

Computer Science Department

Technical Report
Number: NU-CS-2024-11

June, 2024

A New Paradigm for Efficient and Scalable Zero-Knowledge Proofs

Chenkai Weng

Abstract

Zero-Knowledge proof (ZKP) is a combination of cryptographic protocol and mathematical
proof that allows a prover to convince a verifier on the correctness of a statement, without
revealing its private information that validates the statement. It is a privacy-enhancing technique
that can not only prove NP statements, but also correct operations over secrets. The exemplary
functionalities of ZKP-based systems include proving sufficiency of bank deposit without
revealing the amount; proving correct inference of an image by a private neural network model;
proving correct SQL execution on a private database.
Most of existing ZKPs are designed for the asynchronous setting with focus on
noninteractiveness, public verifiability and succinctness. However, they suffer from long proof
generation time and large memory usage. In this thesis, we propose a new paradigm for
streaming interactive zero-knowledge proof protocols. By allowing a constant number of round
communication, it enables low proving time and memory overhead, which leads to significantly
better efficiency, regarding the end-to-end running time, and scalability, regarding the
complexity of statement that can be proven with constrained memory resource.
(1) We introduce the vector oblivious linear evaluation (VOLE), which is the most important
building block for these interactive ZKPs. It allows a prover to efficiently commit to extended
witnesses in tens to hundreds of nanoseconds per wire.
(2) We present the Wolverine protocol, which utilizes VOLE to construct an interactive
commitment scheme. Then it leverages the cut-and-bucketing technique to verify the correctness

of extended witnesses with respect to non-linear gates. The Wolverine protocols works for both
small (F2) and large (Fp) fields. Furthermore, we present the Quicksilver protocol that improves
from Wolverine on its verification process and reduces its communication by 3×. Its method is
also extended to the verification of polynomial sets.
(3) To further improve the communication overhead, we propose the AntMan protocol that
proves (B,C)−SIMD circuits with cost O(C), while the naive implementation requires O(BC). By
adding a check of wiring consistency, it is able to prove an arbitrary size-C circuit with O(C3/4)
communication overhead.
(4) We discuss the Mystique protocol that enables Quicksilver to handle mixed statements.
Specifically, it allows the statement representation to compose both Boolean and arithmetic
circuits as well as polynomials. This design allows efficient proof of complicated statements and
promotes the versatility of ZKP applications such as the zero-knowledge machine learning
(ZKML).

Keywords

Applied Cryptography, Zero-knowledge proofs, Vector oblivious linear evaluation

NORTHWESTERN UNIVERSITY

A New Paradigm for E�cient and Scalable Zero-Knowledge Proofs

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Chenkai Weng

EVANSTON, ILLINOIS

June 2024

2

© Copyright by Chenkai Weng 2024

All Rights Reserved

3

ABSTRACT

A New Paradigm for E�cient and Scalable Zero-Knowledge Proofs

Chenkai Weng

Zero-Knowledge proof (ZKP) is a combination of cryptographic protocol and mathe-

matical proof that allows a prover to convince a verifier on the correctness of a statement,

without revealing its private information that validates the statement. It is a privacy-

enhancing technique that can not only prove NP statements, but also correct operations

over secrets. The exemplary functionalities of ZKP-based systems include proving suf-

ficiency of bank deposit without revealing the amount; proving correct inference of an

image by a private neural network model; proving correct SQL execution on a private

database.

Most of existing ZKPs are designed for the asynchronous setting with focus on non-

interactiveness, public verifiability and succinctness. However, they su↵er from long proof

generation time and large memory usage. In this thesis, we propose a new paradigm for

streaming interactive zero-knowledge proof protocols. By allowing a constant number of

round communication, it enables low proving time and memory overhead, which leads

to significantly better e�ciency, regarding the end-to-end running time, and scalability,

4

regarding the complexity of statement that can be proven with constrained memory re-

source.

(1) We introduce the vector oblivious linear evaluation (VOLE), which is the most

important building block for these interactive ZKPs. It allows a prover to ef-

ficiently commit to extended witnesses in tens to hundreds of nanoseconds per

wire.

(2) We present the Wolverine protocol, which utilizes VOLE to construct an inter-

active commitment scheme. Then it leverages the cut-and-bucketing technique

to verify the correctness of extended witnesses with respect to non-linear gates.

The Wolverine protocols works for both small (F2) and large (Fp) fields. Fur-

thermore, we present the Quicksilver protocol that improves from Wolverine on

its verification process and reduces its communication by 3⇥. Its method is also

extended to the verification of polynomial sets.

(3) To further improve the communication overhead, we propose the AntMan pro-

tocol that proves (B,C)�SIMD circuits with cost O(C), while the naive imple-

mentation requires O(BC). By adding a check of wiring consistency, it is able to

prove an arbitrary size-C circuit with O(C3/4) communication overhead.

(4) We discuss the Mystique protocol that enables Quicksilver to handle mixed state-

ments. Specifically, it allows the statement representation to compose both

Boolean and arithmetic circuits as well as polynomials. This design allows e�-

cient proof of complicated statements and promotes the versatility of ZKP ap-

plications such as the zero-knowledge machine learning (ZKML).

5

Acknowledgements

I would like to express my deepest gratitude to my advisor Professor Xiao Wang.

He introduced me to the world of cryptography, and guided my through the journey of

research. He not only provided me with the knowledge and skills to be a cryptographer,

but also tremendous opportunities to engage with the great IACR community. I am also

grateful to Professor Jonathan Katz, Jennie Rogers, Xinyu Xing, and Doctor Antigoni

Polychroniadou, for kindly serving in my committee and helping improve my thesis. Also,

I could not have undertaken this journey without Antigoni Polychroniadou, Melissa Chase

and Dahlia Malkhi, who mentored me during my internships at JPMorgan AI Research,

Microsoft Research and Chainlink Labs.

Special thanks to my collaborators for their guidance and assistance at every stage of

our projects. Thanks should also go to my friends, labmates, and my fellow JP Morgan

interns who are always ready to lend a hand when I am going through hard times. Lastly,

I would be remiss in not mentioning my parents and my girlfriend for their unwavering

support and belief in me.

6

Table of Contents

ABSTRACT 3

Acknowledgements 5

Table of Contents 6

Chapter 1. Introduction 8

1.1. Notation 11

1.2. Preliminaries 11

1.3. Related Works 19

Chapter 2. Subfield Vector Oblivious Linear Evaluation 23

2.1. Base sVOLE 25

2.2. Single-Point sVOLE 34

2.3. sVOLE Extension 46

2.4. Performance Evaluation 50

Chapter 3. Zero-Knowledge Proofs from VOLE 58

3.1. VOLE-ZK from Cut-and-Bucketing 58

3.2. Improved Committed Triple Verification 68

3.3. Zero-Knowledge For Polynomial Sets 80

3.4. Implementation and Benchmarking 90

7

Chapter 4. VOLE-ZK with Sublinear Communication 97

4.1. Information-Theoretic Polynomial Authentication Codes 97

4.2. Zero-Knowledge Proofs with Sublinear Communication 105

4.3. Implementation and Benchmarking 127

Chapter 5. E�cient Conversions for Zero-Knowledge Proofs 135

5.1. Arithmetic-Boolean Conversion for Zero-Knowledge Proofs 135

5.2. Converting Publicly Committed Values to Privately Authenticated Values 151

5.3. Performance Evaluation 160

References 168

8

CHAPTER 1

Introduction

Zero-Knowledge Proof (ZKP) enables a prover P to convince a verifier V that a

statement is true, without revealing any information beyond the validity of the state-

ment [59, 58, 11]. ZKP has found its applications in private software verification, anony-

mous blockchain transaction, electronic voting and machine learning. Prior popular ZKP

systems include zk-SNARKs with trusted setup [63, 52], transparent interactive oracle

proofs (IOPs) [12, 99, 60], MPC-in-the-Head (MPCitH) [70, 2], ZK from garbled circuits

(ZKGC) [72, 50], etc. These protocols are optimized with di↵erent goals, and they all

su↵er from some drawbacks as well.

Among all the performance matrics that are considered for ZKP systems, the priority

usually leans toward the interactiveness, public verifiability, setup assumption, proving

time, verifying time, proof size, and memory usage. In the regime of non-interactive

and public verifiable ZKPs, the zk-SNARKs with trusted setup usually have shortest

(constant) proof size but worse proof generation time. MPCitH protocols (except for

Ligero [2]) enjoy fast proof generation but have linear-size proofs. IOPs achieve the best

balance between these properties by having relatively fast proving time and polylogrith-

mic proof size. Moreover, these schemes need to process all proof data at once, which

results in memory usage linear to the complexity of the statement (i.e., circuit size or

the number of R1CS constraints). On the other hand, interactive ZKPs such as ZKGC

have lightweight prover algorithms and potentially support the streaming setting and thus

9

only need constant memory usage. However, it requires a proof size not only linear to the

complexity of the statement, but the security parameter as well.

Given the above facts, none of these schemes are suitable for large scale ZKP tasks

such as the proof of databases query processing with private tables, smart contract virtual

machine execution with private metadata, and machine learning inference with private

models. They either require unreasonable proof generation time and overwhelming mem-

ory overhead, or incur large communication overhead. The restriction on computation

(regarding hardware and software co-design), memory and bandwidth have become the

main factors that hinder the development and deployment of ZKPs.

This thesis introduces a new paradigm for the zero-knowledge proof named VOLE-

ZK, in which VOLE stands for a cryptographic primitive – vector oblivious linear evalua-

tion (VOLE). By introducing a constant number of round-trip communication between a

prover and a designated verifier, it allows streaming setting that is 10� 103⇥ faster than

IOPs and other zk-SNARKs regarding the proving time. Unlike ZKGC, its communica-

tion overhead is only linear to the complexity of the statement, but not the computational

security parameter. More importantly, its memory usage is constant because it leverages

the VOLE-based commit-and-prove paradigm to process the proof on the fly. Based

on these properties, VOLE-ZK becomes the first proof system that is able to e↵ectively

prove complicated statement using commodity hardware such as laptops and cellphones.

In contrast, IOPs and other zk-SNARKs usually require a powerful server with hundreds

of Gigabytes or even Terabytes to fulfill the same task; ZKGC requires 102⇥ larger band-

width resources and only works for the Boolean circuit representation.

10

VOLE-ZK. Wolverine [96] and LPZK [46] proposed VOLE-based ZKP constructions

with di↵erent verification procedures. The e�ciency, scalability and flexibility of VOLE-

ZK soon inspire more innovations on this topic. Quicksilver [100] propose VOLE-based

batch ZK proof for polynomials statements. Mac’n’Chees [9] proposes ZK for disjunctive

statements and achieves communication overhead only proportional to the longest branch.

Both [97] and [6] study the conversion between Boolean and arithmetic circuits inside a

VOLE-ZK statement. Meanwhile, [6] with its followed-up work [7] propose the ZK over

arithmetic circuit while the wire values are in a Z2k ring, which contains integers that are

more easily operated by CPU. LPZKv2 [43] breaks the |C| log2 p communication boundary

for layered circuits. AntMan [98] further achieves sublinear communication overhead for

SIMD circuits. Franzese et al. design a VOLE-ZK in the RAM model. It cantains an

e�cient constant-overhead ZK-RAM which can be of independent interest. The largest-

scale application so far appears in Mystique [97] and ZKSQL [81]. In Mystique, VOLE-

ZK is used to prove the correct inference of a private ResNet-101 model (101 neural

network layers, 42.5 million model parameters) on CIFAR-10 images. ZKSQL proves the

correctness of ad-hoc SQL query processing with respect to a private committed database.

Organization. The rest of thesis starts with the vector oblivious linear evaluation

(VOLE) at Chapter 2. In Chapter 3, we show the evolving of generic VOLE-based ZKP

protocols including the Wolverine and Quicksilver. They are followed by the sublinear

ZKP protocol shown in Chapter 4. In the end, we describe the e�cient conversions for

VOLE-based ZKPs and their applications in Chapter 5.

11

1.1. Notation

We use � and ⇢ to denote the computational and statistical security parameters,

respectively. We let negl(·) denote a negligible function, and use log to denote logarithms

in base 2. We write x $S to denote sampling x uniformly from a set S, and x $D to

denote sampling x according to a distribution D. We define [a, b) = {a, . . . , b � 1} and

write [n] = {1, . . . , n}. We use bold lower-case letters like a for row vectors, and bold

upper-case letters like A for matrices. We let a[i] denote the ith component of a (with

a[0] the first entry), and let a[i : j) represent the subvector (a[i], . . . ,a[j � 1]).

A circuit C over a field Fp is defined by a set of input wires Iin and output wires Iout,

along with a list of gates of the form (↵, �, �, T), where ↵, � are the indices of the input

wires of the gate, � is the index of the output wire of the gate, and T 2 {Add,Mult} is

the type of the gate. If p = 2, then C is a boolean circuit with Add = � and Mult =

^. If p > 2 is prime, then C is an arithmetic circuit where Add/Mult correspond to

addition/multiplication in Fp. We let C denote the number of Mult gates in the circuit.

