck and Tate 2021;
Richards, Arteca, et al. 2017; J. Siek, Thiemann, et al. 2015; Takikawa, Feltey, et al. 2016;
Vitousek, J. G. Siek, et al. 2019] — including notably Feltey et al. [2018], who introduce and
evaluate a significant optimization that is actively used today in Typed Racket.

Another direction for understanding and improving the performance of gradual typing
explores different semantics for typed-untyped interaction. Chapter 5.1 introduces the Nat-

ural, Transient, and Erasure semantics in-depth, but the literature describes a wide array of

164

other semantics as well. Pyret [Developers 2018] assigns fixed-size data types the Natural
semantics and functions a Transient semantics. The Amnesic [Greenman, Felleisen, and Di-
moulas 2019] semantics is similar to Transient but uses wrappers instead of in-lined checks,
and Greenberg [2015)’s Forgetful and associated semantics perform several variations of this
strategy. Nom [Muehlboeck and Tate 2017] and other concrete semantics [Rastogi, Swamy,
et al. 2015; Richards, Arteca, et al. 2017; Richards, Nardelli, et al. 2015; Wrigstad et al.
2010] assume that every value comes with a type tag and use tag checks to supervise the
interactions between typed and untyped code. The semantics derived with the Abstracting
Gradual Typing technique [Garcia, Clark, et al. 2016] are variants of Natural. The Mono-
tonic semantics [Kuhlenschmidt et al. 2019; Rastogi, Swamy, et al. 2015; J. Siek, Vitousek,
et al. 2015; Swamy et al. 2014] differs from Natural in the treatment of mutable data; it asso-
ciates every heap location with a type and rejects updates that lower the precision of types.
Threesomes and coercion/cast semantics [Almahallawi 2020; Herman et al. 2010; J. G. Siek
and Wadler 2010] describe versions of Natural’s wrapping semantics that collapse multiple
wrappers to achieve space efficiency. In response to the large variety in these semantics
and their different trade-offs [Gierczak et al. 2024] along many dimensions, Greenman [2020,
2022] explores the properties and benefits of combining semantics that do deep checking
(like Natural), shallow checking (like Transient), and none at all (like Erasure) in a single
language, controllable by the programmer.

The various choices made by these different semantics affect the debugging information
they produce. Prior work studies (some of) those differences only from a theoretical perspec-
tive [Greenman, Felleisen, and Dimoulas 2019]. Aside from Natural and Transient (sec. 5.1),
only the Amnesic, Nom, Monotonic, and Threesomes semantics present interesting blame

strategies. Amnesic offers a kind of precise blame in the style of Natural, achieved through

165

limited wrappers, but on the basis of Transient-style shallow tag checks instead of deep ones,
and also has tunable knobs (e.g. how much history to track) that can affect the quality of
blame. Nom has a nominal type system for an object-oriented language that offers a kind
of blame that identifies one (failing) cast from type dynamic to some incompatible type —
where compatibility means membership in the expected-type’s inheritance hierarchy. Mono-
tonic similarly offers a kind of blame that identifies two casts of a mutable reference to
incompatible types. Also similarly, Threesomes identifies a (failing) cast in the source pro-
gram between two incompatible types — where compatibility means having a well-defined
join point in a precision lattice of types. The experiments in this dissertation exclude the
first and last of these (Amnesic and Threesomes) because they are purely theoretical con-
structions, the second (Nom) because it imposes severe restrictions on programmers, and
the third (Monotonic) because it would require an impractical re-engineering of the Racket

runtime.

7.1.3 Type Mistakes in Gradual Typing

There are significant bodies of adjacent literature related to mistakes in type annotations. In
particular, a number of papers investigate the prevalence of mistakes in gradual types, their
theoretical underpinnings, and proposing approaches to detect and repair them [St-Amour
and Toronto 2013; Campora and Chen 2020; Cristiani and Thiemann 2021; Feldthaus and
Mgller 2014; Greenman, Dimoulas, et al. 2023; Greenman, Felleisen, and Dimoulas 2019;
Hoeflich et al. 2022; Kristensen and Mgller 2017b; Williams, Morris, Wadler, and Zalewski
2017]. While none of this work offers a systematically curated collection of type mistakes
and their fixes suitable for experiments like those of this dissertation, their observations have

been a primary source of inspiration for the mutation operators we define in chapter 6.

166

7.2 Evaluations of Debugging Information and Strategies

7.2.1 Fault Localization

The well-established area of fault localization is related to this dissertation at a methodolog-
ical level insofar as work in this space evaluates debugging information or (semi-)automated
procedures for locating bugs. The origins of fault localization (FL) go back to the interactive
debugging approach of Shapiro [1983], and modern automatic FL research build on the work
of Agrawal [Agrawal 1991; Agrawal et al. 1995] and Jones et al. [2002], who use comparisons
of successful and failing executions of a program to deduce a set of likely faulty program
statements. There is also a connection from these ideas to types and type checkers in an
extensive body of work on the accuracy of type checker error messages, the foundations of
which are summarized by Heeren [2005], and a significant group of work about helping pro-
grammers debug type errors in statically typed settings [Becker et al. 2016; Chen and Erwig
2014; Pavlinovic et al. 2014; Seidel, Jhala, et al. 2016, 2018; D. Zhang and Myers 2014], in-
cluding notably Wu and Chen [2017]’s finding that a significant portion of such errors arise
from incorrect type annotations.

While this dissertation does present strategies for locating faults, it expressly does not
aim to propose a technique for FL. The goal is rather to analyze blame from a pragmat-
ics perspective that connects semantics with real buggy programs, and use this analysis to
evaluate the design of contract systems and semantics for gradual typing with respect to the
debugging information they offer. Whether the blame shifting procedures presented in this
dissertation could inform practical debugging strategies for developers to follow while de-
bugging, or be implemented in tools supporting debugging, are questions demanding further

research.

167

Besides the procedures themselves, the main methodological connection with the afore-
mentioned work might be through the methods by which they evaluate their proposed FL
techniques. In this respect too, however, this dissertation does not propose an evaluation
method for FL. Intent aside, there are also differences in approach between this work and
standard FL evaluation methods. The standards set by the prior-mentioned seminal works
consist primarily of metrics or scores describing how frequently the tools report the true
bug location in various suites of student assignment solutions. Popular metrics in the lit-
erature include: notions of accuracy [Pavlinovic et al. 2014] (how syntactically close the
suggested location is to the true bug’s location); precision and recall [Loncaric et al. 2016;
Seidel, Sibghat, et al. 2017; D. Zhang and Myers 2014; D. Zhang, Myers, et al. 2015] (what
proportion of the suggested locations are bugs / what proportion of bugs the tool locates);
proportion of bugs located in the top N suggestions [Chen and Erwig 2014] (for tools that
suggest multiple, usually ranked, possible locations); and yet others [Wu, Campora III, et
al. 2017]. The other main evaluation method involves testing tools with real developers
in user studies, supporting a richer scope where information may not be directly accurate
but nonetheless useful for some cognitive processes [Lerner et al. 2007; Seidel, Jhala, et al.
2016, 2018; Seidel, Sibghat, et al. 2017]. These evaluations therefore differ substantively in
approach as well as goal (analyzing a FL tool vs connections between language design and

error messages) as compared to this dissertation.

7.2.2 User Studies Investigating Pragmatics and Debugging

More broadly, the literature includes a wealth of user studies aiming to understand devel-
oper efficiency, the usability of tools, and various diverse aspects of developer process while

programming; of those, user studies around debugging appear to be the most relevant to

168

this dissertation. Specifically, there are user studies investigating developer use of error mes-
sages and debugging tools or the debugging process broadly (e.g. Barik et al. [2018], Kume
et al. [2016], Marceau et al. [2011Db], Reichl et al. [2023], Silva et al. [2018], and Soremekun
et al. [2023]). Notably, Marceau et al. [2011a] proposes a general rubric for evaluating the
effectiveness of error messages for novice programmers based on their behavior in response
to a message. Also notable, Schwerter [2023] proposes a slicing-based debugging aid for
gradually typed programs and evaluates it with a user study. These user studies contribute
an important lens of understanding the practical realities of software engineering and de-
bugging, however it is of an entirely different (and complementary) nature to the focus of
this dissertation. In particular, those studies examine the behavior of human programmers,
with the goal of better understanding how they think and interact with debugging tools
or information. In contrast, this dissertation studies how language features and designs af-
fect the quality of debugging information produced by programs—quality as judged by the
idealized blame-shifting procedure—with the goal of understanding the effects of linguistic
design choices within this scope of debugging information. The connection from that goal to
programmers is therefore tangential; the results of this dissertation’s evaluations show that
procedure to be reliably successful using blame in our test programs, suggesting that the
procedure itself may be a useful tool for explaining (teaching) the meaning of blame in terms
of concrete examples. Ultimately however, this dissertation does not draw any connections

from its results to developer behavior.

7.3 Methodological Inspirations for Scenario Generation

The scenario corpus generation processes described in this dissertation draw upon two well-

studied techniques from the Software Engineering literature: mutation and software compo-

169

nent adaptation.

All of the experiments of chapters 4-6 obtain faulty programs using mutation. Research on
mutation testing began with the work of DeMillo, Guindi, et al. [1988] and DeMillo, Richard
J. Lipton, et al. [1978] and Richard J Lipton [1971], and has since seen significant interest
in the field of software engineering. Y. Jia and Harman [2011] provide a cogent overview of
the history of mutation testing, its prevalent techniques, and its limitations. While mutation
testing was first developed in the context of imperative programming languages, Le et al.
[2014] describe the application of mutation testing techniques to higher order functional
programs and demonstrate its effectiveness. However, the applicability of mutation testing
techniques to generate faults in place of real faults in research is not immediately clear, and
the kinds of faults generated by mutation are often quite distinct from those in real programs,
as described by Gopinath, Jensen, et al. [2014]. On the other hand, Just et al. [2014] describe
the traditional use of mutation testing for fault injection, and provide empirical evidence that
such faults effectively simulate real faults in the context of test suite evaluation.

Finally, chapter 6’s debugging scenario construction incorporates techniques from soft-
ware component adaptation [Keller and Holzle 1998; Métzel and Schnorf 1997]. The idea of
component adaptation is to reuse existing components in a software system for new purposes,
adapting the component to the new interface or to provide new functionality by creating an
adapter layer implementing the required changes. The motivation is that developers can
thus reuse software components (reducing duplicated work and maintenance burden) while
still maintaining separation of concerns and without needing to modify the original com-
ponent (and possibly introduce bugs in along the way). The adapter layers of chapter 6
are essentially an application of this idea, but instead of adding functionality, our adapters

change the original component’s behavior in small ways to match the type mutations we

170

introduce in the component’s type interface.

171

CHAPTER 8
CONCLUSION

In summary, this dissertation provides arguments in support of the thesis, restated from

chapter 1:

Evaluating the pragmatics of debugging with contracts and gradual types, with
the rational programmer, provides evidence that contract-based semantics and

blame are useful for debugging.

As primary evidence in support of the thesis, the prior chapters describe the design, im-
plementation, and results of three experiments evaluating the pragmatics of debugging with
contracts and gradual typing. In the case of contracts (chapter 4), the rational programmer
helps reveal that while carefully-designed blame information does live up to its hypothesized
debugging benefits, primitive stacktrace information appears to do so nearly as well. In
the case of gradual typing, the evaluation results suggest that when mistakes occur in code
(chapter 5), the specialized error information of academic approaches provides marginally
better debugging help. In the case of gradual typing when mistakes occur in type annota-
tions (chapter 6), however, the results suggest that the special error information does offer
valuable debugging help.

At the meta level, these results demonstrate the value of the rational programmer method
and point to several directions for future investigations. The following subsections consider

a few such directions.

172

8.0.1 Future Work
8.0.1.1 Do the Results of These FExperiments Apply to TypeScript?

Despite the strong similarities between the type systems of Typed Racket and TypeScript,
it remains open whether the insights concerning the former—from chapters 5 and 6—apply
to the latter, too. Confirming them in that setting presents an obvious line of future work
starting from the results in this dissertation; in particular, this kind of evaluation is nec-
essary to fully understand how the Natural and Erasure semantics can work together in
practical implementations of gradual typing. Such an investigation requires a new backend

for TypeScript and another rational programmer experiment.

8.0.1.2 More Realistic Notions of Cost

Future work should refine the cost aspect of the rational-programmer investigation, specifi-
cally cost as in developer time. The rational programmer, as instantiated in this dissertation,
does not account for the actual time spent on detecting and locating bugs. That is, the ra-
tional programmer makes no distinction between identifying the bug in ten seconds or ten
hours. Instead the investigations crudely approximate developer time with the number of
type-annotation steps, which in particular hides the reality that some components are easy
to annotate and others are not. Furthermore, they do not consider how early in a program’s
execution a mistake is surfaced, despite the common wisdom that reporting mistakes early
rather than late in a long-running program has significant practical benefits. In short, adding

dimensions of time to a rational programmer investigation should become a high priority.

173

8.0.1.3 How Does Blame Fare with Modal Checking?

A classic developer request in the face of the performance overhead of contracts is a way to
disable contracts in production. Dimoulas, Findler, and Felleisen [2013] suggests a more prin-
cipled approach than a manual switch called option contracts, which support programmati-
cally disabling and enabling contract checks. An extension of this idea is to define modalities,
which are declarative policies for checking contracts alongside the contracts themselves. An
open question, however, is how such policies for occasionally skipping contract checks affect
the detection of bugs and the value of blame and stacktrace information, as well as the per-
formance impact of contract checking. An adaptation of the evaluation of chapter 4 could
incorporate performance measurement as well (using the framework of Takikawa, Feltey,

et al. [2016]) to investigate this type of question.

8.0.1.4 How Does Blame Fare with Buggy Contracts?

Along the lines of the pragmatics question that chapter 6 targets, an open question fol-
lowing the results of chapter 4 is whether and how blame from contract systems may offer
useful information in programs with buggy contracts. This is an interesting and challenging
direction for future work, because unlike in the setting of gradual types, there is no type
checker to call out mismatches between correct and incorrect contracts. Consider for exam-
ple a program with a buggy function argument contract; even at the top of the configuration
lattice for the program, blame from that contract never points to the module providing the
function with that contract. Of course, the designers of contract systems are aware of this
possibility, and so all blame messages in Racket bear the warning “assuming the contract is
correct.” A debugging procedure that accounts for possibly-buggy contracts is therefore not

a straightforward adaptation of those presented in this dissertation. At the very least, we

174

conjecture that it would need to heed both blame and this warning in some kind of balance,
perhaps incorporating some common-sense heuristics to translate or reinterpret blame based

on extra information in the error and higher-level knowledge of the program structure.

8.0.1.5 Formalizing the Blame Shifting Process in Terms of Decision Theory

This dissertation uses several variations on the relatively simple, deterministic blame shifting
algorithm for locating bugs using various possibly-unreliable sources of information, the
essence of which is inspired by the theory of blame. An interesting direction for future work is
to formulate the task instead on the basis of decision theory, framing the rational programmer
as a rational actor in the decision-theoretic sense. This alternative framing would allow,
among other things, calculating theoretical upper and lower bounds on the successfulness
of different debugging strategies, which could serve as useful context for interpreting the
results of experiments like those in chapters 4-6. This is an attractive direction entailing
many challenges, not the least of which is understanding what aspects of the debugging

process and information can usefully be modeled as a decision problem.

175

REFERENCES

Hiralal Agrawal. 1991. “Towards Automatic Debugging of Computer Programs.” Ph.D. Dis-
sertation. Purdue University.

Hiralal Agrawal, Joseph R Horgan, Saul London, and W Eric Wong. 1995. “Fault Localiza-
tion Using Execution Slices and Dataflow Tests.” In: Proceedings of Sixth International
Symposium on Software Reliability Engineering, 143-151. https://doi.org/10.1109/
ISSRE. 1995.497652.

Deyaaeldeen Almahallawi. 2020. “Towards Efficient Gradual Typing via Monotonic Refer-
ences and Coercions.” Ph.D. Dissertation. Indiana University.

Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and Matthias Felleisen. 2012.
“Typing the Numeric Tower.” In: PADL, 289-303. https://doi.org/10.1007/978-3-
642-27694-1_21.

Vincent St-Amour and Neil Toronto. 2013. “Experience Report: Applying Random Testing
to a Base Type Environment.” In: ICFP, 351-356. https://doi.org/10.1145/2500365.
2500616.

J.H. Andrews, L.C. Briand, and Y. Labiche. 2005. “Is Mutation an Appropriate Tool for
Testing Experiments?” In: ICSE, 402-411. https://doi.org/10.1109/ICSE. 2005 .
1553583.

Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. “How Should Com-
pilers Explain Problems to Developers?” In: F'SE, 633-643. https://doi.org/10.1145/
3236024 .3236040.

Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017.
“Sound Gradual Typing: only Mostly Dead.” PACMPL, 1, OOPSLA, 54:1-54:24. https:
//dl.acm.org/doi/10.1145/3133878.

Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias Pape,
Jeremy G. Siek, and Sam Tobin-Hochstadt. 2015. “Pycket: a Tracing JIT for a Functional
Language.” In: IFL, 22-34. https://dl.acm.org/doi/10.1145/2784731.2784740.

https://doi.org/10.1109/ISSRE.1995.497652
https://doi.org/10.1109/ISSRE.1995.497652
https://doi.org/10.1007/978-3-642-27694-1_21
https://doi.org/10.1007/978-3-642-27694-1_21
https://doi.org/10.1145/2500365.2500616
https://doi.org/10.1145/2500365.2500616
https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1145/3236024.3236040
https://dl.acm.org/doi/10.1145/3133878
https://dl.acm.org/doi/10.1145/3133878
https://dl.acm.org/doi/10.1145/2784731.2784740

176

Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin, and
Catherine Mooney. 2016. “Effective Compiler Error Message Enhancement for Novice
Programming Students.” Computer Science Education, 26, 2-3, 148-175. https://doi.
org/10.1080/08993408.2016.1225464.

Matthias Blume and David A. McAllester. 2006. “Sound and Complete Models of Contracts.”
JFP, 16, 4-5, 375-414. https://doi.org/10.1017/50956796806005971.