When we work in an extension field Fpr of Fp, we fix some monic, irreducible poly-

nomial f(X) of degree r and so Fpr
⇠= Fp[X]/f(X). We let X 2 Fpr denote the element

corresponding to X 2 Fp[X]/f(X); thus, every w 2 Fpr can be written uniquely as

w =
Pr�1

i=0 wi · Xi with wi 2 Fp for all i, and we may view elements of Fpr equivalently as

vectors in Fr
p. When we write arithmetic expressions involving both elements of Fp and

elements of Fpr , it is understood that values in Fp are viewed as lying in Fpr in the natural

way. We let F⇤ denote the nonzero elements of a field F.

1.2. Preliminaries

12

1.2.1. Information-Theoretic MACs and Batch Opening

We use information-theoretic message authentication codes (IT-MACs) [83, 37] to au-

thenticate values in a finite field Fp using an extension field Fpr ◆ Fp. In more detail, let

� 2 Fpr be a global key, sampled uniformly, that is known only by one party PB. A value

x 2 Fp known by the other party PA can be authenticated by giving PB a uniform key

K[x] 2 Fpr and giving PA the corresponding MAC tag

M[x] = K[x] +� · x 2 Fpr .

We denote such an authenticated value by [x]. Authenticated values are additively ho-

momorphic, i.e., if PA and PB hold authenticated values [x], [x0] then they can locally

compute [x00] = [x + x0] by having PA set x00 := x + x0 and M[x00] := M[x] + M[x0] and

having PB set K[x00] := K[x] + K[x0]. Similarly, for a public value b 2 Fp, the parties can

locally compute [y] = [x+ b] or [z] = [bx]. We denote these operations by [x00] = [x] + [x0],

[y] = [x] + b, and [z] = b · [x], respectively.

We extend the above notation to vectors of authenticated values as well. In that case,

[u] means that (for some n) PA holds u 2 Fn
p and w 2 Fn

pr , while PB holds v 2 Fn
pr with

w = v + � · u. An authenticated multiplication triple consists of authenticated values

[x], [y], [z] where z = x · y.

Batch opening of authenticated values. An authenticated value [x] can be “opened”

by having PA send x 2 Fp and M[x] 2 Fpr to PB, who then verifies that M[x]
?
= K[x]+� ·x.

This has soundness error 1/pr, and requires sending an additional r log p bits (beyond x

13

itself). While this can be repeated in parallel when opening multiple authenticated values

[x1], . . . , [x`], communication can be reduced using batching [83, 37].

We describe two approaches for batch checking of authenticated values. The first

relies on a cryptographic hash function H. Specifically, PA sends (in addition to the

values x1, . . . , x` themselves) a digest h := H(M[x1], . . . ,M[x`]) of all the MAC tags; PB

then checks that h
?
= H(K[x1] +� ·x1, . . . ,K[x`] +� ·x`). Modeling H as a random oracle

with 2-bit output, it is not hard to see that the soundness error (i.e., the probability that

PA can successfully cheat about any value) is upper bounded by (q2H+1)/22+1/pr, where

qH denotes the number of queries that PA makes to H. The communication overhead is

only 2 bits, independent of `.

The second approach, which is information theoretic, works as follows:

(1) PA sends x1, . . . , x` 2 Fp to PB.

(2) PB picks uniform �1, . . . ,�` 2 Fpr and sends them to PA.

(3) PA computes M[x] :=
P`

i=1 �i ·M[xi], and sends it to PB.

(4) PB computes x :=
P`

i=1 �i · xi 2 Fpr and K[x] :=
P`

i=1 �i ·K[xi] 2 Fpr . It accepts

the opened values if and only if M[x] = K[x] +� · x.

The soundness error of this approach is given by Lemma 1.

Lemma 1. Let x1, . . . , x` 2 Fp and M[x1], . . . ,M[x`] 2 Fpr be arbitrary values known

to PA, and let � and {K[xi] = M[xi]�� · xi}`i=1, for uniform � 2 Fpr , be given to PB.

The probability that PA can successfully open values (x0
1, . . . , x

0
`) 6= (x1, . . . , x`) to PB is at

most 2/pr.

14

Proof. Fix (x0
1, . . . , x

0
`) 6= (x1, . . . , x`) sent by PA in the first step. If we let !

def
=

P`
i=1 �i · (x0

i � xi), then the probability (over uniform choice of {�i}) that ! = 0 is at

most 1/pr.

Assume ! 6= 0. If PA sends M 2 Fpr , then PB accepts only if

M =
X̀

i=1

�i · K[xi] +� ·
X̀

i=1

·�i · x0
i

=
X̀

i=1

�i · (M[xi]�� · xi) +� ·
X̀

i=1

�i · x0
i

=
X̀

i=1

�i ·M[xi] +� · !.

Everything in the final expression is fixed except for �. Moreover, PA succeeds i↵ � =

!�1 · (M�
P`

i=1 �i ·M[xi]), which occurs with probability 1/pr. ⇤

We can make the second approach non-interactive, using the Fiat-Shamir heuristic

in the random-oracle model, by computing the coe�cients {�i} as the output of a hash

function H evaluated on the values {xi} sent by PA in the first step. Adapting the above

proof, one can show that this has soundness error at most (qH + 2)/pr.

Hereafter, we write Open([x]) to denote a generic batch opening of a vector of au-

thenticated values. In addition, we write CheckZero([x]) for the special case where all xi

are supposed to be 0 and so need not be sent. We let ✏open denote the soundness error

(which depends on the technique used); when using either of the techniques described

above, ✏open is independent of the number ` of authenticated values opened.

15

1.2.2. Additively Homomorphic Encryption

We describe the definition of additively homomorphic encryption (AHE) schemes in the

private-key setting, which specifies the abstract properties that we need for one of our ZKP

protocol [98]. To simplify the description of our protocol, we assume that the plaintexts

lie in a field F. An AHE scheme consists of the Setup algorithm that generates the set

of public parameters par, a key-generation algorithm KeyGen, an encryption algorithm

Enc and a decryption algorithm Dec. In our IT-PAC protocol, we let hmi = Enc(sk,m; r)

denote the ciphertext on a message m encrypted with a secret key sk and a randomness

r.

We require that the AHE scheme satisfies the standard chosen plaintext attack (CPA)

security, and achieves the circuit privacy [71]. Furthermore, we need that the AHE scheme

provides the degree-restriction property: for some integer k � 1, given the set of public

parameters par and the ciphertexts h⇤i, . . . , h⇤ki for a uniform ⇤ 2 F as input, it is

infeasible to compute a ciphertext hf(⇤)i such that f(·) is a polynomial of degree at least

k + 1. The notion of linear targeted malleability defined by Bitansky et al. [16], which

eliminates the computation on ciphertexts other than a�ne linear maps, implies that

the above degree-restriction property holds. For the implementation, we instantiate the

AHE scheme using the BGV homomorphic encryption with a single level [30]. Following

the analysis [76], we have that the BGV-AHE scheme is a valid candidate for linear

targeted malleability, and thus satisfies the degree-restriction property. In our optimized

implementation, a rotation key is used to rotate the slots in ciphertexts. For BGV with

rotation keys, there is no obvious way of computing multiplication or operations of any

higher order. In fact, under the circularity assumption, the rotation key (that is merely a

16

ciphertext) does not reveal any secret information, and thus does not allow an adversary

to break the degree-restriction property. In the following, we provide the definition of

AHE schemes and a brief introduction of BGV-AHE.

An additively homomorphic encryption (AHE) scheme AHE = (Setup,KeyGen,Enc,Dec)

is defined as follows:

• Setup(1�): On input a security parameter �, this algorithm outputs a set of public

parameters par.

• KeyGen(par): On input the set of public parameters par, this algorithm outputs

a secret key sk.

• Enc(sk,m): On input the secret key sk and a messagem 2 F where par is assumed

to be an implicit input, this algorithm outputs a ciphertext c.

• Dec(sk, c): On input the secret key sk and a ciphertext c where par is an implicit

input, this algorithm outputs a message m.

• Additively homomorphic operations: Given the set of public parameters par and

a ciphertext c = Enc(sk, x), a party P can compute a ciphertext c0 = y · c � b

without knowing secret key sk, where y, b 2 F are known by P . The party V

owning sk can decrypt c0 to obtain a = Dec(sk, c0) = x · y � b 2 F. Here, we

require that the AHE scheme achieves circuit privacy, which guarantees that c0

does not leak any information about y and b even to the owner of sk. We refer the

reader to [71, 22, 41] for the formal definition of circuit privacy. Furthermore,

given par and two ciphertexts c1 = Enc(sk,m1) and c2 = Enc(sk,m2), one can

compute c1 + c2 = Enc(sk,m1 +m2) without knowing sk.

17

Informally, we say that the scheme AHE is correct, if the ciphertext c on a message

m, which is obtained by Enc(sk,m) or the additively homomorphic operations of some

ciphertexts generated by Enc(sk, ·), can be decrypted to m via Dec(sk, c) with probability

1� negl(�).

Our implementation adopts the BGV homomorphic encryption with a single level [30]

to instantiate the scheme AHE. In the BGV-AHE scheme, while the ciphertexts are

defined over a ring Rq = R/qR, the plaintexts are lied in a ring Rp = R/pR, where

R = Z[X]/(XN + 1) is a polynomial ring with integer coe�cients modulo XN + 1, N

is a power-of-two integer and p, q 2 N are co-prime. Using the packing technique, we

can pack multiple values in a single ciphertext and support parallel computation in the

single instruction multiple data (SIMD) way. In particular, we can set F = Fp for a

prime p = 1 (mod 2N) and consider an element a 2 Rp as a vector in FN . Although the

BGV-AHE scheme supports N plaintext slots (i.e., allowing to encrypt N messages from

F in a single ciphertext), we still use the notation Enc(sk,m) to denote the encryption of a

single messagem for the sake of simplicity. The circuit privacy of the BGV-AHE scheme is

achieved using the noise-flooding technique [54]. We refer the reader to [30, 76] for details

of the BGV-AHE scheme. Besides, we can also use the BFV homomorphic encryption

with a single level [29, 49] to instantiate the AHE scheme, where the circuit privacy can

be guaranteed in the more e�cient way using the recent rounding technique [41].

18

Functionality FZK

Upon receiving (prove, C, w) from a prover P and (verify, C) from a verifier V where the
same (boolean or arithmetic) circuit C is input by both parties, send true to V if C(w) = 1;
otherwise, send false to V.

Figure 1.1. The zero-knowledge functionality.

1.2.3. Security Model and Functionalities

We use the universal composability (UC) framework [34] to prove security in the presence

of a malicious, static adversary. We say that a protocol ⇧ UC-realizes an ideal function-

ality F if for any probabilistic polynomial time (PPT) adversary A, there exists a PPT

adversary (simulator) S such that for any PPT environment Z with arbitrary auxiliary

input z, the output distribution of Z in the real-world execution where the parties interact

with A and execute ⇧ is computationally indistinguishable from the output distribution

of Z in the ideal-world execution where the parties interact with S and F.

The protocol that we construct in this work UC-realizes the standard zero-knowledge

functionality FZK, reproduced in Figure 1.1 for completeness. (We omit session identifiers

in all our ideal functionalities for the sake of readability.) Our ZK protocol relies on

the subfield Vector Oblivious Linear Evaluation (sVOLE) functionality (see Figure 2.1),

which is the same as that by Boyle et al. [25], except that the adversary is allowed to

make a global-key query on � and would incur aborting for an incorrect guess. After an

initialization that is done once, this functionality allows two parties to repeatedly generate

a vector of authenticated values known to PA.

We review the standard ideal functionality for oblivious transfer (OT) in Figure 1.2.

In Figure 1.3 we define a functionality FEQ implementing a weak equality test that

reveals PA’s input to PB. This functionality can be easily realized as follows: (1) PB

19

Functionality FOT

On receiving (m0, m1) with |m0| = |m1| from a sender PA and b 2 {0, 1} from a receiver PB,
send mb to PB.

Figure 1.2. The OT functionality between PA and PB.

Functionality FEQ

Upon receiving VA from PA and VB from PB, send (VA
?
= VB) and VA to PB, and do:

• If PB is honest and VA = VB, or is corrupted and sends continue, then send (VA
?
=

VB) to PA.
• If PB is honest and VA 6= VB, or is corrupted and sends abort, then send abort to PA.

Figure 1.3. Functionality for a weak equality test.

commits to VB; (2) PA sends VA to PB; (3) PB outputs (VA
?
= VB) and aborts if they are

not equal, and then opens VB; (4) if PB opened its commitment to a value VB, then PA

outputs (VA
?
= VB); otherwise it aborts. UC commitments can be realized e�ciently in

the random-oracle model.

1.3. Related Works

Succinct ZKPs with trusted setup. Zero-Knowledge Succinct Non-Interactive Ar-

gument of Knowledge (zk-SNARK) schemes are the most popular and widely adopted

ZKP schemes in industry and academic research. Their most significant advantages

are non-interactiveness, public verifiability and succinctness (short proof and fast ver-

ification). Earlier protocols assume a trusted setup where a trusted party generates

common reference strings (CRS) and publishes them to a public bulletin board. The

provers prove statements assocaited with CRS and verifiers need CRS to verify the

proofs [62, 13, 53, 85, 38, 63]. CRS also fecilitates the construction of constant-size

proofs which sometimes contain only a few large field elements. However, most of these

20

SNARKs require per-program setup: a CRS is tied to a fixed statement This is fine for

blockchain applications where a prover only needs to constantly prove the same statement.