David Broman and Jeremy G. Siek. 2017. “Gradually Typed Symbolic Expressions.” In:
PEPM, 15-29. https://dl.acm.org/doi/10.1145/3162068.

John Peter Campora and Sheng Chen. 2020. “Taming Type Annotations in Gradual Typing.”
PACMPL, 4, OOPSLA, 191:1-191:30. https://doi.org/10.1145/3428259.

John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2017. “Migrating
Gradual Types.” PACMPL, 2, POPL, 15:1-15:29. https://doi.org/10.1145/3158103.

John Peter Campora, Sheng Chen, and Eric Walkingshaw. 2018. “Casts and Costs: Har-
monizing Safety and Performance in Gradual Typing.” PACMPL, 2, ICFP, 98:1-98:30.
https://dl.acm.org/doi/10.1145/3236793.

John Peter Campora, Mohammad Wahiduzzaman Khan, and Sheng Chen. 2024. “Type-
Based Gradual Typing Performance Optimization.” PACMPL, 8, POPL, 89:1-89:33.
https://dl.acm.org/doi/10.1145/3632931.

Giuseppe Castagna, Guillaume Duboc, Victor Lanvin, and Jeremy G. Siek. 2019. “A Space-
efficient Call-by-value Virtual Machine for Gradual Set-Theoretic Types.” In: IFL, 1-12.
https://dl.acm.org/doi/10.1145/3412932.3412940.

Sheng Chen and Martin Erwig. 2014. “Counter-Factual Typing for Debugging Type Errors.”
In: POPL, 583-594. https://doi.org/10.1145/2535838.2535863.

Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan) Wu, Aaron Patter-
son, Kevin Newton, and John Hawthorn. 2021. “YJIT: a Basic Block Versioning JIT
Compiler for CRuby.” In: VMIL, 25-32. https://dl.acm.org/doi/10.1145/3486606.
3486781.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. “Format Abstraction for
Sparse Tensor Algebra Compilers.” PACMPL, 2, OOPSLA, 123:1-123:30 pages. https:
//doi.org/10.1145/3276493.

https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1017/S0956796806005971
https://dl.acm.org/doi/10.1145/3162068
https://doi.org/10.1145/3428259
https://doi.org/10.1145/3158103
https://dl.acm.org/doi/10.1145/3236793
https://dl.acm.org/doi/10.1145/3632931
https://dl.acm.org/doi/10.1145/3412932.3412940
https://doi.org/10.1145/2535838.2535863
https://dl.acm.org/doi/10.1145/3486606.3486781
https://dl.acm.org/doi/10.1145/3486606.3486781
https://doi.org/10.1145/3276493
https://doi.org/10.1145/3276493

177

Fernando Cristiani and Peter Thiemann. 2021. “Generation of TypeScript Declaration Files
from JavaScript Code.” In: MPLR, 97-112. https://doi.org/10.1145/3475738.
3480941.

Markus Degen, Peter Thiemann, and Stefan Wehr. 2008. “Contract Monitoring and Call-
by-Name Evaluation.” In: Nordic Workshop on Programming Theory.

Markus Degen, Peter Thiemann, and Stefan Wehr. 2010. “Eager and Delayed Contract
Monitoring for Call-by-value and Call-by-Name Evaluation.” Logic and Algebraic Pro-
gramming, 79, 7, 515-549. https://doi.org/10.1016/j.jlap.2010.07.006.

Markus Degen, Peter Thiemann, and Stefan Wehr. 2012. “The Interaction of Contracts and
Laziness.” In: PEPM, 97-106. https://doi.org/10.1145/2103746.2103766.

Markus Degen, Peter Thiemann, and Stefan Wehr. 2009. “True lies: Lazy Contracts for Lazy
Languages (Faithfulness is Better Than Laziness).” In: 4. Arbeitstagung Programmier-
sprachen.

Richard A. DeMillo, Dana S. Guindi, Kim King, Mike M. McCracken, and Jefferson A.
Offutt. 1988. “An Extended Overview of the Mothra Software Testing Environment.” In:
Software Testing, Verification, and Analysis, 142-151. https://doi.org/10.1109/WST.
1988.5369.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. “Hints on Test
Data Selection: Help for the Practicing Programmer.” Computer, 11, 4, 34-41. https:
//doi.org/10.1109/C-M.1978.218136.

Pyret Developers. 2018. Pyret Programming Language. http://wuw.pyret.org/. (2018).

Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. “Precise Reasoning for Programs Using
Containers.” In: POPL, 187-200. https://doi.org/10.1145/1926385.1926407.

Christos Dimoulas and Matthias Felleisen. 2011. “On Contract Satisfaction in a Higher-Order
World.” TOPLAS, 33, 5, 16:1-16:29. https://doi.org/10.1145/2039346.2039348.

Christos Dimoulas, Robert Bruce Findler, and Matthias Felleisen. 2013. “Option Contracts.”
In: OOPSLA, 475-494. https://doi.org/10.1145/2509136.2509548.

https://doi.org/10.1145/3475738.3480941
https://doi.org/10.1145/3475738.3480941
https://doi.org/10.1016/j.jlap.2010.07.006
https://doi.org/10.1145/2103746.2103766
https://doi.org/10.1109/WST.1988.5369
https://doi.org/10.1109/WST.1988.5369
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
http://www.pyret.org/
https://doi.org/10.1145/1926385.1926407
https://doi.org/10.1145/2039346.2039348
https://doi.org/10.1145/2509136.2509548

178

Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. 2011.
“Correct Blame for Contracts: no More Scapegoating.” In: POPL, 215-226. https://
doi.org/10.1145/1926385.1926410.

Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. 2014. “Declarative
Policies for Capability Control.” In: Computer Security Foundations Symposium (CSF),
3-17. https://doi.org/10.1109/CSF.2014.9.

Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. 2016. “Oh
Lord, Please Don’t Let Contracts be Misunderstood (Functional Pearl).” In: ICFP, 117—
131. https://doi.org/10.1145/2951913.2951930.

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. “Complete Monitors
for Behavioral Contracts.” In: ESOP, 214-233. https://doi.org/10.1007/978-3-642-
28869-2_11.

Tim Disney, Cormac Flanagan, and Jay McCarthy. 2011. “Temporal Higher-Order Con-
tracts.” In: ICFP, 176-188. https://doi.org/10.1145/2034773.2034800.

Grégory M. Essertel, Guannan Wei, and Tiark Rompf. 2019. “Precise Reasoning with Struc-
tured Time, Structured Heaps, and Collective Operations.” PACMPL, 3, OOPSLA,
157:1-157:30 pages. https://doi.org/10.1145/3360583.

Asger Feldthaus and Anders Mgller. 2014. “Checking Correctness of TypeScript Interfaces
for JavaScript Libraries.” In: OOPSLA, 1-16. https://doi.org/10.1145/2660193.
2660215.

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-
Amour. 2018. “Collapsible Contracts: Fixing a Pathology of Gradual Typing.” PACMPL,
2, OOPSLA| 133:1-133:27. https://doi.org/10.1145/3276503.

Robert Bruce Findler and Matthias Blume. 2006. “Contracts as Pairs of Projections.” In:
FLP, 226-241. https://doi.org/10.1007/11737414_16.

Robert Bruce Findler and Matthias Felleisen. 2002. “Contracts for Higher-Order Functions.”
In: ICFP, 48-59. https://doi.org/10.1145/581478.581484.

Robert Bruce Findler, Matthias Felleisen, and Matthias Blume. 2004. An Investigation of
Contracts as Projections. Tech. rep. TR-2004-02. University of Chicago, Computer Sci-
ence Department.

https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1109/CSF.2014.9
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/2034773.2034800
https://doi.org/10.1145/3360583
https://doi.org/10.1145/2660193.2660215
https://doi.org/10.1145/2660193.2660215
https://doi.org/10.1145/3276503
https://doi.org/10.1007/11737414_16
https://doi.org/10.1145/581478.581484

179

Robert Bruce Findler, Shu-yu Guo, and Anne Rogers. 2007. “Lazy Contract Checking for
Immutable Data Structures.” In: IFL, 111-128. https://doi.org/10.1007/978-3-
540-85373-2_7.

Cormac Flanagan. 2006. “Hybrid Type Checking.” In: POPL, 245-256. https://doi.org/
10.1145/1111037.1111059.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. 1998. “Classes and Mixins.”
In: POPL, 171-183. https://doi.org/10.1145/268946.268961.

Ronald Garcia and Matteo Cimini. 2015. “Principal Type Schemes for Gradual Programs.”
In: POPL, 303-315. https://doi.org/10.1145/2676726.2676992.

Ronald Garcia, Alison M. Clark, and Eric Tanter. 2016. “Abstracting Gradual Typing.” In:
POPL, 429-442. https://doi.org/10.1145/2837614.2837670.

Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed. 2024. “Gradually Typed
Languages Should Be Vigilant!” In: OOPSLA (to appear).

Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. “Mutations: How Close are they to
Real Faults?” In: ISSRE, 189-200. https://doi.org/10.1109/ISSRE.2014.40.

Rahul Gopinath and Eric Walkingshaw. 2017. “How Good Are Your Types? Using Muta-
tion Analysis to Evaluate the Effectiveness of Type Annotations.” In: ICSTW, 122-127.
https://doi.org/10.1109/ICSTW.2017.28.

Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. 2005. “Fine-Grained Interop-
erability Through Mirrors and Contracts.” In: OOPSLA, 231-245. https://doi.org/
10.1145/1094811.1094830.

Michael Greenberg. 2015. “Space-Efficient Manifest Contracts.” In: POPL, 181-194. https:
//doi.org/10.1145/2676726.2676967.

Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2012. “Contracts Made
Manifest.” JFP, 22, 3, 225-274. https://doi.org/10.1017/S0956796812000135.

Ben Greenman. 2020. “Deep and Shallow Types.” Ph.D. Dissertation. Northeastern Univer-
sity.

https://doi.org/10.1007/978-3-540-85373-2_7
https://doi.org/10.1007/978-3-540-85373-2_7
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/ICSTW.2017.28
https://doi.org/10.1145/1094811.1094830
https://doi.org/10.1145/1094811.1094830
https://doi.org/10.1145/2676726.2676967
https://doi.org/10.1145/2676726.2676967
https://doi.org/10.1017/S0956796812000135

180

Ben Greenman. 2022. “Deep and Shallow Types for Gradual Languages.” In: PLDI, 580-593.
https://doi.org/10.1145/3519939.3523430.

Ben Greenman. 2023. “GTP Benchmarks for Gradual Typing Performance.” In: REP, 102
114. https://doi.org/10.1145/3589806.3600034.

Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023. “Typed-Untyped Interac-
tions: A Comparative Analysis.” TOPLAS, 45, 4, 1-54, 1. https://doi.org/10.1145/
3579833.

Ben Greenman and Matthias Felleisen. 2018. “A Spectrum of Type Soundness and Perfor-
mance.” PACMPL, 2, ICFP, 71:1-71:32. https://doi.org/10.1145/3235045.

Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019. “Complete Monitors for
Gradual Types.” PACMPL, 3, OOPSLA, 122:1-122:29. https://doi.org/10.1145/
3360548.

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen. 2022. “A Tran-
sient Semantics for Typed Racket.” Programming, 2, 6. https://doi.org/10.22152/
programming-journal.org/2022/6/9.

Ben Greenman and Zeina Migeed. 2018. “On the Cost of Type-Tag Soundness.” In: PEPM,
30-39. https://doi.org/10.1145/3162066.

Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan
Vitek, and Matthias Felleisen. 2019. “How to Evaluate the Performance of Gradual Type
Systems.” JFP, 29, e4, 1-45. https://doi.org/10.1017/30956796818000217.

Erin Greenwood-Thessman, Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael
Homer, and James Noble. 2021. “Naive Transient Cast Insertion isn’t (that) Bad.” In:
Implementation, Compilation, Optimization of OO Languages, Programs and Systems,
1-9. https://dl.acm.org/doi/10.1145/3464972.3472395.

Bastiaan J Heeren. 2005. “Top Quality Type Error Messages.” Ph.D. Dissertation. Utrecht
University.

Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. 2012. “Access Permission Con-
tracts for Scripting Languages.” In: POPL, 111-122. https://doi.org/10.1145/
2103656.2103671.

https://doi.org/10.1145/3519939.3523430
https://doi.org/10.1145/3589806.3600034
https://doi.org/10.1145/3579833
https://doi.org/10.1145/3579833
https://doi.org/10.1145/3235045
https://doi.org/10.1145/3360548
https://doi.org/10.1145/3360548
https://doi.org/10.22152/programming-journal.org/2022/6/9
https://doi.org/10.22152/programming-journal.org/2022/6/9
https://doi.org/10.1145/3162066
https://doi.org/10.1017/S0956796818000217
https://dl.acm.org/doi/10.1145/3464972.3472395
https://doi.org/10.1145/2103656.2103671
https://doi.org/10.1145/2103656.2103671

181

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. “Space-Efficient Gradual Typ-
ing.” HOSC, 23, 2, 167-189. https://doi.org/10.1007/510990-011-9066-z.

Ralf Hinze, Johan Jeuring, and Andres Loh. 2006. “Typed Contracts for Functional Pro-
gramming.” In: FLOPS, 208-225. https://doi.org/10.1007/11737414_15.

Joshua Hoeflich, Robert Bruce Findler, and Manuel Serrano. 2022. “Highly Illogical, Kirk:
Spotting Type Mismatches in the Large Despite Broken Contracts, Unsound Types, and
too Many Linters.” PACMPL, 6, OOPSLA, 142:1-142:26. https://doi.org/10.1145/
3563305.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. “Featherweight Java: A
Minimal Core Calculus for Java and GJ.” TOPLAS, 23, 3, 396-450. https://doi.org/
10.1145/503502.503505.

Atsushi Igarashi, Peter Thiemann, Yuya Tsuda, Vasco T. Vasconcelos, and Philip Wadler.
2019. “Gradual Session Types.” JFP, 29, el7. https://www.cambridge . org/core/
journals / journal - of - functional - programming / article / gradual - session -
types/C6A5BBBD228A2C1B3E4A652E57B7CEF89.

Limin Jia, Hannah Gommerstadt, and Frank Pfenning. 2016. “Monitors and Blame Assign-
ment for Higher-Order Session Types.” In: POPL, 582-594. https://doi.org/10.1145/
2837614 .2837662.

Yue Jia and Mark Harman. 2011. “An Analysis and Survey of the Development of Mutation
Testing.” IEEE Transactions on Software Engineering, 37, 5, 649-678. https://doi.
org/10.1109/TSE.2010.62.

James A Jones, Mary Jean Harrold, and John Stasko. 2002. “Visualization of Test Infor-
mation to Assist Fault Localization.” In: ICSE, 467-477. https://doi.org/10.1145/
581339.581397.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and Gordon
Fraser. 2014. “Are Mutants a Valid Substitute for Real Faults in Software Testing?” In:
FSE, 654-665. https://doi.org/10.1145/2635868.2635929.

Matthias Keil and Peter Theimann. 2015. “Blame Assignment for Higher-Order Contracts
with Intersection and Union.” In: ICFP, 375-386. https://doi.org/10.1145/2784731.
2784737.

https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1007/11737414_15
https://doi.org/10.1145/3563305
https://doi.org/10.1145/3563305
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/gradual-session-types/C6A5BBBD228A2C1B3E4A652E57B7CF89
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/gradual-session-types/C6A5BBBD228A2C1B3E4A652E57B7CF89
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/gradual-session-types/C6A5BBBD228A2C1B3E4A652E57B7CF89
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2784731.2784737
https://doi.org/10.1145/2784731.2784737

182

Ralph Keller and Urs Holzle. 1998. “Binary Component Adaptation.” In: ECOOP, 307-329.
https://doi.org/10.1007/BFb0054097.

Kenneth Knowles and Cormac Flanagan. 2010. “Hybrid Type Checking.” TOPLAS, 32, 6,
1-34. https://doi.org/10.1145/1667048.1667051.

Erik Krogh Kristensen and Anders Mgller. 2017a. “Inference and Evolution of TypeScript
Declaration Files.” In: FASE, 99-115. https://doi.org/10.1007/978-3-662-54494~
5_6.

Erik Krogh Kristensen and Anders Mgller. 2017b. “Type Test Scripts for TypeScript Test-
ing.” PACMPL, 1, OOPSLA, 90:1-90:25. https://doi.org/10.1145/3133914.

Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. “Toward Effi-
cient Gradual Typing for Structural Types via Coercions.” In: PLDI, 517-532. https:
//doi.org/10.1145/33259809.

Izuru Kume, Masahide Nakamura, Yasuyuki Tanaka, and Etsuya Shibayama. 2016. “Eval-
uation of Diagnosis Support Methods in Program Debugging by Trace Analysis: An
Exploratory Study.” In: ICIS, 1-6. https://doi.org/10.1109/ICIS.2016.7550875.

Chris Lattner and Vikram Adve. 2005. “Automatic Pool Allocation: Improving Performance
by Controlling Data Structure Layout in the Heap.” In: PLDI, 129-142. https://doi.
org/10.1145/1065010.1065027.

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2021. “How to
Evaluate Blame for Gradual Types.” PACMPL, 5, ICFP, 68:1-68:29. https://doi.org/
10.1145/3473573.

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2023. “How to
Evaluate Blame for Gradual Types, Part 2.” PACMPL, 7, ICFP, 194:1-194:28. https:
//doi.org/10.1145/3607836.

Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert B. Findler, and Christos Dimoulas.
2020. “Does Blame Shifting Work?” PACMPL, 4, POPL, 65:1-65:29. https://doi.org/
10.1145/3373113.

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. 2014. “Mucheck: An
Extensible Tool for Mutation Testing of Haskell Programs.” In: Software Testing and
Analysis, 429-432. https://doi.org/10.1145/2610384.2628052.

https://doi.org/10.1007/BFb0054097
https://doi.org/10.1145/1667048.1667051
https://doi.org/10.1007/978-3-662-54494-5_6
https://doi.org/10.1007/978-3-662-54494-5_6
https://doi.org/10.1145/3133914
https://doi.org/10.1145/3325989
https://doi.org/10.1145/3325989
https://doi.org/10.1109/ICIS.2016.7550875
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/3473573
https://doi.org/10.1145/3473573
https://doi.org/10.1145/3607836
https://doi.org/10.1145/3607836
https://doi.org/10.1145/3373113
https://doi.org/10.1145/3373113
https://doi.org/10.1145/2610384.2628052

183

Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. 2007. “Searching
for Type-Error Messages.” In: PLDI, 425-434. https://doi.org/10.1145/1250734 .
1250783.