However, it hinders the application of ZKP to many other fields where provers need to

prove impromptu statements. This problem is partially solved by employing structured

reference strings (SRS). The protocols based on SRS only needs one setup for a large class

of statements and SRS can be updated with a lower cost than being re-generated [82].

Another issue for these kind of schemes is the assumption of a trusted third party who

generates CRS or SRS. Since ZKPs are usually used in decentralized systems, the trusted

parties usually do not exist. However, a proper generation of these strings directly relates

to the security of the underlying proofs, as the randomness taken as input of CRS or

SRS generation algorithms should not be known by any party. A common approach is to

utilize secure multi-party computations (MPC) techniques to have many parties jointly

participate in the generation of CRS or SRS [84, 39]. MPC guarantees that the ran-

domness will never be reconstructed as long as at least one parties honestly samples the

randomness and deletes it after the protocol execution.

zk-SANRKs from interactive oracle proofs. Interactive oracle proofs (IOP) is a class

of ZKP system between the prover and verifiers [12]. It enables a prover to construct

an oracle about the statement and its witnesses. Verifiers access the oracle by sampling

random queries and are convinced if the prover responses correctly. In polynomial in-

teractive oracle proofs, the oracle is usually presented as a committed polynomial and

its query is usually instantiated by polynomial evaluations [32, 91]. The IOP paradigm

enables many concretely e�cient transparent zk-SNARKs in which the proof generation

does not require CRS or SRS that are generated by trusted parties. The most notable ones

21

are a group of linear-time IOPs with linear proof generation and polylogarithmic proof

sizes [99, 60]. Although they incur larger proof size compared to the above zk-SNARKs

with trusted setup, their prover running time is usually at least two order of magnitude

faster.

ZKP from secure multi-party computation. Ishai et al. first proposed a ZKP

from secure multi-party computation [70] and it is called MPC-in-the-head (MPCitH) by

convention. In MPCitH schemes, a prover emulates an MPC execution of the statement

circuit, which takes input its private witness. After the views of emulated parties are com-

mitted, the verifier asks to open a random party’s view and checks its correctness regarding

the messages it receives and sends. It leverages the privacy property of MPC to maintain

the zero-knowledge, and robustness to achieve soundness. Numerous improvements have

been proposed to enhance the performance of MPCitH, including a more rigorous security

and performance analysis in ZKBoo [55], application to post-quantum digital signature

in ZKBoo++ [35], the utilization of preprocessing MPC by Katz et al. [73], the use of

sacrifice-based MPC in Baum et al. [10], and the use of recursive polynomial-based check

in Delpech de Saint Guilhem et al. [42]. A special scheme is Ligero [2]. It is the first

MPCitH scheme that has sublinear (square root) proof size. However, its comes with

larger computational overhead compared to other MPCitH schemes.

Another proof system is ZKP from garbled circuits (ZKGC) [72, 50]. In these schemes,

the prover evaluates pre-determined Boolean circuits in Garbled circuits generated and

committed by the verifier. The zero-knowledge is reduced to the oblivious transfer. Its

drawback is high communication overhead which has a multiplicative factor of the com-

putational security parameter.

22

Space-preserving ZKPs. Previous work on complexity-preserving zero-knowledge proofs

study e�cient proof generation with constrained space or time budget [17, 18, 47, 67,

15, 14]. Bootle et al. propose elastic SNARKs that can either achieve linear time and

space complexity, or reduce the RAM consumption to O(logC) with O(C log2 C) com-

putational complexity [19]. Assume an NP relation that can be verified in time T and

space S by a RAM program, Bangalore et al. [5] propose a public-coin ZKP based on

collision-resistant hash functions that allows the prover to run in time Õ(T) and space

Õ(S), with proof size Õ(T/S). Their space-preserving ZKP is converted from Ligero [2].

Recent recursive zk-SNARK and incremental verifiable computation (IVC) propose

succinct arguments for composed circuits, which can be evaluated step by step [79, 77,

78, 90, 23, 31]. These techniques increase the scalability of the prover, who separately

generates proof for each step while simultaneously proves its consistency with all previous

steps without going over the history data. They can potentially support streaming proofs

in a way that the input and witness for future steps are not necessary known until those

steps are reached. However, many of them only support structured circuit which are

divided into a sequence of components that share the same structure. More advanced

IVCs cross this barrier, however they reveal the output of each step thus does not provide

the zero-knowledge guarantee when they are treated as general ZK [79, 77].

23

CHAPTER 2

Subfield Vector Oblivious Linear Evaluation

In this section, we present a subfield vector oblivious linear evaluation (sVOLE) pro-

tocol which is the most important building block of the interactive commitment scheme

that is used in VOLE-ZK. It can be executed by P and V during the preprocessing phase.

As an independent interest, sVOLE is an important building block for MPC protocols as

well. The functionality of Fp,r
sVOLE is shown in Figure 2.1.

In Section 2.1, we first present an sVOLE protocol with linear communication com-

plexity. Although this already su�ces for our ZK protocol, we can obtain much better

e�ciency using “sVOLE extension” (by analogy with OT extension), by which we extend

a small number of “base” sVOLE correlations into a larger number of sVOLE correlations.

Toward this end, in Section 2.2 we construct a protocol for single-point sVOLE (spsV-

OLE) in the Fp,r
sVOLE-hybrid model, where spsVOLE is like sVOLE except that the vector

of authenticated values has only a single nonzero entry. Then, in Section 2.3, we present

an e�cient protocol for “sVOLE extension” using spsVOLE as a subroutine and relying

on a variant of the Learning Parity with Noise (LPN) assumption. We provide some

intuition for each protocol in the relevant section. Our implementation shows that this

protocol outperforms all prior work; we discuss its concrete performance in Section 2.4.

24

Functionality Fp,r
sVOLE

Initialize: Upon receiving init from PA and PB, sample � $Fpr if PB is honest or receive
� 2 Fpr from the adversary otherwise. Store global key � and send � to PB, and ignore all
subsequent init commands.

Extend: This procedure can be run multiple times. Upon receiving (extend, `) from PA

and PB, do:

(1) If PB is honest, sample K[x] $F`
pr . Otherwise, receive K[x] 2 F`

pr from the adver-
sary.

(2) If PA is honest, sample x $F`
p and compute M[x] := K[x]+�·x 2 F`

pr . Otherwise,

receive x 2 F`
p and M[x] 2 F`

pr from the adversary, and then recompute K[x] :=

M[x]�� · x 2 F`
pr .

(3) Send (x,M[x]) to PA and K[x] to PB.

Global-key query: If PA is corrupted, receive (guess,�0) from the adversary with�0 2 Fpr .
If �0 = �, send success to PA and ignore any subsequent global-key query. Otherwise, send
abort to both parties and abort.

Figure 2.1. Functionality for subfield VOLE.

Functionality Fp,r
COPEe

Initialize: Upon receiving init from parties PA, PB, sample � $Fpr if PB is honest, and
receive � 2 Fpr from the adversary otherwise. Store global key �, send � to PB, and ignore
all subsequent init commands. Let �B 2 {0, 1}rm be the bit-decomposition of �, where
m = dlog pe.
Extend: Upon receiving (extend, u) with u 2 Fp from PA and (extend) from PB, this
functionality operates as follows:

(1) Sample v $Fpr . If PB is corrupted, instead receive v 2 Fpr from the adversary.
(2) Compute w := v +� · u 2 Fpr .
(3) If PA is corrupted, receive w 2 Fpr and u 2 Frm

p from the adversary, and recompute

v := w � hg ⇤ u,�Bi 2 Fpr ,

where ⇤ denotes the component-wise product.
(4) Output (u, w) to PA and v to PB.

Figure 2.2. Functionality for correlated oblivious product evalua-
tion with errors (COPEe).

25

2.1. Base sVOLE

We present a “base” sVOLE protocol that is based on oblivious transfer (OT) and

is inspired by prior work of Keller et al. [74, 75]. Our protocol relies on the correlated

oblivious product evaluation with errors (COPEe) functionality FCOPEe, which extends

the analogous functionality introduced by Keller et al. [75] to the subfield case we are

interested in. We show how to UC-realize FCOPEe from OT.

2.1.1. Correlated Oblivious Product Evaluation with Errors

Functionality FCOPEe is described in Figure 2.2, where m = dlog pe. In FCOPEe, we define

a “gadget vector” g 2 Frm
pr by

g =
�
(1, 2, . . . , 2m�1), (1, 2, . . . , 2m�1) · X, . . . , (1, 2, . . . , 2m�1) · Xr�1

�
.

For a vector x 2 Frm
pr , we define

hg,xi =
r�1X

i=0

⇣m�1X

j=0

x[i ·m+ j] · 2j
⌘
· Xi 2 Fpr ,

where the definition can be extended to the cases x 2 {0, 1}rm or x 2 Frm
p by viewing

x as lying in Frm
pr in the natural way. The bit-decomposition of � 2 Fpr is the string

�B 2 {0, 1}rm satisfying hg,�Bi = �.

In Figure 2.3, we present a protocol ⇧p,r
COPEe that UC-realizes F

p,r
COPEe in the FOT-hybrid

model. This protocol follows the construction of Keller et al. [75], which is in turn based

on the IKNP OT-extension protocol [69] and Gilboa’s approach [56] for oblivious product

evaluation. The main di↵erence from prior work is that we support the subfield case.

26

Protocol ⇧p,r
COPEe

Let m = dlog pe and PRF be a keyed function.

Initialize: This initialization procedure is executed only once.

(1) For i 2 [rm], PA samples Ki
0, K

i
1 $ {0, 1}�. PB samples � $Fpr and lets �B =

(�1, . . . ,�rm) 2 {0, 1}rm be its bit-decomposition.
(2) For i 2 [rm], PA sends (Ki

0, K
i
1) to FOT and PB sends �i 2 {0, 1} to FOT, which

returns Ki
�i

to PB.

Extend: This procedure can be executed multiple times. For the jth input u 2 Fp from
PA, the parties execute the following:

(3) For i 2 [rm], do the following in parallel:
(a) PA sets wi

0 := PRF(Ki
0, j) and wi

1 := PRF(Ki
1, j) with wi

0, w
i
1 2 Fp; PB com-

putes wi
�i

:= PRF(Ki
�i

, j).

(b) PA sends ⌧ i := wi
0 � wi

1 � u 2 Fp to PB.
(c) PB computes vi := wi

�i
+�i · ⌧ i = wi

0 ��i · u 2 Fp.

(4) Let v = (v1, . . . , vrm) and w = (w1
0, . . . , w

rm
0) such that w = v + u ·�B 2 Frm

p .
(5) PA outputs w = hg,wi 2 Fpr and PB outputs v = hg,vi 2 Fpr , where w = v+�·u 2

Fpr .

Figure 2.3. COPEe protocol in the FOT-hybrid model.

Lemma 2. If PRF is a pseudorandom function, then ⇧p,r
COPEe UC-realizes Fp,r

COPEe in

the FOT-hybrid model.

The proof of Lemma 2 can be straightforwardly obtained by following the proof of

Keller et al. [75], and is thus omitted.

2.1.2. Base sVOLE

In Figure 2.4, we present a protocol ⇧p,r
base-sVOLE that UC-realizes Fp,r

sVOLE in the FCOPEe-

hybrid model. We first describe a sub-protocol ⇧p,r
base-LsVOLE, which allows two parties

to generate sVOLE correlations with a selective-failure leakage on �, meaning that a

malicious PA is allowed to guess a subset of � and the protocol execution aborts for an

incorrect guess. In this sub-protocol, PB performs a correlation check in steps 3 and 4

27

Protocol ⇧p,r
base-sVOLE

Sub-protocol ⇧p,r
base-LsVOLE with selective-failure leakage:

(1) PA and PB send init to Fp,r
COPEe, which returns � to PB.

(2) PA samples ui $Fp for i 2 [0, n) and ah $Fp for h 2 [0, r). For i 2 [0, n),
PA sends (extend, ui) to Fp,r

COPEe and PB sends (extend) to Fp,r
COPEe, which returns

wi 2 Fpr to PA and vi 2 Fpr to PB such that wi = vi +� · ui. For h 2 [0, r), both
parties also call Fp,r

COPEe on respective inputs (extend, ah) and (extend), following
which PA gets ch 2 Fpr and PB obtains bh 2 Fpr such that ch = bh +� · ah.

(3) PB samples �0, . . . , �n�1 $Fpr , and sends them to PA. Then PA computes x :=Pn�1
i=0 �i · ui +

Pr�1
h=0 ah · Xh, z :=

Pn�1
i=0 �i · wi +

Pr�1
h=0 ch · Xh, and sends (x, z) to

PB.
(4) PB computes y :=

Pn�1
i=0 �i · vi+

Pr�1
h=0 bh ·Xh and checks that z = y+� ·x. If not,

PB aborts.
(5) For i 2 [0, n), PA defines u[i] = ui and w[i] = wi, and PB sets v[i] = vi.

Full protocol without any leakage: Let ` = d2⇢/r log pe+ 1.