Richard J Lipton. 1971. Fault Diagnosis of Computer Programs. Tech. rep. Carnegie Mellon
University, Pittsburgh, PA.

Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridharan. 2016. “A Practical
Framework for Type Inference Error Explanation.” In: OOPSLA, 781-799. https://
doi.org/10.1145/2983990.2983994.

Stefan Malewski, Michael Greenberg, and Eric Tanter. 2021. “Gradually Structured Data.”
PACMPL, 5, OOPSLA, 1-29. https://dl.acm.org/doi/10.1145/3485503.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011a. “Measuring the Ef-
fectiveness of Error Messages Designed for Novice Programmers.” In: Special Interest
Group on Computer Science Education, 499-504. https://doi.org/10.1145/1953163.
1953308.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011b. “Mind Your Lan-
guage: On Novices’ Interactions with Error Messages.” In: Onward! https://doi.org/
10.1145/2048237.2048241.

Jacob Matthews and Robert Bruce Findler. 2007. “Operational Semantics for Multi-Language
Programs.” In: POPL, 3-10. https://doi.org/10.1145/1190216.1190220.

Jacob Matthews and Robert Bruce Findler. 2009. “Operational Semantics for Multi-Language
Programs.” TOPLAS, 31, 3, 1-44. https://doi.org/10.1145/1498926.1498930.

Kai-Uwe Matzel and Peter Schnorf. 1997. Dynamic Component Adaptation. Tech. rep. Ubilab
Technical Report 97.6.

Tommy McMichen, Nathan Greiner, Peter Zhong, Federico Sossai, Atmn Patel, and Simone
Campanoni. 2024. “Representing Data Collections in an SSA Form.” In: CGO, 308-321.

Bertrand Meyer. 1991. “Design by Contract.” In: Advances in Object-Oriented Software
Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 1-50.

Bertrand Meyer. 1992. Fiffel: The Language. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA. 1SBN: 0-13-247925-7.

https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1145/2983990.2983994
https://dl.acm.org/doi/10.1145/3485503
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/1498926.1498930

184

Bertrand Meyer. 1988. Object-Oriented Software Construction. Prentice Hall, Upper Saddle
River, NJ, USA.

Microsoft. N.d. TypeScript. Accessed February 23, 2023. https://www.typescriptlang.
org.

Zeina Migeed and Jens Palsberg. 2019. “What is Decidable about Gradual Types?” PACMPL,
4, POPL, 29:1-29:29 pages. https://doi.org/10.1145/3371097.

Robin Milner, Robert Harper, David MacQueen, and Mads Tofte. 1998. The Definition of
Standard ML, Revised Edition. MIT Press.

Robin Milner, Mads Tofte, and Robert Harper. 1990. The Definition of Standard ML. MIT
Press.

Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. 2019. “Dynamic Type Inference
for Gradual Hindley—Milner Typing.” PACMPL, 3, POPL, 18:1-18:29 pages. https :
//doi.org/10.1145/3290331.

Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong.
2016. “Extensible Access Control with Authorization Contracts.” In: OOPSLA, 214-233.
https://doi.org/10.1145/2983990.2984021.

Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. 2014. “SHILL: A Secure
Shell Scripting Language.” In: OSDI. Broomfield, CO, 183-199. 1SBN: 978-1-931971-16-4.
https://doi.org/10.5555/2685048.2685063.

Cameron Moy, Christos Dimoulas, and Matthias Felleisen. 2024. “Effectful Software Con-
tracts.” PACMPL, 8, POPL, 88:1-88:28. https://doi.org/10.1145/3632930.

Cameron Moy and Matthias Felleisen. 2023. “Trace Contracts.” JFP, 33, el4. https://doi.
org/10.1017/30956796823000096.

Cameron Moy, Phiic C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2021. “Corpse
Reviver: Sound and Efficient Gradual Typing via Contract Verification.” PACMPL, 5,
POPL, 53:1-53:28. https://dl.acm.org/doi/10.1145/3434334.

Fabian Muehlboeck and Ross Tate. 2017. “Sound Gradual Typing is Nominally Alive and
Well.” PACMPL, 1, OOPSLA, 56:1-56:30. https://doi.org/10.1145/3133880.

https://www.typescriptlang.org
https://www.typescriptlang.org
https://doi.org/10.1145/3371097
https://doi.org/10.1145/3290331
https://doi.org/10.1145/3290331
https://doi.org/10.1145/2983990.2984021
https://doi.org/10.5555/2685048.2685063
https://doi.org/10.1145/3632930
https://doi.org/10.1017/S0956796823000096
https://doi.org/10.1017/S0956796823000096
https://dl.acm.org/doi/10.1145/3434334
https://doi.org/10.1145/3133880

185

Fabian Muehlboeck and Ross Tate. 2021. “Transitioning from Structural to Nominal Code
with Efficient Gradual Typing.” PACMPL, 5, OOPSLA, 127:1-127:29. https://dl.
acm.org/doi/10.1145/3485504.

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009. “Pro-
ducing Wrong Data without Doing Anything Obviously Wrong!” In: ASPLOS, 265-276.
ISBN: 9781605584065. https://doi.org/10.1145/1508244.1508275.

Max S. New, Eric Giovannini, and Daniel R. Licata. 2023. “Gradual Typing for Effect Han-
dlers.” PACMPL, 7, OOPSLA, 1758-1786. https://dl.acm.org/doi/10.1145/
3622860.

Mike Papadakis and Yves Le Traon. 2015. “Metallaxis-FL: Mutation-Based Fault Local-
ization.” Software Testing, Verification and Reliability, 25, 5-7, 605-628. https : //
onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1509.

D. L. Parnas. 1972. “A Technique for Software Module Specification with Examples.” Com-
munications of the ACM, 15, 5:330-5:336. https://doi.org/10.1145/355602.361309.

Zvonimir Pavlinovic, Tim King, and Thomas Wies. 2014. “Finding Minimum Type Error
Sources.” In: OOPSLA, 525-542. https://doi.org/10.1145/2660193.2660230.

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. 2021.
“Solver-Based Gradual Type Migration.” PACMPL, 5, OOPSLA, 111:1-111:27 pages.
https://doi.org/10.1145/3485488.

Hari Prashanth and Sam Tobin-Hochstadt. 2010. “Functional Data Structures for Typed
Racket.” In: SFP, 8-14. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.308.8444.

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. “The Ins and Outs of Gradual
Type Inference.” In: POPL, 481-494. https://doi.org/10.1145/2103656.2103714.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015.
“Safe & Efficient Gradual Typing for TypeScript.” In: POPL, 167-180. https://doi.
org/10.1145/2676726.2676971.

Jan Reichl, Stefan Hanenberg, and Volker Gruhn. 2023. “Does the Stream API Benefit
from Special Debugging Facilities? A Controlled Experiment on Loops and Streams with

https://dl.acm.org/doi/10.1145/3485504
https://dl.acm.org/doi/10.1145/3485504
https://doi.org/10.1145/1508244.1508275
https://dl.acm.org/doi/10.1145/3622860
https://dl.acm.org/doi/10.1145/3622860
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1509
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1509
https://doi.org/10.1145/355602.361309
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/3485488
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.8444
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.8444
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/2676726.2676971

186

Specific Debuggers.” In: ICSFE, 576-588. https://doi.org/10.1109/ICSE48619.2023.
00058.

Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. “The VM Already Knew That:
Leveraging Compile-Time Knowledge to Optimize Gradual Typing.” PACMPL, 1, OOP-
SLA, 55:1-55:27. https://doi.org/10.1145/3133879.

Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. “Concrete Types for Type-
Script.” In: ECOOP, 76-100. https://doi.org/10.4230/LIPIcs.ECO0P.2015.76.

Christophe Scholliers, Eric Tanter, and Wolfgang De Meuter. 2015. “Computational Con-
tracts.” Science of Computer Programming, 98, P3:360-P3:375. https://doi.org/10.
1016/j.scico0.2013.09.005.

Felipe Andres Banados Schwerter. 2023. “A Formal Framework for Understanding Run-
Time Checking Errors in Gradually Typed Languages.” Ph.D. Dissertation. University
of British Columbia.

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2016. “Dynamic Witnesses for Static
Type Errors (or, Ill-Typed Programs Usually Go Wrong).” In: ICFP, 228-242. https:
//doi.org/10.1145/2951913.2951915.

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2018. “Dynamic Witnesses for Static Type
Errors (or, Ill-Typed Programs Usually Go Wrong).” JFP, 28, el3. https://doi.org/
10.1017/S0956796818000126.

Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit Jhala.
2017. “Learning to Blame: Localizing Novice Type Errors with Data-Driven Diagnosis.”
PACMPL, 1, OOPSLA, 60:1-60:27. https://doi.org/10.1145/3138818.

Ehud Y. Shapiro. 1983. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA.
ISBN: 0262192187.

Jeremy G. Siek and Walid Taha. 2006. “Gradual Typing for Functional Languages.” In:
Scheme and Functional Programming. University of Chicago, TR-2006-06.