(1) Both parties execute the above sub-protocol with parameters p and k = ` · r.
Then, PA obtains (u,w) 2 Fn

p ⇥ Fn
pk and PB gets � 2 Fpk and v 2 Fn

pk such that

w = v+� ·u. By viewing an element in Fpk as a vector in F`
pr , two parties obtain

{wi}i2[`] and {(�i,vi)}i2[`] respectively such that wi = vi + u · �i, wi,vi 2 Fn
pr

and �i 2 Fpr .
(2) PB samples ↵1, . . . , ↵` $Fpr and sends them to PA.

PA computes t :=
P`

i=1 ↵i ·wi; PB computes s :=
P`

i=1 ↵i ·vi and � :=
P`

i=1 ↵i ·�i,
where t = s+ � · u.

(3) PA outputs u and t; PB outputs � and s.

Figure 2.4. Base sVOLE protocol in the FCOPEe-hybrid model.

to verify that the resulting sVOLE correlations are correct (i.e., w = v +� · u). Then,

based on ⇧p,r
base-LsVOLE, we show how to generate sVOLE correlations without such leakage

using the leftover hash lemma [68]. In protocol ⇧p,r
base-sVOLE, all the uniform coe�cients

(i.e., {�i}, {↵i}) can be computed from a random seed and a hash function modeled as a

random oracle.

We prove the following theorem.

28

Theorem 1. Protocol ⇧p,r
base-sVOLE UC-realizes Fp,r

sVOLE in the Fp,r
COPEe-hybrid model. In

particular, no PPT environment Z can distinguish the real-world execution from the ideal-

world execution, except with probability at most (r log p)2/pr + 1/2⇢.

Recall that our protocol ⇧p,r
base-sVOLE is established over the sub-protocol ⇧p,r

base-LsVOLE

with a selective-failure leakage on � (the first part of Figure 2.4). Thus, we first prove

that protocol ⇧p,r
base-LsVOLE UC-realizes functionality Fp,r

LsVOLE, where Fp,r
LsVOLE is the same

as Fp,r
sVOLE except that the global-key query is replaced with the following selective-failure

queries:

• Wait for the adversary to input (guess, S) where S e�ciently describes a subset

of Fpr . If � 2 S, then send success to the adversary and continue. Otherwise,

send abort to both parties and abort.

Based on the leftover hash lemma [68], we can prove that the full protocol (the second

part of Figure 2.4) UC-realizes Fp,r
sVOLE in the Fp,`·r

LsVOLE-hybrid model, where the resulting

global key � is uniform in Fpr except with probability at most 1/2⇢, as the inner product

defines a universal hash function. Replacing Fp,`·r
LsVOLE with sub-protocol ⇧p,`·r

LsVOLE, we obtain

that protocol ⇧p,r
base-sVOLE UC-realizes Fp,r

sVOLE.

Below, we focus on proving that sub-protocol ⇧p,r
base-LsVOLE UC-realizes F

p,r
LsVOLE. We first

consider the case of a malicious PA and then consider the case of a malicious PB. In each

case, we construct a PPT simulator S that runs a PPT adversary A as a subroutine and

emulates Fp,r
COPEe. We always implicitly assume that S passes all communication between

A and environment Z.

Malicious PA. Given access to Fp,r
sVOLE,S interacts with A as follows:

29

(1) S emulates Fp,r
COPEe, and receives (wi,ui) for i 2 [0, n) and (ch,ah) for h 2 [0, r)

from A, where ui,ah 2 Frm
p and m = dlog pe. (In the honest case, we have that

ui = (ui, . . . , ui) for some ui 2 Fp and ah = (ah, . . . , ah) for some ah 2 Fp.)

(2) S samples �0, . . . ,�n�1 $Fpr and sends them to A. Then, S receives x 2 Fpr

and z 2 Fpr from A. Next, S computes an adversarially chosen error

ez := z �
n�1X

i=0

�i · wi �
r�1X

h=0

ch · Xh 2 Fpr .

(3) S computes a set S� as follows:

• Solve the following equation:

(2.1)
D
g · x� g ⇤

n�1X

i=0

�i · ui � g ⇤
r�1X

h=0

ah · Xh,�B

E
= ez

• For each solution �B, compute � := hg,�Bi and add � to the set S�.

(4) S sends (guess, S�) to Fp,r
LsVOLE. If receiving abort from Fp,r

LsVOLE, S aborts. Other-

wise, S continues the simulation.

(5) S computes another set S̃�̃ as follows:

• Solve the following equation:

(2.2)
D
g · x� g ⇤

n�1X

i=0

�i · ui � g ⇤
r�1X

h=0

ah · Xh, �̃B

E
= 0

• For each solution �̃B, compute �̃ := hg, �̃Bi and add �̃ into the set S̃�̃.

(6) If S̃�̃ only involves a single entry 0, then S aborts. Otherwise, S chooses any

nonzero element �̃ 2 S̃�̃, and then for i 2 [0, n), computes

(2.3) ui := �̃�1 · hg ⇤ ui, �̃Bi

30

where hg, �̃Bi = �̃. (In the following analysis, we will show that ui is unique

over all possible �̃ in set S̃�̃.)

(7) For i 2 [0, n), S computes an adversarially chosen error ei := ui � (ui, . . . , ui) 2

Frm
p , and then computes w0

i := wi � hg ⇤ ei,�Bi 2 Fpr for any �B such that

hg,�Bi 2 S�. Then, S sends u = (u0, . . . , un�1) and w = (w0
0, . . . , w

0
n�1) to

functionality Fp,r
LsVOLE.

The simulation for the protocol transcript is straightforward. Below, we first consider the

case of p = 2, and later discuss the case of a prime p > 2. In the real protocol execution,

the correlation check has the following equation:

(2.4) x ·� = z � y =
n�1X

i=0

�i · (wi � vi) +
r�1X

h=0

(ch � bh) · Xh + ez

For a malicious PA, we have that wi � vi = hg ⇤ ui,�Bi for i 2 [0, n) and ch � bh =

hg ⇤ ah,�Bi for h 2 [0, r). Thus, we can rewrite equation (2.4) as follows:

x ·��
n�1X

i=0

�i · hg ⇤ ui,�Bi �
r�1X

h=0

hg ⇤ ah,�Bi · Xh = ez

,
D
g · x� g ⇤

n�1X

i=0

�i · ui � g ⇤
r�1X

h=0

ah · Xh,�B

E
= ez.

Therefore, the set S� corresponds to A’s guess of �, and the probability of aborting in

the ideal-world execution is the same as that in the real-world execution.

For any two di↵erent solutions �,�0 2 S�, we define �̃ = � � �0 2 Fpr and thus

�̃B = �B ��0
B 2 {0, 1}rm. From equation (2.1), we easily obtain that equation (2.2)

holds. This also shows that the set S� for equation (2.1) is an a�ne subspace of Fpr . Note

that the set S̃�̃ from equation (2.2) is a linear space parallel to S�. If there is only one

31

solution for equation (2.1), then S̃�̃ includes only one zero entry. In this case, S aborts,

and the probability that the real protocol execution does not abort is at most 1/pr.

For h 2 [0, r), we define

(2.5) ah = �̃�1 · hg ⇤ ah, �̃Bi

where �̃ = hg, �̃Bi 2 S̃�̃ is used to compute ui for i 2 [0, n) in equation (2.3). Clearly,

equations (2.3) and (2.5) provide a solution for x =
Pn�1

i=0 �i · ui +
Pr�1

h=0 ah ·Xh such that

for some �̃ = hg, �̃Bi 2 S̃�̃ we have
Pr�1

h=0

⌦
g · ah � g ⇤ ah, �̃B

↵
= 0 for all h 2 [0, r) and

⌦
g · ui � g ⇤ ui, �̃B

↵
= 0 for all i 2 [0, n). Below, we need to prove that the {ui}i2[0,n)

computed by equation (2.3) give the unique solution for a su�ciently large subspace of

S̃�̃. Now, we assume that for some l 2 N, for each f 2 [l], there exists a di↵erent set

{uf,i}i2[0,n) along with the set {af,h}h2[0,r) such that x =
Pn�1

i=0 �i · uf,i +
Pr�1

h=0 af,h · Xh

and

(2.6) hg · uf,i � g ⇤ ui, �̃
f
Bi = 0 for all i 2 [0, n) and

r�1X

h=0

hg · af,h � g ⇤ ah, �̃
f
Bi ·Xh = 0,

for all �̃f = hg, �̃f
Bi 2 S̃f ✓ S̃�̃ such that |S̃f | > 1. The condition of |S̃f | > 1 is required

for A to pass the correlation check with probability more than 1/pr. Since S̃f is a linear

space for all f 2 [l] and S̃f \ S̃f 0 = {0} from the definition, and |S̃�̃|  pr by definition,

we have that l  r log p.

32

Let f 6= f 0 2 [l]. From equation (2.2) and x =
Pn�1

i=0 �i · uf 0,i +
Pr�1

h=0 af 0,h · Xh, we

have:

n�1X

i=0

�i · uf 0,i · �̃f �
n�1X

i=0

�i · hg ⇤ ui, �̃
f
Bi+

r�1X

h=0

af 0,h · �̃f · Xh �
r�1X

h=0

hg ⇤ ah, �̃
f
Bi · Xh = 0.

Using equation (2.6), we obtain

(2.7)
n�1X

i=0

�i · (uf 0,i � uf,i) · �̃f +
r�1X

h=0

(af 0,h � af,h) · �̃f · Xh = 0

By definition, there exists some j 2 [0, n) such that uf,j 6= uf 0,j. Furthermore, there are

at least two values for �̃f 2 S̃f , and thus we assume that in the above equation �̃f 6= 0.

Thus, (uf 0,j�uf,j) · �̃f 6= 0. Note that �0, . . . ,�n�1 are sampled uniformly at random and

independent from the other values involved in equation (2.7). Therefore, equation (2.7)

holds with probability at most 1/pr. There are fewer than l2  (r log p)2 pairs f 6= f 0 2 [l].

Thus, the overall probability is bounded by (r log p)2/pr.

We have established that there exists a unique solution ui for i 2 [0, n). This means

that for all �̃ = hg, �̃Bi 2 S̃�̃, we have that hg · ui � g ⇤ ui, �̃Bi = 0 for i 2 [0, n).

Therefore, we obtain that hg ⇤ ei, �̃Bi = 0 for all i 2 [0, n). If there exists two di↵erent

�,�0 2 S� such that hg ⇤ ei,�Bi 6= hg ⇤ ei,�0
Bi for some i 2 [0, n) where hg,�Bi = �

and hg,�0
Bi = �0, then we define �̃B := �B ��0

B and have that �̃ = hg, �̃Bi 2 S̃�̃

and hg ⇤ ei, �̃Bi 6= 0. This is contradict with hg ⇤ ei, �̃Bi = 0. This concludes that

hg ⇤ ei,�Bi is a unique value for all possible � = hg,�Bi 2 S�, and can be computed

by the simulator using any � 2 S�. In the real protocol execution, A can compute

w0
i := wi � hg ⇤ ei,�Bi for i 2 [0, n) just as that computed by S. Together with that

33

wi = vi + hg ⇤ ui,�Bi, we have that

w0
i = vi + hg ⇤ ui,�Bi � hg ⇤ ei,�Bi = vi +� · ui.

We now discuss the case of a prime p > 2. The main di↵erence from the case of p = 2

is that the canonical maps between � 2 Fpr and �B 2 {0, 1}rm are not bijective. This

implies that the solutions of equations (2.1) and (2.2) are not necessarily vectors of bits

rather than elements of Fp. Following the proof of [75, Lemma 2], we have that if S̃f

includes at least two vectors that only consist of bits, which is necessary for the adversary

to pass the correlation check with probability more than 1/pr, then it has dimension at

least 1 for all f 2 [l]. We also have the fact that S̃�̃ has dimension at most r log p and

S̃f \ S̃f 0 = {0} for f 6= f 0 2 [l] by definition. Together, we obtain that l  r log p as above.

Overall, we have that no environment Z can distinguish the real-world execution from

the ideal-world execution, except with probability at most (r log p)2/pr.

Malicious PB. S is given access to Fp,r
LsVOLE, and interacts with adversary A as follows:

(1) S emulates Fp,r
COPEe, and receives the values �, vi for i 2 [0, n) and bh for h 2 [0, r)

from A.

(2) After receiving coe�cients �1, . . . ,�n 2 Fpr , S samples x $Fpr , computes y :=

Pn
i=1 �i · vi +

Pr
h=1 bh · Xh�1 2 Fpr , and computes z := y + x ·� 2 Fpr . Then S

sends (x, z) to adversary A.

(3) S defines v = (v1, . . . , vn) and sends v 2 Fn
pr to functionality Fp,r

LsVOLE.

In the real protocol execution, the elements ah for all h 2 [0, r) output by Fp,r
COPEe are

uniform in Fp. Therefore,
Pr

h=1 ah · Xh�1 is uniform in Fpr , and thus x =
Pn

i=1 �i · ui +

34

Pr
h=1 ah · Xh�1 is uniformly random in Fpr . We obtain that the simulation is perfect. It

is easy to see that the outputs of two parties have the same distribution between the

real-world execution and the ideal-world execution.

Optimization. For many applications (e.g., our protocols) where learning the entire

global key � is necessary in order to violate security of some higher-level protocol, it is

unnecessary to eliminate the selective-failure leakage about �. This can be argued as

follows. Assume the adversary guesses a set S (if there are multiple guesses then S is the

intersection of all guessed sets) and is caught cheating if � 62 S. The probability that the

selective-failure attack is successful is |S|/pr; conditioned on this event, the min-entropy of

� is reduced to log |S|. Therefore, the overall probability for the adversary to determine�

is |S|/pr ·2� log |S| = p�r, which is the same as the probability in the absence of any leakage.

Similar observations have been used in secure-computation protocols [75, 36, 103].

2.2. Single-Point sVOLE

Single-point sVOLE is a variant of sVOLE where the vector of authenticated values

contains exactly one nonzero entry. We present the associated functionality Fp,r
spsVOLE

in Figure 2.5, where the vector length n = 2h is assumed to be a power of two for

simplicity. In Figure 2.6, we present a protocol ⇧p,r
spsVOLE that UC-realizes Fp,r

spsVOLE in the

(Fp,r
sVOLE,FOT,FEQ)-hybrid model, where FOT is the standard OT functionality and FEQ

corresponds to a weak equality test that reveals PA’s input to PB. Conceptually, the

protocol can be divided into two steps: (1) the parties run a semi-honest protocol for

generating a vector of authenticated values [u] having a single nonzero entry; then (2) a

35

Functionality Fp,r
spsVOLE

Initialize: Upon receiving init from PA and PB, sample � $Fpr if PB is honest and receive
� 2 Fpr from the adversary otherwise. Store global key �, send � to PB, and ignore all
subsequent init commands.

Extend: Upon receiving (sp-extend, n), where n = 2h for some h 2 N, from PA and PB, do:

(1) If PB is honest, sample v $Fn
pr . Otherwise, receive v 2 Fn

pr from the adversary.
(2) If PA is honest, then sample uniform u 2 Fn

p with exactly one nonzero entry, and
compute w := v+�·u 2 Fn

pr . Otherwise, receive u 2 Fn
p (with at most one nonzero

entry) and w 2 Fn
pr from the adversary, and recompute v := w �� · u 2 Fn

pr .
(3) If PB is corrupted, receive a set I ✓ [0, n) from the adversary. Let ↵ 2 [0, n) be

the index of the nonzero entry of u. If ↵ 2 I, send success to PB and continue.
Otherwise, send abort to both parties and abort.

(4) Send (u,w) to PA and v to PB.

Global-key query: If PA is corrupted, receive (guess,�0) from the adversary with�0 2 Fpr .
If �0 = �, send success to PA and ignore any subsequent global-key query. Otherwise, send
abort to both parties and abort.

Figure 2.5. Functionality for single-point sVOLE.

consistency check is performed to detect malicious behavior. We explain both steps in

what follows.

PA begins by choosing a uniform � 2 F⇤
p and a uniform index ↵. Letting u 2 Fn

p

be the vector that is 0 everywhere except that u[↵] = �, the goal is for the parties to

generate [u]. That is, they want PA to hold w 2 Fn
pr and PB to hold v 2 Fn

pr such that

w = v+� ·u. To do so, the parties begin by generating the authenticated value [�]; this

is easy to do using a call to Fp,r
sVOLE. Next, they use a subroutine [27, 28, 26] based on

the GGM construction [57] to enable PB to generate v 2 Fn
pr while allowing PA to learn

all the components of that vector except for v[↵]. This is done in the following way. Let

G : {0, 1}� ! {0, 1}2� and G0 : {0, 1}� ! F2
pr be pseudorandom generators (PRGs). PB

chooses uniform s 2 {0, 1} and computes all nodes in a GGM tree of depth h with s

at the root: That is, letting sij denote the value at the jth node on the ith level of the

36

tree, PB defines s00 := s and then for i 2 [1, h) and j 2 [0, 2i�1) computes
�
si2j, s

i
2j+1

�
:=

G(si�1
j); finally, PB computes a vector v at the leaves as (v[2j],v[2j + 1]) := G0(sh�1

j) for

j 2 [0, 2h�1). Next, PB lets Ki
0 (resp., Ki

1) be the XOR of the values at the even (resp.,

odd) nodes on the ith level. (When i = h we replace XOR with addition in Fpr .) We

write
�
{vj}j2[0,n), {(Ki

0, K
i
1)}i2[h]

�
:= GGM(1n, s)

to denote this computation done by PB. It is easily verified that if PA is given {Ki
↵̄i
}i2[h]

(where ↵̄i is the complement of the ith bit of ↵), then PA can compute {v[j]}j 6=↵, while v[↵]

remains computationally indistinguishable from uniform given PA’s view. We denote the

resulting computation of PA by {vj}j 6=↵ := GGM0(↵, {Ki
↵̄i
}i2[h]). (PA can obtain {Ki

↵̄i
}i2[h]

using h OT invocations.)

Following the above, PA sets w[i] := v[i] for i 6= ↵. Note that w[i] = v[i] +� ·u[i] for

i 6= ↵ (since u[i] = 0 for i 6= ↵), so all that remains is for PA to obtain the missing value

w[↵] = v[↵] + � · � (without revealing ↵, � to PB). Recall the parties already hold [�],

meaning that PA holds M[�] and PB holds K[�] with M[�] = K[�] +� · �. So if PB sends

K[�]�
P

i v[i], then PA can compute the missing value as

w[↵] = M[�]� (K[�]�
P

i v[i])�
P

i 6=↵ v[i]

= M[�]� K[�] + v[↵] = v[↵] +� · �.

This completes the “semi-honest” portion of the protocol.

To verify correct behavior, we generalize the approach of Yang et al. [104] that applies

only to the case p = 2. We want to verify thatw[i] = v[i] for i 6= ↵, andw[↵] = v[↵]+�·�.

37

Protocol ⇧p,r
spsVOLE

Initialize: This procedure is executed only once.

• PA and PB send init to Fp,r
sVOLE, which returns � to PB.

Extend: This procedure can be run multiple times. On input n = 2h, the parties do:

(1) PA and PB send (extend, 1) to Fp,r
sVOLE, which returns (a, c) 2 Fp ⇥ Fpr to PA and

b 2 Fpr to PB such that c = b + � · a. Then, PA samples � $F⇤
p, sets � := c,

and sends a0 := � � a 2 Fp to PB, who computes � := b � � · a0. Note that
� = � +� · � 2 Fpr , so the parties now hold [�].

PA samples ↵ $ [0, n) and defines u 2 Fn
p as the vector that is 0 everywhere

except u[↵] = �.
(2) PB samples s $ {0, 1}�, runs GGM(1n, s) to obtain

�
{vj}j2[0,n), {(Ki

0, K
i
1)}i2[h]

�
,

and sets v[j] := vj for j 2 [0, n). PA lets ↵̄i be the complement of the ith bit
of the binary representation of ↵. For i 2 [h], PA sends ↵̄i 2 {0, 1} to FOT and
PB sends (Ki

0, K
i
1) to FOT, which returns Ki

↵̄i
to PA. Then PA runs {vj}j 6=↵ :=

GGM0(↵, {Ki
↵̄i
}i2[h]).

(3) PB sends d := � �
P

i2[0,n) v[i] 2 Fpr to PA. Then, PA defines w 2 Fn
pr as the

vector with w[i] := vi for i 6= ↵ and w[↵] := � �
⇣
d +

P
i 6=↵w[i]

⌘
. Note that

w = v +� · u.
Consistency check:

(4) Both parties send (extend, r) to Fp,r
sVOLE, which returns (x, z) 2 Fr

p ⇥ Fr
pr to PA and

y⇤ 2 Fr
pr to PB such that z = y⇤ +� · x.

(5) PA samples �i $Fpr for i 2 [0, n), and writes �↵ =
Pr�1

i=0 �↵,i · Xi. Let �↵ =
(�↵,0, . . . , �↵,r�1) 2 Fr

p. PA then computes x⇤ := � · �↵ � x 2 Fr
p and sends�

{�i}i2[0,n),x⇤� to PB, who computes y := y⇤ �� · x⇤ 2 Fr
pr .

(6) PA computes Z :=
Pr�1

i=0 z[i] · Xi 2 Fpr and VA :=
Pn�1

i=0 �i ·w[i]� Z 2 Fpr , while
PB computes Y :=

Pr�1
i=0 y[i] · Xi 2 Fpr and VB :=

Pn�1
i=0 �i · v[i]� Y 2 Fpr . Then

PA sends VA to FEQ, and PB sends VB to FEQ. If either party receives false or abort
from FEQ, it aborts.

(7) PA outputs (u,w) and PB outputs v.

Figure 2.6. Single-point sVOLE protocol in the (Fp,r
sVOLE,FOT,FEQ)-

hybrid model.

Intuitively, the parties do this by having PA choose uniform �0, . . . ,�n�1 2 Fpr and then

checking that
n�1X

i=0

�i ·w[i] =
n�1X

i=0

�i · v[i] +� · � · �↵.

38

Of course, this must be done without revealing ↵, � to PB. To do so, PA and PB use

Fp,r
sVOLE to compute Z, Y 2 Fpr , respectively, such that Z = Y + � · � · �↵. (We discuss

below how this is done.) They then use FEQ to check if VA =
Pn�1

i=0 �i ·w[i]� Z is equal

to VB =
Pn�1

i=0 �i · v[i]� Y .

To complete the description, we show how the parties can generate Z, Y (held by

PA, PB, respectively) such that Z = Y + � · � · �↵. (This is like an authenticated

value [� · �↵], but note that � · �↵ lies in Fpr rather than Fp.) PA views �↵ 2 Fpr as

�↵ = (�↵,0, . . . ,�↵,r�1) 2 Fr
p (i.e., �↵ =

P
i2[0,r) �↵,i · Xi, where {Xi}i2[0,r) form a basis

for Fpr over Fp), and then the parties use Fp,r
sVOLE to generate the vector of authenticated

values [� ·�↵]. This means PA holds z and PB holds y such that z = y +� · � ·�↵. Let

Z =
P

i2[0,r) z[i] · Xi and Y =
P

i2[0,r) y[i] · Xi. We have that

Z =
r�1X

i=0

z[i] · Xi =
r�1X

i=0

(y[i] +� · � · �↵[i]) · Xi

=
r�1X

i=0

y[i] · Xi +� · � ·
r�1X

i=0

�↵[i] · Xi

= Y +� · � · �↵,

as desired.

We remark that this check allows a malicious PA to guess �, and allows a malicious

PB to guess a subset in which the index ↵ lies. (This will become evident in the proof of

security.) Such guesses are incorporated into the ideal functionality Fp,r
spsVOLE.

We now formally prove security of the protocol.

39

Theorem 2. If G and G0 are pseudorandom generators, then ⇧p,r
spsVOLE UC-realizes

Fp,r
spsVOLE in the (Fp,r

sVOLE,FOT,FEQ)-hybrid model. In particular, no PPT environment Z

can distinguish the real-world execution from the ideal-world execution except with proba-

bility at most 1/pr + negl(�).

We first consider the case of a malicious PA and then consider the case of a malicious

PB. In each case, we construct a PPT simulator S given access to Fp,r
spsVOLE that runs the

PPT adversary A as a subroutine, and emulates functionalities FOT, Fp,r
sVOLE, and FEQ. We

always implicitly assume that S passes all communication between A and environment Z.

Malicious PA. Every time the extend procedure is run (on input n), S interacts with A

as follows:

(1) S emulates Fp,r
sVOLE and records the values (a, c) that A sends to Fp,r

sVOLE. When

A sends the message a0 2 Fp, then S sets � := a0 + a 2 Fp and � := c.

(2) For i 2 [1, h), S samples Ki {0, 1}�; it also samples Kh Fpr . Then for

i 2 [h], S emulates FOT by receiving ↵̄i 2 {0, 1} from A, and returning Ki
↵̄i

:= Ki

to A. It sets ↵ := ↵1 · · ·↵h and defines u 2 Fn
p as the vector that is 0 everywhere

except that u[↵] := �. Next, S computes {vj}j 6=↵ := GGM0(↵, {Ki
↵̄i
}i2[h]).

(3) S picks d $Fpr and sends it to A. Then, S defines w as the vector of length n

with w[i] := vi for i 6= ↵ and w[↵] := � �
�
d+

P
i 6=↵ w[i]

�
.

(4) S emulates Fp,r
sVOLE by recording (x, z) from A.

(5) S receives {�i}i2[0,n) and x⇤ 2 Fr
p from A, and sets x0 := x⇤ + x 2 Fr

p and

x0 :=
Pr�1

i=0 x
0[i] · Xi.

40

(6) S records VA 2 Fpr that A sends to FEQ. It then computes V 0
A :=

Pn�1
i=0 �i ·w[i]�

Pr�1
i=0 z[i] · Xi 2 Fpr and does:

• If x0 = � · �↵, then S checks whether VA = V 0
A. If so, S sends true to A, and

sends u,w to Fp,r
spsVOLE. Otherwise, S sends abort to A and aborts.