Jeremy G. Siek and Manish Vachharajani. 2008. “Gradual Typing with Unification-Based
Inference.” In: DLS, 1-12. https://dl.acm.org/doi/10.1145/1408681.1408688.

https://doi.org/10.1109/ICSE48619.2023.00058
https://doi.org/10.1109/ICSE48619.2023.00058
https://doi.org/10.1145/3133879
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.1016/j.scico.2013.09.005
https://doi.org/10.1016/j.scico.2013.09.005
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1017/S0956796818000126
https://doi.org/10.1017/S0956796818000126
https://doi.org/10.1145/3138818
https://dl.acm.org/doi/10.1145/1408681.1408688

187

Jeremy G. Siek and Philip Wadler. 2010. “Threesomes, with and Without Blame.” In: POPL,
365-376. https://doi.org/10.1145/1706299.1706342.

Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015. “Blame and Coercion: Together
Again for the First Time.” In: PLDI, 425-435. https://doi.org/10.1145/2737924.
2737968.

Jeremy Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Gar-
cia. 2015. “Monotonic References for Efficient Gradual Typing.” In: ESOP, 432-456.
https://doi.org/10.1007/978-3-662-46669-8_18.

Fabio Pereira da Silva, Higor Amario de Souza, and Marcos Lordello Chaim. 2018. “An
Empirical Assessment of Visual Debugging Tools Effectiveness and Efficiency.” In: SCCC,
1-8. https://doi.org/10.1109/SCCC.2018.8705160.

Ezekiel Soremekun, Lukas Kirschner, Marcel Bohme, and Mike Papadakis. 2023. “Evaluating
the Impact of Experimental Assumptions in Automated Fault Localization.” In: ICSE,
159-171. https://doi.org/10.1109/ICSE48619.2023.00025.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton Van straaten, Robby Findler, and
Jacob Matthews. 2009. “Revised6 Report on the Algorithmic Language Scheme.” JFP,
19, S1, 1-301. https://doi.org/10.1017/S0956796809990074.

T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa, and Matthias Felleisen. 2013.
“Contracts for First-Class Classes.” TOPLAS, 35, 3, 11:1-11:58. https://doi.org/10.
1145/2518189.

T. Stephen Strickland and Matthias Felleisen. 2009a. “Contracts for First-Class Modules.”
In: DLS, 27-38. https://doi.org/10.1145/1640134.1640140.

T. Stephen Strickland and Matthias Felleisen. 2009b. “Nested and Dynamic Contract Bound-
aries.” In: IFL, 141-158. https://doi.org/10.1007/978-3-642-16478-1_9.

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.
2012. “Chaperones and Impersonators: Run-Time Support for Reasonable Interposition.”
In: OOPSLA, 943-962. https://doi.org/10.1145/2384616.2384685.

Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-
Yves Strub, and Gavin Bierman. 2014. “Gradual Typing Embedded Securely in JavaScript.”
In: POPL, 425-437. https://doi.org/10.1145/2535838.2535889.

https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1007/978-3-662-46669-8_18
https://doi.org/10.1109/SCCC.2018.8705160
https://doi.org/10.1109/ICSE48619.2023.00025
https://doi.org/10.1017/S0956796809990074
https://doi.org/10.1145/2518189
https://doi.org/10.1145/2518189
https://doi.org/10.1145/1640134.1640140
https://doi.org/10.1007/978-3-642-16478-1_9
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2535838.2535889

188

Cameron Swords. 2019. “A Unified Characterization of Runtime Verification Systems as
Patterns of Communication.” Ph.D. Dissertation. Indiana University.

Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. 2018. “An Extended Account
of Contract Monitoring Strategies as Patterns of Communication.” JFP, 28, e4, 1-47.
https://doi.org/10.1017/50956796818000047.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. 2016. “Is Sound Gradual Typing Dead?” In: POPL, 456-468. https://doi.
org/10.1145/2837614.2837630.

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. 2012. “Gradual Typing for First-Class Classes.” In: OOPSLA, 793—
810. https://doi.org/10.1145/2384616.2384674.

Ferdian Thung, David Lo, Lingxiao Jiang, et al.. 2012. “Are Faults Localizable?” In: Pro-
ceedings of the 9th IEEE Working Conference on Mining Software Repositories, 74-77.
https://doi.org/10.5555/2664446 .2664457.

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. “Interlanguage Migration: from Scripts
to Programs.” In: DLS, 964-974. https://doi.org/10.1145/1176617.1176755.

Sam Tobin-Hochstadt and Matthias Felleisen. 2010. “Logical Types for Untyped Languages.”
In: ICFP, 117-128. https://doi.org/10.1145/1863543.1863561.

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. “The Design and Implementation of
Typed Scheme.” In: POPL, 395-406. https://doi.org/10.1145/1328438.1328486.

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Green-
man, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa.
2017. “Migratory Typing: Ten Years Later.” In: SNAPL, 17:1-17:17. https://doi.org/
10.4230/LIPIcs.SNAPL.2017.17.

Matfas Toro and Eric Tanter. 2017. “A Gradual Interpretation of Union Types.” In: Proceed-
ings of the 24th Static Analysis Symposium, 382-404. https://doi.org/10.1007/978-
3-319-66706-5_19.

Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. 2018.
“The Behavior of Gradual Types: a User Study.” In: DLS, 1-12. https://doi.org/10.
1145/3276945.3276947.

https://doi.org/10.1017/S0956796818000047
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.5555/2664446.2664457
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.1007/978-3-319-66706-5_19
https://doi.org/10.1007/978-3-319-66706-5_19
https://doi.org/10.1145/3276945.3276947
https://doi.org/10.1145/3276945.3276947

189

Alexi Turcotte, Aviral Goel, Filip Kiikava, and Jan Vitek. 2020. “Designing Types for R,
Empirically.” PACMPL, 4, OOPSLA, 1-25. https://dl.acm.org/doi/10.1145/
3428249.

Michael M. Vitousek, Andrew Kent, Jeremy G. Siek, and Jim Baker. 2014. “Design and
Evaluation of Gradual Typing for Python.” In: DLS, 45-56. https://doi.org/10.
1145/2661088.2661101.

Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. “Optimizing and Evaluat-
ing Transient Gradual Typing.” In: DLS, 28-41. https://doi.org/10.1145/3359619.
3359742.

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. “Big Types in Little
Runtime: Open-World Soundness and Collaborative Blame for Gradual Type Systems.”
In: POPL, 762-774. https://doi.org/10.1145/3009837.3009849.

Philip Wadler and Robert Bruce Findler. 2009. “Well-Typed Programs Can’t Be Blamed.”
In: ESOP, 1-15. https://doi.org/10.1007/978-3-642-00590-9_1.

David Walker and J. Gregory Morrisett. 2000. “Alias Types for Recursive Data Structures.”
In: TIC, 177-206. https://dl.acm.org/doi/10.5555/647229.719257.

Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018. “Relational Program Synthesis.” PACMPL,
2, OOPSLA, 155:1-155:27 pages. https://doi.org/10.1145/3276525.

Lucas Waye, Stephen Chong, and Christos Dimoulas. 2017. “Whip: Higher-Order Contracts
for Modern Services.” PACMPL, 1, ICFP, 36:1-36:28. https://doi.org/10.1145/
3110280.

Jack Williams, J. Garrett Morris, and Philip Wadler. 2018. “The Root Cause of Blame: Con-
tracts for Intersection and Union Types.” PACMPL, 2, OOPSLA, 134:1-134:29. https:
//doi.org/10.1145/3276504.

Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski. 2017. “Mixed Mes-
sages: Measuring Conformance and Non-Interference in TypeScript.” In: ECOOP, 28:1—
28:29. https://doi.org/10.4230/LIPIcs.ECO0P.2017.28.

Roger Wolff, Ronald Garcia, Eric Tanter, and Jonathan Aldrich. 2011. “Gradual Typestate.”
In: ECOOP, 459-483. https://doi.org/10.1007/978-3-642-22655-7_22.

https://dl.acm.org/doi/10.1145/3428249
https://dl.acm.org/doi/10.1145/3428249
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1007/978-3-642-00590-9_1
https://dl.acm.org/doi/10.5555/647229.719257
https://doi.org/10.1145/3276525
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3276504
https://doi.org/10.1145/3276504
https://doi.org/10.4230/LIPIcs.ECOOP.2017.28
https://doi.org/10.1007/978-3-642-22655-7_22

190

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Ostlund, and Jan Vitek.
2010. “Integrating Typed and Untyped Code in a Scripting Language.” In: POPL, 377—
388. https://doi.org/10.1145/1706299.1706343.

Baijun Wu, John Peter Campora III, and Sheng Chen. 2017. “Learning User Friendly Type-
Error Messages.” PACMPL, 1, OOPSLA, 106:1-106:29. https://doi.org/10.1145/
3133930.

Baijun Wu and Sheng Chen. 2017. “How Type Errors Were Fixed and What Students Did?”
PACMPL, 1, OOPSLA, 105:1-105:27 pages. https://doi.org/10.1145/3133929.

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. 2009. “Static Contract Checking for
Haskell.” In: POPL, 41-52. https://doi.org/10.1145/1480881.1480889.

Wenjia Ye and Bruno C. D. S. Oliveira. 2023. “Pragmatic Gradual Polymorphism with
References.” In: Programming Languages and Systems. Vol. 13990. Ed. by Thomas Wies.
Springer Nature Switzerland, Cham, 140-167. https://doi.org/10.1007/978-3-031-
30044-8_6.

Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas. 2022. “Karp: a Language for
NP Reductions.” In: ICSE, 762-776. https://doi.org/10.1145/3519939.3523732.

Danfeng Zhang and Andrew C. Myers. 2014. “Toward General Diagnosis of Static Errors.”
In: POPL, 569-581. https://doi.org/10.1145/2535838.2535870.

Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2015.
“Diagnosing Type Errors with Class.” In: PLDI, 12-21. https://doi.org/10.1145/
2737924 .2738009.

https://doi.org/10.1145/1706299.1706343
https://doi.org/10.1145/3133930
https://doi.org/10.1145/3133930
https://doi.org/10.1145/3133929
https://doi.org/10.1145/1480881.1480889
https://doi.org/10.1007/978-3-031-30044-8_6
https://doi.org/10.1007/978-3-031-30044-8_6
https://doi.org/10.1145/3519939.3523732
https://doi.org/10.1145/2535838.2535870
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/2737924.2738009

191

APPENDIX A
STRATIFIED PROPORTION ESTIMATION

The goal of chapters 4-6’s experiments are to estimate the proportion of scenarios for which
each mode succeeds, or the proportion or scenarios for which a given mode improves over
another. In statistical terms, this is the proportion estimation task, and since the experi-
ments sample scenarios using stratified random sampling, there is a particular procedure for
calculating the proportion estimate and margin of error that takes advantage of stratifica-
tion. In detail, the algorithm for calculating an estimate of the proportion of a population

satisfying some property, denoted p, based on a stratified set of samples is as follows.

1. Calculate the sample proportion within each group or stratum h, denoted py,:

Pn =

3|@
> &

where y;, is the number of samples satisfying the property in stratum h and nj, is the

total number of samples in stratum h.

2. Calculate the overall sample proportion by weighting each stratum’s proportion ac-
cording to the size of its sample:
p= Zh %ph

where n is the total number of samples: n =), n.

3. Calculate the variance of each stratum’s estimate, denoted s2:

Nh

Si = nh—lph(l - ph)

4. Calculate the variance of the overall proportion estimate, denoted s:

2
= (Zu MR = 8h)

192

where N is the size of the total population, across all strata, and N}, is the size of each

stratum’s population.

5. Calculate the margin of error using the standard error, with a confidence level of 95%,
denoted M E:
ME =z x /52

where z is the z-score for a 95% confidence level: 1.96

To generalize this calculation to multi-tiered proportion estimation, we calculate propor-
tion estimates from the leaves of the stratification tree (see figure 4.8) upward. That is, we
treat each level of grouping as a single stratification, starting from mutants, and use the
overall sample proportion p as p;, for the next level up. In detail, we perform the following

sequence of calculations.

1. Calculate the proportion estimate and variance across the mutant strata according to

the above procedure; call them p,, and s2,.

2. Calculate the proportion estimate and variance across the mutator strata according to

the procedure, using each p,, as p, and s2, as s7 above; call them py and s3,.

3. Calculate the proportion estimate and variance across the source program strata anal-

ogously; call them pp and s%.

4. Calculate the final, overall proportion estimate p and variance and s? analogously, and

convert the variance to a final margin of error.

193

APPENDIX B
REVISITING EXPERIMENT 2 WITH THE NATURAL BIAS

A reproduction of the experiment of section 5 with the alternative bias demonstrates that
the choice of bias does not significantly affect the section’s conclusions. Specifically, we
filter to select only scenarios that raise a run-time error under Natural. This appendix
lists corresponding versions of the result figures of section 5. At a high level, the first
takeaway is that the Natural-blame mode improves over all other modes in slightly more
scenarios (on the order of a few percent). Somewhat more interestingly, the exception modes,
including Erasure, improve over both Transient blame modes in about 5% more scenarios in
this variation. Thus Transient’s blame appears even less useful in comparison with simple
stacktraces, but only by a small measure. Otherwise, the overall comparative success and
usefulness comparisons follow the same basic patterns that inform the section’s discussion

and conclusions.

194

% of scenarios successful

The upper bound margin of error is
0.02%.

Figure B.1: Percentage rates of success.

Natural blame

Transient last blame

::, 20 ::, 20
$ 17.5¢ % 17.5¢ i
3 3
g 15% g 15% kS
g 12.5% g 12.5% i
§ 10+ § 10+ 4
g 7.5% g 7.5+ t
(o} Q
@ 5% @ 5% 3
8 25% 8 25% —
% 2.5% % 2.5 3
3 5% 2 5] 1
ﬁ 7.5% g 7.5 +
3 10+ 3 10+ kS
E 12.5% § 12.5+ +
g 15% g 15% i
1] 1]
o 1751 o 1751 i
R 20— ! | | R 20— ! ! ! | |
Q& S Q < J < () (4 J Q
& S & S
@ o @
\@ Q’Qo 6)\ &,\ QJQQ Q},O% \@@ @Qo \,\o\,’b ‘:9\2» ®Q0 Q,@%
> & S) & > & 3 3 9
P N N N SN (& F
é(b g’& & S é(o g’& & &S
S &8 X3) > S X9 9
é’é“ & &P & éfa}“ & &P &
< Sl < B <P
Natural exceptions Transient exceptions
::, 20 ::, 20
$ 17.5¢ 2 17.5¢ i
3 3
g 15% g 15% kS
g 12.5% g 12.5% +
§ 10+ § 10+ }
& 75% g 75+ 1
[Q
@ 5% & 5% T
o
3 25% 8 254 S
® 0 ® 0
| —
% 2.5 % 2.5 —
3 59 2 5] i
[2] 2]
E 7.51 E 7.5 +
'g 104 'g 104 T
E 12.5 E 12.5 +
g 15% g 15 i
o 1751 o 1751 i
R 20— ! | | R 20— ! ! ! | |
< S Q < S < J < (4 J S
& & F F S & & F F S
- Q aY a4 Q <o Y Q \ N Q <O
SRS A A M A S AR A M
3 Ad P & NS ¥ N S Ad
é‘bx > S SR éé” > S S
S S
& S PP X)
S« &% &% PN G SN

195

Transient first blame
20

17.5%
15¢%
12.5%

10+
7.5%

2.5%

% of scenarios more useful

2.51

% of scenarios less useful

7.54 T
10+ S
12.5% +

Erasure
20

% of scenarios more useful

17.5% +
15+ S
12.5% ¥
10+ S
7.5% S

2.5] +

7.54 T
104 S
12.57 +

% of scenarios less useful

Each plot depicts a head-to-head comparison of the mode named above the plot vs. every other mode.
The (green) portion above 0 is the estimated percentage of scenarios where the named mode is more
useful than the other. The (red) portion below 0 is the estimated percentage of scenarios where the
named mode is less useful than the other. The upper bound margin of error is 0.02%.

Figure B.2: Head to head usefulness comparisons.

196

Erasure Natural Erasure Transient Erasure Transient
blame last blame first blame

Natural Transient

Transient
exceptions exceptions exceptions

Each diagram shows the overlap of the successful scenarios for three modes. For example, in the
leftmost diagram, all three modes succeed on the same scenario 75.7% of the time, only Natural and
Natural exceptions succeed on 11.6% of the scenarios, only Natural and Erasure succeed on 1.8%, and
Natural alone succeeds on 9.2%. The upper bound margin of error is 0.02%.

Figure B.3: Blame usefulness analysis

% of trails with length

% of trails with length

197

Random
100
o 80t
S
o
=1
2
o 60+
=
2
i)
‘@ 40+
b=}
Yy
o
X g0t
0 t T T T T T . T t
0 2 3 4 5 6 7 8 9 10
Natural Transient Transient
blame last blame first blame
100 100 100
80+ o 801 o 80+
- -
S) o
=] <]
2 2
60+ = 60+ o 60t
= B
2 2
= =
40+ g 40+ g 40+
G Yy
o]
20+ X 207 X 201
0 T T T T + 0 T T T T + 0 T T T —— +
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Natural Transient Erasure
exceptions exceptions
100 100 100
80+ = 801 o 80t
=) =)
= =]
2 <
60—+ o 60+ o 60+
= b=
2 2
2 2
40+ ‘® 40+ ‘@ 40+
B B
G Yy
o o
20+ S 204 X 204
0 T T T T t+ 0 T T T T t+ 0 T T T T t+
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Each plot depicts the distribution of trail lengths for a given mode across all benchmarks. The upper

bound margin of error is 0.05%.