• Otherwise, S computes �0 := (V 0
A � VA) /(� · �↵ � x0) 2 Fpr and sends a

global-key query (guess,�0) to Fp,r
spsVOLE. If F

p,r
spsVOLE returns success, S sends

true to A, and sends u,w to Fp,r
spsVOLE. Otherwise, S sends abort to A and

aborts.

(7) Whenever A sends a global-key query (guess, �̃) to functionality Fp,r
sVOLE, S for-

wards the query to Fp,r
spsVOLE and returns the answer to A. If the answer is abort,

S aborts.

In the above simulation, if A succeeds to guess �, then S simulates the A’s view using

� without making any further global-key query to Fp,r
spsVOLE.

We claim that the joint distribution of the view of A and the output of the honest PB

in the ideal-world execution above is computationally indistinguishable from their distri-

bution in the real-world execution. By the standard analysis of the GGM construction,

it is not hard to see that d and the {Ki
↵̄i
} sent to A in the above simulation, as well as

the vector v that would be output by PB when it does not abort, are computationally

indistinguishable from the corresponding values in the real protocol execution. It thus

only remains to analyze steps 4–6, which determine whether PB aborts.

41

Let � = a0+a, x0 = x⇤+x, and x0 =
Pr�1

i=0 x
0[i]·Xi, as above. (Note that a0, a,x⇤,x are

well-defined in the real-world execution as well.) In the real-world execution, PB computes

VB =
n�1X

i=0

�i · v[i]�
r�1X

i=0

y[i] · Xi

=
X

i 6=↵

�i · v[i] + �↵ · v[↵]�
r�1X

i=0

(z[i]�� · x0[i]) · Xi

=
X

i 6=↵

�i · v[i] + �↵ · (� �� · � � d�
X

i 6=↵

v[i])

�
r�1X

i=0

z[i] · Xi +� · x0

=
n�1X

i=0

�i ·w[i]�
r�1X

i=0

z[i] · Xi �� · (� · �↵ � x0)

= V 0
A �� · (� · �↵ � x0).

where w and V 0
A are defined as in the description of S above. Say that A sends VA to

FEQ. If x0 = � · �↵ (as will be the case when A behaves honestly), then FEQ returns true

i↵ VA = V 0
A. Otherwise, FEQ returns true i↵ � = (V 0

A�VA)/(� ·�↵�x0). We thus see that

the ideal-world behavior of FEQ matches what would occur in the real world.

Malicious PB. Simulator S interacts with A as follows. First, S simulates the initializa-

tion step by recording the global key � 2 Fpr that A sends to Fp,r
sVOLE. Then, every time

the extend procedure is executed (on input n), S does:

(1) S records b 2 Fpr that A sends to Fp,r
sVOLE. Then S samples a0 $Fp and sends

it to A. Next, S computes � := b � � · a0, and then samples � $F⇤
p and sets

� := � +� · �.

42

(2) S records the values {(Ki
0, K

i
1)}i2[h] sent to FOT by A.

(3) S receives d 2 Fpr from A. Then, for each ↵ 2 [0, n), it computes a vector w↵ as

follows:

(a) Execute {v↵j }j 6=↵ := GGM0(↵, {Ki
↵̄i
}i2[h]) and set w↵[i] = v↵i for i 6= ↵.

(b) Compute w↵[↵] := � � (d+
P

i 6=↵ w↵[i]).

(4) S records the vector y⇤ sent to Fp,r
sVOLE by A.

(5) S samples �i $Fpr for i 2 [0, n) and x⇤ $Fr
p, and sends them to A. Then S

computes y := y⇤ �� · x⇤.

(6) S computes Y :=
Pr�1

i=0 y[i] · Xi. It then records VB sent to FEQ by A. Next, S

computes a set I ✓ [0, n) as follows:

(a) For ↵ 2 [0, n), compute V ↵
A :=

Pn�1
i=0 �i ·w↵[i]�� · � · �↵ � Y .

(b) Define I := {↵ 2 [0, n) | V ↵
A = VB}.

S sends I to Fp,r
spsVOLE; if it returns abort, S picks ↵̃ $ [0, n)\I, sends

�
false, V ↵̃

A

�

to A on behalf of FEQ, and then aborts. Otherwise, S sends (true, VB) to A.

(7) S chooses an arbitrary ↵ 2 I and computes a vector v as follows:

(a) Set v[i] := w↵[i] for i 2 [0, n), i 6= ↵.

(b) Set v[↵] := � � d�
P

i 6=↵ v[i].

S sends v to Fp,r
spsVOLE and outputs whatever A outputs.

We first consider the view of adversary A in the ideal-world execution and the real-world

execution. The values a0 and x⇤ simulated by S have the same distribution as the real

values, which are masked by a uniform element/vector output by Fp,r
sVOLE. The set I

extracted by S corresponds to the selective failure attack on the output index ↵⇤ of PA.

If S receives abort from Fp,r
spsVOLE, we have that ↵⇤ /2 I. In the real protocol execution,

43

if VB 6= V ↵⇤
A , then PA aborts. By previous considerations, this is equivalent to ↵⇤ /2 I.

Therefore, Fp,r
spsVOLE aborts if and only if the real protocol execution aborts. For an honest

PA, the index ↵⇤ 2 [0, n) is sampled uniformly in both the real-world execution and the

ideal-world execution. If receiving abort from Fp,r
spsVOLE, then S needs to send false along

with an element V ↵̃
A 6= VB to A. Although S does not know the actual index ↵⇤, it can

sample a random index ↵̃ from the set [0, n)\I and send V ↵̃
A to A. In the case of aborting,

this simulation is perfect, since Z cannot obtain the output of PA due to aborting, and

the dummy index ↵̃ has the same distribution as the actual index ↵⇤ under the condition

that I is an incorrect guess.

Overall, we have that the adversary’s view is perfectly indistinguishable between the

real-world execution and the ideal-world execution. Below, we prove that except with

probability 1/pr, the distribution of PA’s output in the real-world execution is the same

as that in the ideal-world execution. It is easy to see that the output vector u⇤ that

is 0 everywhere except that u⇤[↵⇤] = �⇤ in the ideal-world execution and the real-world

execution have the same distribution, from the above analysis and that �⇤ is perfectly

hidden. In the following, we focus on proving the indistinguishability of w⇤ output by PA

between the ideal-world execution and the real-world execution. Firstly, we prove that

the vector v 2 Fn
pr computed by S in the step 7 is unique (i.e., independent of the choice

↵ 2 I).

Claim 1. For any ↵,↵0 2 [0, n), let v↵,v↵0 be the vectors computed by S with ↵,↵0

following the step 7, then we have

Pr
n
v↵ 6= v↵0

��� V ↵
A = V ↵0

A

o
 1

pr
.

44

Proof. Since V ↵
A = V ↵0

A , we have

X

i2[0,n)

�i ·w↵[i]�� · � · �↵ � Y =
X

i2[0,n)

�i ·w↵0 [i]�� · � · �↵0 � Y ,

X

i 6=↵,↵0

�i · (w↵[i]�w↵0 [i]) + �↵ · (w↵[↵]�w↵0 [↵]�� · �) + �↵0 · (w↵[↵
0]�w↵0 [↵0] +� · �) = 0.

Note that �, �, w↵ and w↵0 have already been defined before {�i}i2[0,n) are sampled.

Furthermore, each coe�cient �i is uniform. Therefore, except with probability 1/pr, we

have:

w↵[i] = w↵0 [i] for i 2 [0, n), i 6= ↵,↵0,

w↵[↵]�w↵0 [↵] = w↵0 [↵0]�w↵[↵
0] = � · �.

From the first equation, we directly obtain that v↵[i] = v↵0 [i] for i 6= ↵,↵0. From the

definitions of w↵[↵] and v↵[↵], we have that v↵[↵] = w↵[↵] � � · �. Together with

w↵[↵] = w↵0 [↵] +� · �, we further have that v↵[↵] = w↵0 [↵] = v↵0 [↵]. Similarly we also

have v↵0 [↵0] = v↵[↵0]. ⇤

Let w⇤,u⇤ be the output of PA and v be the input from S (or PB). It is obvious that

w⇤ = v+�·u⇤ in the ideal-world execution. Now we look at the real-world execution. We

define a vector v⇤ as v⇤[i] = w↵⇤ [i] for i 6= ↵⇤ and v⇤[↵⇤] = ��d�
P

i 6=↵⇤ v⇤[i], where recall

that ↵⇤ is the output index of PA. From w↵⇤ [↵⇤] = �+� ·�⇤�(d+
P

i 6=↵⇤ w↵⇤ [i]), we have

thatw↵⇤ [↵⇤] = v⇤[↵⇤]+�·�⇤. Therefore, we obtain thatw⇤ = v⇤+�·u⇤ wherew⇤ = w↵⇤ .

Note that v⇤ in both the ideal-world execution and the real-world execution are defined in

the identical way, and thus have the same distribution. Based on Claim 1, we know that

45

in the ideal-world execution, v⇤ is indistinguishable from v computed by S, except with

probability at most 1/pr. Therefore v in the ideal-world execution is indistinguishable

from v⇤ in the real-world execution, which implies the indistinguishability of the output

of PA in the ideal world and the real world.

Optimizations. We discuss various optimizations of the protocol shown in Figure 2.6:

(1) For large p (i.e., log p � ⇢), the parties can use the output of Fp,r
sVOLE directly as

[�] in step 1 of protocol ⇧p,r
spsVOLE, since � 6= 0 with overwhelming probability.

(2) In the consistency check, PA can send uniform seed 2 {0, 1}� to PB, who then

derives the {�i} from seed using a hash function modeled as a random oracle.

(3) When t extend executions are needed, we can batch the consistency checks using

the ideas of Yang et al. [104] to reduce the total number of sVOLE correlations

needed from t · (1 + r) to t+ r. The approach is as follows:

(a) After t executions of the semi-honest portion of the extend phase, the parties

hold {(uj,wj)}tj=1 and {vj}tj=1, respectively, where for all j 2 [t] we have

wj = vj +� · uj with uj a vector that is 0 everywhere except uj[↵j] = �j.

Then PA and PB send (extend, r) to Fp,r
sVOLE, which returns (x, z) to PA and

y⇤ to PB.

(b) For j 2 [t], PA samples �i,j $Fpr for i 2 [0, n), and views �↵j ,j as the

vector �↵j ,j 2 Fr
p. It then computes x⇤ :=

P
j2[t] �j · �↵j ,j � x and sends

{�i,j}i2[0,n),j2[t] and x⇤ to PB, who computes y := y⇤ �� · x⇤ 2 Fr
pr .

(c) PA computes VA :=
Pn�1

i=0

Pt
j=1 �i,j · wj[i] �

Pr�1
i=0 z[i] · Xi; PB computes

VB :=
Pn�1

i=0

Pt
j=1 �i,j ·vj[i]�

Pr�1
i=0 y[i]·Xi. Then both parties check whether

VA = VB by calling FEQ.

46

2.3. sVOLE Extension

We show here a protocol that can be viewed as a means of performing “sVOLE ex-

tension.” That is, our protocol allows two parties to e�ciently extend a small number

of sVOLE correlations (created in a setup phase) to an arbitrary polynomial number of

sVOLE correlations. The protocol relies on spsVOLE as a subroutine, as well as a variant

of the LPN assumption that has been used in prior work [65, 25, 104].

Protocol overview. The parties use the base-sVOLE protocol to generate a length-

k vector of authenticated values [u]. They also use spsVOLE to generate t vectors of

authenticated values, each of length n/t and having a single nonzero entry; they let [e]

be the concatenation of those vectors. The parties then use a public matrix A to define

the length-n vector of authenticated values [u · A + e]; by the LPN assumption, the

corresponding values (which PA knows) will appear pseudorandom to PB. This provides

a way to extend k random sVOLE correlations to n pseudorandom sVOLE correlations

once. As in prior work [104], however, we can generate ` = n � k correlations as many

times as desired by simply using this idea to generate n sVOLE correlations and reserving

the first k of those correlations for the next iteration of the extend phase.

LPN assumption. Let Dn,t denote the distribution over an error vector e 2 Fn
p in which

e is divided into t blocks (each of length n/t), and each block of contains exactly one

uniform nonzero entry at a uniform location within that block.

Definition 1 (LPN with static leakage [25]). Let G be a polynomial-time algorithm

that on input 1k, 1n, p outputs A 2 Fk⇥n
p . Let parameters k, n, t be implicit functions

of security parameter . We say that the LPNG
k,n,t,p assumption holds if for all PPT

47

algorithms A we have

��Pr[LPN-SuccGA() = 1]� 1/2
��  negl(),

where the experiment LPN-SuccGA() is defined as follows:

(1) Sample A $G(1k, 1n, p), u $Fk
p, and e $Dn,t. Let ↵1, . . . ,↵t be the indices of

the nonzero entries in e (each of which is located in a disjoint block of length n/t).

(2) A outputs t subsets I1, . . . , It ✓ [0, n). If ↵i 2 Ii for all i 2 [t], then send success

to A; otherwise, abort the experiment and define b0 := 0.

(3) Pick b $ {0, 1}. If b = 0, let x := u ·A + e; otherwise, sample x $Fn
p . Send

x to A, who then outputs a bit b0 (if the experiment did not abort).

(4) The experiment outputs 1 i↵ b0 = b.

Protocol description. In Figure 2.7, we present our sVOLE extension protocol in the

(Fp,r
sVOLE,F

p,r
spsVOLE)-hybrid model. For simplicity, we assume a public matrix A 2 Fk⇥n

p ,

output by an e�cient algorithm G(1k, 1n, p), that is fixed at the outset of the protocol. (It

is also possible to have PA generate A and then send it to PB.) We assume that Fp,r
spsVOLE

and Fp,r
sVOLE share the same initialization (i.e., use the same global key �). This holds, in

particular, when we use protocol ⇧p,r
spsVOLE from the previous section to UC-realize Fp,r

spsVOLE.

Theorem 3. If the LPNG
k,n,t,p assumption holds, then ⇧p,r

sVOLE UC-realizes Fp,r
sVOLE in the

(Fp,r
sVOLE,F

p,r
spsVOLE)-hybrid model.

Proof. We first consider the case of a malicious PA and then consider the case of a

malicious PB. In each case, we construct a PPT simulator S given access to Fp,r
sVOLE that

48

Protocol ⇧p,r
sVOLE

Parameters: Fix n, k, t, and define ` = n � k and m = n/t. Let A 2 Fk⇥n
p be a matrix

output by G(1k, 1n, p).

Initialize: This procedure is executed only once.

(1) PA and PB send init to Fp,r
sVOLE, which returns � 2 Fpr to PB.

(2) PA and PB send (extend, k) to Fp,r
sVOLE, which returns (u,w) to PA and v to PB such

that w = v +� · u 2 Fk
pr .

Extend: This procedure can be executed multiple times.

(3) For i 2 [t], PA and PB send (sp-extend, m) to Fp,r
spsVOLE, which returns (ei, ci) to

PA and bi to PB such that ci = bi + � · ei 2 Fm
pr and ei 2 Fm

p has exactly one
nonzero entry. If either party receives abort from Fp,r

spsVOLE in any of these spsVOLE
executions, it aborts.

(4) PA defines e = (e1, . . . , et) 2 Fn
p and c = (c1, . . . , ct) 2 Fn

pr . Then PA computes
x := u ·A + e 2 Fn

p and z := w ·A + c 2 Fn
pr . PB defines b = (b1, . . . , bt) 2 Fn

pr

and computes y := v ·A+ b 2 Fn
pr .

(5) PA updates u,w by setting u := x[0 : k) 2 Fk
p and w := z[0 : k) 2 Fk

pr , and

outputs (s,M[s]) := (x[k : n), z[k : n)) 2 F`
p ⇥ F`

pr . PB updates v by setting

v := y[0 : k) 2 Fk
pr , and outputs K[s] := y[k : n) 2 F`

pr .

Figure 2.7. The sVOLE extension protocol in the (Fp,r
sVOLE,Fp,r

spsVOLE)-
hybrid model.

runs the adversary A as a subroutine, and emulates functionalities Fp,r
sVOLE and Fp,r

spsVOLE.

We always implicitly assume that S passes all communication between A and Z.

Malicious PA. S records the vectors (u,w) 2 Fk
p ⇥ Fk

pr that A sends to Fp,r
sVOLE during

initialization. Then in each iteration, S runs as follows:

(1) For i 2 [t], S emulates Fp,r
spsVOLE and receives the value ei 2 Fm

p (with at most one

nonzero entry) and ci 2 Fm
pr from A; it then defines e := (e1, . . . , et) 2 Fn

p and

c := (c1, . . . , ct) 2 Fn
pr .

(2) S computes x := u ·A+e 2 Fn
p and z := w ·A+c 2 Fn

pr , and sends x[k : n) 2 F`
p

and z[k : n) 2 F`
pr to Fp,r

sVOLE. It also locally updates u := x[0 : k) 2 Fk
p and

w := z[0 : k) 2 Fk
pr for the next iteration.

49

(3) If A ever makes a global key query �0 to Fp,r
spsVOLE, then S forwards that query

to Fp,r
sVOLE. If F

p,r
sVOLE responds with abort, S aborts; otherwise, it continues.

It is easy to see that the simulation provided by S is perfect.

Malicious PB. S runs G(1k, 1n, p) to generate A 2 Fk⇥n
p . During initialization, S records

the values � 2 Fpr and v 2 Fk
pr that A sends to Fp,r

sVOLE, and sends � to Fp,r
sVOLE. Then in

each iteration, S runs as follows:

(1) For i 2 [t], S receives the value bi 2 Fm
pr that A sends to Fp,r

spsVOLE; it sets

b := (b1, . . . , bt) 2 Fn
pr .

(2) For i 2 [t], S receives the set Ii ✓ [0,m) that A sends to Fp,r
spsVOLE. Then S

samples e Dn,t and defines {↵1, . . . ,↵t} to be the nonzero entries of e. If

↵i mod m 2 Ii for all i, then S continues; otherwise, it aborts.

(3) S computes y := v · A + b 2 Fn
pr , and sends y[k : n) 2 F`

pr to Fp,r
sVOLE. It also

locally updates v := y[0 : k) 2 Fk
pr for the next iteration.

The view of A is simulated perfectly, and in both the ideal-world simulation and the ideal-

world execution of the protocol the output (s,M[s]) of PA satisfies y[k, n) = M[s]�� · s.

The di↵erence is that in the ideal world s is uniform, whereas in the real world s = u·A+e

for a uniform vector u. It is not hard to see that this di↵erence is undetectable if the

LPNG
k,n,t,p assumption holds. ⇤

Optimizations. In each iteration of the extend procedure, protocol ⇧p,r
sVOLE makes t calls

to Fp,r
spsVOLE. If F

p,r
spsVOLE is instantiated by protocol ⇧p,r

spsVOLE from Section 2.2, and we use

the optimization described at the end of that section, the t calls to ⇧p,r
spsVOLE require only

t+ r calls to Fp,r
sVOLE.

50

Moreover, we can push all the calls to Fp,r
sVOLE into the initialization phase, so that the

extend procedure does not invoke Fp,r
sVOLE at all. Specifically, if we make n0 = k+t+r calls

to Fp,r
sVOLE during initialization, we can run the extend procedure without any additional

call to Fp,r
sVOLE. Each time the extend procedure is run, we reserve n0 of the sVOLE

correlations that are produced for the following iteration, and output n � n0 “usable”

sVOLE correlations.

We can further optimize the generation of the initial set of n0 sVOLE correlations

during initialization. Let (k0, n0, t0) be another set of LPN parameters. (Note that n0 ⌧

n, so we can take k0 ⌧ k and t0 ⇡ t while achieving security comparable to what is

achieved for the LPN parameters (n, k, t).) We then make n0
0 = k0 + t0 + r calls to

the base-sVOLE protocol described in Section 2.1 to generate that number of sVOLE

correlations, after which we run the extend procedure of ⇧p,r
sVOLE once to obtain n0 sVOLE

correlations.

2.4. Performance Evaluation

In this section, we report on the performance of our sVOLE protocol. All our protocols

were implemented and open-sourced in the EMP toolkit [94].

Parameter selection. As suggested in prior work [24, 87, 104], we choose the public

LPN matrix A as a generator of a 10-local linear code, which means that each column of

A contains exactly 10 (uniform) nonzero entries. This is advantageous since it means that

computing each entry of u · A involves reading only 10 positions of u 2 Fk
p. To ensure

that reading those positions can be done quickly, we set k so that u fits in the L1 CPU

cache (i.e., the size of u is less than 8 MB). With k fixed, for any choice of n > k we

51

One-time setup Extend execution

k0 n0 t0 k n t

19,870 642,048 2,508 589,760 10,805,248 1,319

Table 2.1. LPN parameters used in our VOLE protocol.

can take the smallest t for which all known attacks on the LPN problem require at least

2128 operations [24, 25]. When we apply the optimizations described at the end of the

previous section to our protocol, we see that using LPN parameters (n, k, t) means that

each invocation of the extend procedure results in n�k� t�1 usable VOLE correlations.

We perform exhaustive search to find the smallest n so that n � k � t � 1 � 107. For

the parameters of the setup phase, we follow the same step as above, except that we will

ensure that n0� k0� t0� 1 � k. This results in the LPN parameters shown in Table 2.1.

2.4.1. VOLE over Large Fields.

In all our experiments, we use two Amazon EC2 instances of type m5.4xlarge with 16

vCPUs and 64 GB of RAM, using 5 threads. We artificially limit the network bandwidth

as indicated in each experiment. All implementations achieve the statistical security

parameter ⇢ � 40 and computational security parameter  = 128.

We focus here on the performance of protocol ⇧p,r
sVOLE over large fields; specifically, we

fix the Mersenne prime p = 261 � 1 and set r = 1. (Since r = 1, sVOLE is equivalent to

VOLE in this case.)

We evaluate the e�ciency of protocol ⇧p,r
sVOLE in Table 2.2. The extend procedure

requires very little communication (less than half a bit per usable VOLE correlation),

and its execution time is largely una↵ected by the network bandwidth above 100 Mbps.

52

20 Mbps 50 Mbps 100 Mbps 500 Mbps 1 Gbps

Init. (ms) 1343 640 478 451 438
Extend (ns/VOLE) 101 87 85 85 85

Table 2.2. E�ciency of our VOLE protocol as a function of network

bandwidth. The communication per VOLE correlation is 0.42 bits; the overall
communication of the one-time setup is 1.1 MB.

[87] [40]
Ours Ours

(w/o setup) (w/ setup)

Communication (bits) 960 160 0.42 1.32
Execution time (ns) 2000 400 85 130

Table 2.3. Our VOLE protocol vs. prior protocols. We fix the network
bandwidth to 500 Mbps and report the marginal cost per VOLE correlation.
Running time for the protocol of Schoppmann et al. [87] is the time for commu-
nication alone; numbers for the protocol of Castro et al. [40] are taken from their
paper and are based on the same network and CPU configuration but using 8
threads.

The one-time initialization only communicates 1.1 MB and takes roughly 478 milliseconds

under a 100 Mbps network.

In Table 2.3, we compare our VOLE protocol with the best known protocols that

have been implemented [87, 40]. Since our protocol needs an one-time setup, that can

be amortized over multiple executions, we report our performance both without one-time

setup (in case multiple extensions are executed), and the one with one-time setup (in case

only one extension is executed). We fix the network bandwidth to 500 Mbps to match

the experiments of Castro et al. [40]. Our protocol outperforms prior work even though

prior work is secure only against semi-honest adversaries, whereas our protocol is secure

in the malicious setting. Note in particular that the communication complexity of our

protocol is orders of magnitude lower than prior work. Boyle et al. [25] also proposed a

maliciously secure sVOLE protocol but only implemented their protocol for the special

53

case p = 2, r = 128. Based on their implementation in that case, we estimate that for our

choice of p their protocol would communicate roughly 0.14 bits per sVOLE; however their

computation is much heavier than ours and would take time at least 900 ns per VOLE

correlation. Therefore, we believe that our protocol is still more e�cient for most network

bandwidth settings.

2.4.2. sVOLE over Field Extension

We focus here on the performance of protocol ⇧p,r
sVOLE over a small field and its field

extension; specifically, we fix p = 2 and set r = 128. We compare the performance of

our protocols with the state-of-the art protocols for outputting COTs of 128-bit strings.

For all experimental results, we use two Amazon EC2 machines of type c5.4xlarge with

network bandwidth artificially limited. We use 5 threads for all implementations that we

benchmarked.

We report the performance of our protocols in several di↵erent network settings and

compare them with the state-of-the-art COT protocols including the optimized semi-

honest IKNP OT extension [4], the maliciously secure KOS OT extension [74], and Boyle

et al.’s two protocols [25] based on dual-LPN with a regular noise distribution. For the

protocols other than ours, we use the libOTe library [86] for benchmark, but remove the

last hashing on COT correlations so that the final output is correlated OT rather than

random OT. We observe that this improves the running time of their protocols by roughly

15 ms.

We do not compare the semi-honest protocol by Schoppmann et al. [87] as they only

implemented the VOLE protocol over a large field/ring rather than a COT protocol. We

54

Protocol Comm./COT 10Mbps 50Mbps 100Mbps 500Mbps 1Gbps 5Gbps

Semi-Honest Security

[4] 128 bits 128308 25704 12885 2627 1345 324
[25] 0.1 bits 1942 1961 1953 1966 1971 1966

Ferret-Uni 0.73 bits 821 306 262 264 262 261
Ferret-Reg 0.44 bits 536 215 176 159 158 160

Malicious Security

[74] 128 bits 128314 25736 12924 2647 1387 344
[25] 0.1 bits 2113 2099 2091 2106 2083 2095

Ferret-Uni 0.73 bits 864 325 326 318 317 317
Ferret-Reg 0.44 bits 540 220 184 182 185 185

Table 2.4. Comparison between our COT protocols and the state-of-

the-art protocols. All numbers reported are in milliseconds (ms) for computing
107 COTs. The one-time setup cost is not included.

estimate that our protocol is about 15⇥ faster than theirs (without involving the one-time

setup cost), since we improve the communication of their protocol by roughly 15⇥ and

also optimize the computation. The one-time setup cost of our protocol is larger than

theirs, but the setup cost will be amortized to negligible when a huge number of COT

correlations are needed. While Schoppmann et al.’s protocol [87] is in the semi-honest

setting, our technique enables their protocol to obtain malicious security.