Figure B.4: Programmer effort

% of mutually-successful scenarios

% of mutually-successful scenarios

Natural vs Natural

Natural vs Transient

blame exceptions blame last blame
75 — 2 75 —
70+ T g 70t 1
65+ + & 65t T
60+ T 8 60t +
55+ + 2 55+ 1
50+ + & 507 1
45+ 1+ 8 45+ +
40+ 1+ 8 40+ +
35+ T 3 357 1
30+ + 2 30t +
25+ + 3 257 1
20+ + B 20t T
15+ + 32 15+ 1
10-—‘ + B 10t 1
ol L == IR == e
0o -3 -2 -1 01 2 3 +o 0o -3 -2 -1 01 2 3 +w
trail length difference trail length difference
Transient vs Transient Transient vs Transient
last blame first blame last blame exceptions
75 = 2 75
70+ 1+ g 70+ T
65+ T+ & 657 — T
60+ + 8 607 1
55+ + 2 55+ 1
50+ + & 50+ 1
451 + 8 45+ T
40+ + § 404+ 1
35+ T 2 35+ 1
30—+ T 2 307 1
25—+ T 3 257 1
20+ T B 20t 1
15+ T 3 15+ 1
10+ 1 E 10-—‘ 1
5+ + © 54 +
0+t =t X 0 L mm e T
@ -3 -2 -1 01 2 3 4w @ -3 -2 -1 01 2 3 4w

trail length difference

trail length difference

% of mutually-successful scenarios

% of mutually-successful scenarios

198

Natural vs Transient
blame first blame

75
70+
65+
60+
55+
50+
45+
40+
35+
30+
25+
20+
15+
10+

—t—= —t—t—
-2

w3 2 -1 0 1 2 3 +o

trail length difference

vs Transient
exceptions

Transient
first blame

75
70+
65+
60+
55+
50+
45+
40+
35+
30+
25+
20+
15+
10+

y y y PR
—t—t —

@ 3 2 1 0 1 2 3 4o

trail length difference

Each plot depicts the distribution of scenarios with trail length differences ranging from -3 to 3. A
—x difference denotes that the first mode’s trail is x steps shorter than the second mode’s trail for
the same scenario; a positive difference denotes the inverse. A difference of oo indicates one mode’s
trail succeeds while other mode’s fails. The 15—60 on the y-axis indicates that the axis is truncated
between 15 and 60%. The upper bound margin of error is 0.03%.

Figure B.5: Effort comparisons

199

APPENDIX C
REVISITING EXPERIMENT 3 WITH THE ERASURE BIAS

A reproduction of the experiment of section 6 with the alternative bias demonstrates that
the choice of bias does not affect the section’s conclusions. Specifically, we filter to select
only scenarios that raise a run-time error under Erasure. This appendix lists corresponding
versions of the result figures of section 6. The overall takeaway is that there are only minor
percentage-point variations between the results; the high level differences between modes
entirely mirror those of section 6.6.

100
90+
80+
70+
60+
50+
40+
30+
20+
10+

0

% of scenarios successful

The upper bound margin of error is
0.08%.

Figure C.1: Percentage rates of success.

Natural blame

Transient last blame

3 45 3 45
§ 40 Ug-’ 40+
o 35+ o 35+
g 30+ g 30+
o 254 o 251
S S

‘g 20+ g 20+
£ £

8 15+ 8 15+
» 10 @ 10+
G G

5 s 5 5
= S

0 0

% of scenarios less useful
N
(2]
!

% of scenarios less useful
N
T

45 + ¢ ¢ - - ¢ 45 + ¢ ¢ ;
@ & @ @ e @ > @ @
S S
& & F F & & & & F F S &
- A 3 NN 9 <
&8 £ P 3 &S &8 P 2 &S
& @ & S S & @ & & S
?}& & & 8 %»“& & & &
S @ <« &® PR <2
Natural exceptions Transient exceptions
E 45 E 45
5 407 g 401
o 35+ o 35
g 304 g 30+
@ 254 @ 254
'5 20+ E 20+
§ 15+ § 15
2 10+ 2 10+
\2 5+ \2 5
<0 <0
 E—
= = o
% 10 % 10
@ 157 @ 157
2 20 2 20
%2} %2}
.E 25+ .8 25+
g 301 g 30-
S 35] S 354
S 40 ‘S 404
X 45 | | | | | | X 451+ | | |
@ & @ @ > e @ &) @ @
o o S & . ¢
9\@0 0 ‘)\@0 @0& R ‘)\@&“ S @9& x)\'b& & &
> AN X AN > PN < PN <
,&{o R AN ° & y &0 xQ)o N e
X X X <
Gy & &> &S < S0 &> &
X S S L &P S &
~ &L & >

Each plot compares the mode named above the plot to every other mode. The green bars above

Transient first blame

200

% of scenarios more useful

% of scenarios less useful
N
ol
f

Erasure

% of scenarios more useful

% of scenarios less useful
N
[}
f

S <

G
B & &
S & T &P

0 depict the estimated percentage of scenarios where the named mode has more useful
information than the other. The red bars below 0 conversely depict the estimated percentage

where the named mode has less useful information. The upper bound margin of error is 0.08%.

Figure C.2: Head to head usefulness comparisons.

% of trails with length

% of trails with length

Random
100
5 80+
(=}
[=]
2
< 60+
=
2
2
'g 40+
G
o
0\3 20,,
0 1 2 3 4 5 6 7 8 9 10
Natural Transient Transient
blame last blame first blame
100 100 100
80+ = 80t o 80t
= =
=] =]
2 2
60+ g 60+ g 60+
E E
2 2
40 T 40+ T 40+
5 5
201 X 20 X 204
01— : : t - 04— : : - ; 0= : :
0 1 2 3 4 0 1 2 3 4 0 1 2
Natural Transient Erasure
exceptions exceptions
100 100 100
80+ = 80t = 80f
= =S
=] =]
2 2
60+ = 60+ = 60+
= =
2 2
40+ T 40+ T 40+
- -
k] k]
20- X 20t X 20t
0 T T T + + 0 T T T T 0 T T T
0 1 2 3 4 0 1 2 3 4 0 1 2

Each plot depicts the distribution of trail lengths for the mode named above. The
proportion of successful trails (bottom of each stacked bar) and failed trails (top) are

also indicated by color (green for success and red for failure). The upper bound

margin of error is 0.01%.

Figure C.3: Trail length distributions per mode.

201

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	A First Taste of Contracts and Gradual Types
	Debugging with Contracts and Gradual Types
	Pragmatics
	The Rational Programmer
	Outline

	The Rational Programmer Framework at a High Level: Linking Semantics and Pragmatics
	From the Rational Programmer Framework to a Method for Debugging with Contracts and Gradual Types
	Making Automatable Procedures
	Designing a Rigorous Experiment
	Obtaining Scenarios for an Experiment

	Experiment 1: Behavioral Contracts and Behaviorial Bugs in Code
	Background: Contracts and Blame
	Debugging with Blame

	The Blame Shifting Hypothesis
	The Blame Shifting Procedure
	Capturing Contract Choices with the Configuration Lattice
	The Blame Shifting Procedure, Formally

	The Experiment in Precise Terms
	Success, Failure, and Usefulness
	Debugging Effort
	Experimental Questions

	Obtaining Debugging Scenarios for Contracts
	Starting Programs from the GTP suite
	Injecting Bugs with Mutation
	Sampling to make the experiment feasible

	Results
	A Weakness of Racket: Missing Protocol Contracts
	Buggy or Ill-Structured Benchmarks?

	Lessons Learned
	Threats to Validity
	Threat: The Rational Programmer is not a Human Programmer

	Summary

	Experiment 2: Gradual Types and Type-level Bugs in Code
	Background: Gradual Types
	Three Flavors of Gradual Typing

	Challenges
	The Hypothesis for Gradual Types
	The Procedure for Gradual Types
	The Type Migration Lattice
	How to Make Comparable Rational Programmers

	The Experiment in Precise Terms
	Success, Failure, and Usefulness
	Experimental Questions

	Obtaining Debugging Scenarios for Gradual Types
	The Experimental Benchmarks
	How to Mutate Code for Type-level Mistakes
	Are These Mutations Interesting?
	Sampling the Space of Debugging Scenarios

	Results
	Lessons Learned
	Interpreting the Results
	Threats to Validity
	Threat: Is the Definition of Interesting Scenarios Reasonable?
	Threat: Why Does Transient Lose Blame?
	Threat: Is the Transient Blame Assignment Mechanism Realistic?
	Threat: Different Languages, Different Types, Different Checks

	Summary

	Experiment 3: Gradual Types and Bugs in Type Annotations
	Background: Gradual Types Can Be and Often Are Wrong
	The Hypothesis for Type Interface Mistakes
	The Procedure for Type Interface Mistakes
	The Type Migration Lattice
	How to Make Comparable Rational Programmers

	The Experiment in Precise Terms
	Success, Failure, and Usefulness
	Experimental Questions

	Obtaining Debugging Scenarios with Type Interface Mistakes
	The Seed of the Scenario Corpus
	Mutating Interface Types
	Adapting Mutants to Debugging Scenarios
	Sampling Debugging Scenarios

	Results
	Lessons Learned
	Interpreting the Results
	Threats to Validity
	Threat: Typing Library-side Modules

	Summary

	Related Work
	Contracts and Gradual Typing
	Contracts
	Gradual Typing
	Type Mistakes in Gradual Typing

	Evaluations of Debugging Information and Strategies
	Fault Localization
	User Studies Investigating Pragmatics and Debugging

	Methodological Inspirations for Scenario Generation

	Conclusion
	Future Work

	References
	Stratified Proportion Estimation
	Revisiting Experiment 2 with the Natural Bias
	Revisiting Experiment 3 with the Erasure Bias