In Table 2.4, we evaluate the performance of di↵erent COT protocols in terms of com-

munication and running time. Both of the IKNP-style OT extension protocols (IKNP [4]

and KOS [74]) su↵er from a high cost due to the high communication overhead. As shown

in Table 2.4, the IKNP-style protocols need 128-bit communication per OT, while our pro-

tocol Ferret-Uni (resp., Ferret-Reg) needs only 0.73 bits (resp., 0.44 bits) per OT. Thus our

protocols can achieve a huge performance gain (150⇥�40⇥ for Ferret-Uni; 240⇥�70⇥ for

Ferret-Reg), when running in a network with restricted bandwidth (10Mbps�100Mbps).

55

Security Protocol Comm. 10Mbps 50Mbps 100Mbps 500Mbps 1Gbps 5Gbps

Semi-honest
Ferret-Uni 1.51 MB 1162 482 482 481 479 478
Ferret-Reg 1.13 MB 811 183 106 41 35 30

Malicious
Ferret-Uni 1.51 MB 1166 486 485 484 485 484
Ferret-Reg 1.13 MB 818 184 107 42 37 32

Table 2.5. The e�ciency for one-time setup of our COT protocols. All
numbers are in milliseconds (ms). For other protocols, the one-time setup takes
about 30 ms.

Our protocol is also computationally cheaper than IKNP because our protocol does not

need bit-matrix transposition required by IKNP-style protocols. Even when the network

bandwidth is as high as 5 Gbps, Ferret-Reg is about 2⇥ faster than IKNP [4] and KOS [74],

and Ferret-Uni still outperforms the two IKNP-style protocols.

We also compare our COT protocols with the ones by Boyle et al. [25]. Their pro-

tocols are based on dual-LPN with a regular noise distribution, and thus have a small

communication cost but a large computational overhead. Although our protocols require

more communication, it is still faster than theirs even in slow network settings due to our

high computational e�ciency. We estimate the crossover point be around 2 Mbps, and

that more computational resources will further bring up the crossover point. As a result,

our protocol Ferret-Reg (using a similar LPN assumption) can improve the e�ciency by

a factor of 4⇥�11⇥ under di↵erent network bandwidths.

We observe the overhead of strengthening semi-honest security to malicious security

for these protocols when computing one correlated OT. While Boyle et al. [25] need an

overhead of about 14 ns, our protocol Ferret-Reg only incurs an overhead of about 1 ns,

which matches the overhead of KOS [74] and seems to be optimal.

56

One-time Setup. We also evaluate the performance in the one-time setup phase of

our COT protocols. We take advantage of pre-processing OT to accelerate the extend

processes when many OTs are required. The one-time setup generates M COTs (recall

that M = 616, 092 for Ferret-Uni and M = 649, 728 for Ferret-Reg) by running an IKNP-

style OT extension followed by a single COT iterative execution.

As shown in Table 2.5, the one-time setup takes at most 486 ms for Ferret-Uni and 184

ms for Ferret-Reg for any network with bandwidth at least 50 Mbps. When the network

is faster than 500 Mbps, the running time of one-time setup is less than around 42 ms for

Ferret-Reg. The IKNP-style protocols (IKNP [4] and KOS [74]) and the two protocols

by Boyle et al. [25] only need a one-time setup of about 30 ms. However, the setup

procedure needs to be performed only once, and then can be extended to generate any

polynomial number of COTs as we want from the same setup. Therefore, if a great deal

of COTs are computed via multiple iterations using the same setup, the one-time setup

cost will become negligible in an amortized sense. When COT is used to construct MPC,

the parties can execute the setup phase only once, and then generate the correlated OTs

for many protocol executions. Moreover, even if COTs are generated in the preprocessing

phase of MPC protocols, the setup process can only be executed once before the circuit

size is known, and then the desired number of COTs are produced by iterative extensions

after the circuit size is known by the parties. Due to these reasons, we optimize the

parameters to improve the e�ciency of our main iteration while keeping the one-time

setup cost reasonable.

We also emphasize that even in the single-execution setting where the one-time setup

is a part of the whole computation, the end-to-end performance of our COT protocols

57

Network SPCOT LPN Ferret-Reg Ferret-Uni
Bandwidth all executions encoding Total time Extra time

10 Mbps 40 12 53 32
50 Mbps 9 12 22 10
100 Mbps 6 11 18 14

Table 2.6. Microbenchmarks for our maliciously secure COT protocols.

All numbers are in nanoseconds (ns) and are the amortized time per COT cor-
relation, without involving the one-time setup cost.

is still significantly better than prior work. In particular, our protocol Ferret-Uni (resp.,

Ferret-Reg) still improves the end-to-end e�ciency by a factor of roughly 63⇥�2⇥ (resp.,

94⇥�6⇥) when the network bandwidth is between 10 Mbps and 1 Gbps, compared to the

state-of-the-art IKNP-style protocols. Furthermore, in terms of the whole e�ciency, our

protocol Ferret-Reg is about 5⇥�9⇥ faster than Boyle et al.’s protocol, when the network

bandwidth is between 50 Mbps and 5 Gbps.

Micro-benchmark. Table 2.6 shows the experimental results by micro-benchmarking

our maliciously secure COT protocols under di↵erent network settings. The e�ciency of

Ferret-Reg is dominated by SPCOT and LPN computation. The 75% of running time

is used to generate SPCOT correlations when the network bandwidth is limited to 10

Mbps, and it is reduced to 33% when the bandwidth is up to 100 Mbps. This is because

SPCOT also has network transmission involved. The LPN encoding only requires the

local computation, and takes about 12 ns per COT correlation. We also include the extra

running time of Ferret-Uni compared to Ferret-Reg, due to the use of Cuckoo hashing.

58

CHAPTER 3

Zero-Knowledge Proofs from VOLE

In this chapter, we propose our zero-knowledge proof protocols based on the (subfield)

vector oblivious linear evaluation discussed in Chapter 2. All of these protocols utilize

sVOLE to construct a commitment scheme and they mainly di↵er in the verification pro-

tocols. We start with the Wolverine [96] protocol, which verifies the authenticated triples

using the cut-and-bucketing. Then we discuss the QuickSilver [100], which improves from

the verification protocol in Wolverine and achieves at least 3⇥ improvement in terms of

communication. Its technique is inspired by LPZK [46]. We also show a generaliza-

tion version of Quicksilver which batch-proves the polynomial satisfiability with cost only

linear to the degree of the polynomial. In the end, we use a series of experiments to

demonstrate the concrete e�ciency of these protocols.

3.1. VOLE-ZK from Cut-and-Bucketing

In Figure 3.1, we describe our zero-knowledge protocol ⇧ZK, which operates in the

Fp,r
sVOLE-hybrid model. Our protocol can be viewed as following a “GMW-style” approach

to secure two-party computation using authenticated multiplication triples [83, 37]. In

the secure-computation setting, the evaluation of a multiplication gate requires two rounds

of interaction, since the parties hold shares of the values on the input wires, but neither

party knows those values. In the ZK setting, however, the prover P knows the values on

59

Protocol ⇧ZK

Inputs and parameters: The prover P and verifier V hold a circuit C over a finite field
Fp with C multiplication gates; P holds a witness w such that C(w) = 1. Fix parameters
B, c, and r, and let ` = C · B + c.

O✏ine phase:

(1) P (acting as PA) and V (acting as PB) send init to Fp,r
sVOLE, which returns a uniform

� 2 Fpr to V.
(2) P and V send (extend, |Iin|+3`+C) to Fp,r

sVOLE, which returns authenticated values
{[�i]}i2Iin , {([xi], [yi], [ri])}i2[`], and {[si]}i2[C] to the parties.
(If V receives abort from Fp,r

sVOLE, then it aborts.)
(3) For i 2 [`], P sends di := xi · yi � ri 2 Fp to V, and then both parties compute

[zi] := [ri] + di.

Online phase:

(4) For i 2 Iin, P sends ⇤i := wi � �i 2 Fp to V, and then both parties compute
[wi] := [�i] + ⇤i.

(5) For each gate (↵, �, �, T) 2 C, in topological order:
(a) If T = Add, then the two parties locally compute [w�] := [w↵] + [w�].
(b) If T = Mult and this is the ith multiplication gate, P sends d := w↵ ·w��si 2

Fp to V, and then both parties compute [w�] := [si] + d.
(6) V samples a random permutation ⇡ on {1, . . . , `} and sends it to P. The two parties

use ⇡ to permute the {([xi], [yi], [zi])}i2[`] obtained in step 3.
(7) For the ith multiplication gate (↵, �, �,Mult), where the parties obtained

([w↵], [w�], [w�]) in step 5, do the following for j = 1, . . . , B:
(a) Let ([x], [y], [z]) be the

�
(i� 1)B + j

�
th authenticated triple (after applying ⇡

in step 6).
(b) The parties run �↵ := Open([w↵]� [x]) and �� := Open([w�]� [y]). The parties

then compute [µ] := [z] � [w�] + �� · [x] + �↵ · [y] + �↵ · �� , and finally run
CheckZero([µ]).

(8) For each of the remaining c authenticated triples, say ([x], [y], [z]), the parties run
x := Open([x]) and y := Open([y]). They also compute [⌫] := [z] � x · y and then
run CheckZero([⌫]).

(9) For the single output wire o 2 Iout with authenticated value [wo], the parties run
CheckZero([wo]� 1).

Figure 3.1. Zero-knowledge proof in the Fp,r
sVOLE-hybrid model.

all wires; thus, evaluation of a multiplication gate can be done without any interaction at

all. At a high level, our protocol consists of the following steps:

60

(1) Initialization. The parties prepare authenticated values {[�i]} for the witness,

and {[si]} for each multiplication gate in the circuit. The parties also generate

some number of authenticated multiplication triples {([xi], [yi], [zi])}; a malicious

prover may cause some or all of these triples to be incorrect (i.e., zi 6= xi · yi).

(2) Circuit evaluation. Starting with the authenticated values {[wi]} at the input

wires, the parties inductively compute authenticated values for all the wires in

the circuit. For addition gates, this is easy. For the i-th multiplication gate, the

prover uses [si] to enable the verifier to compute its component of the authenti-

cated value for the output wire without revealing information about the values on

the input wires. Specifically, given authenticated values [w↵], [w�] on the input

wires to the ith multiplication gate, the prover sends w↵ ·w� � si to the verifier;

the prover and verifier then compute

[w�] := [si] + (w↵ · w� � si)

as the authenticated value of the output wire. All communication here is from

the prover to the verifier, so the entire circuit can be evaluated using only one

round of communication.

Once the parties have an authenticated value [wo] for the output wire, the

prover simply opens that value, and the verifier checks that it is equal to 1.

(3) Verifying correct behavior. So far, nothing prevents a malicious prover from

cheating. To detect cheating, the verifier needs to check the behavior of the prover

at each multiplication gate using the initial set of authenticated multiplication

triples the parties generated. This can be done in various ways. In the protocol

61

as described in Figure 3.1, which works for circuits over an arbitrary field, the

verifier checks the behavior of the prover as follows (adapting [3]):

• The verifier checks a random subset of the authenticated triples to make

sure they are correctly formed. For an authenticated multiplication triple

([x], [y], [z]), this can be done by having the prover runOpen([x]) and Open([y])

followed by CheckZero([z]� x · y).

• The verifier then uses the remaining authenticated triples to check that each

multiplication gate was computed correctly. For a multiplication gate with

authenticated values [w↵], [w�] on the input wires and [w�] on the output

wire, the relation w� = w↵w� can be checked using an authenticated multi-

plication triple ([x], [y], [z]) by having the prover run �↵ := Open([w↵]� [x])

and �� := Open([w�]� [y]), followed by

CheckZero
�
[z]� [w�] + �� · [x] + �↵ · [y] + �↵ · ��

�
.

Each multiplication gate is checked in this way using B authenticated mul-

tiplication triples.

Later, we describe other approaches for verifying correct behavior.

Note that the checks for the openings of all the authenticated values (i.e., all the executions

of Open and CheckZero) can be batched together at the end of the protocol.

Non-interactive online phase. The ZK protocol described in Figure 3.1 can be im-

plemented in constant rounds. If we use the Fiat-Shamir heuristic both for deriving the

permutation ⇡ as well as for non-interactive opening of authenticated values, the online

phase can be made non-interactive.

62

3.1.1. Proof of Security

Before giving the proof of security for ⇧ZK, we analyze the procedure used to check

correctness of the multiplication gates. Consider some multiplication gate with authenti-

cated values [w↵], [w�] on the input wires and [w�] on the output wire. If P cheated, so

w� 6= w↵ ·w�, then this cheating will be detected in step 7 of the protocol unless all B of

the multiplication triples used to check that gate are incorrect. (We ignore for now the

possibility that P is able to successfully cheat when running Open/CheckZero.) But if too

many of the initial multiplication triples are incorrect, then there is a high probability

that P will be caught in step 8. We can analyze the overall probability with which a

cheating P can successfully evade detection by considering an abstract “balls-and-bins”

game with an adversary A, which is based on a similar game considered previously in the

context of secure three-party computation [3]. The game proceeds as follows:

(1) A prepares ` = CB + c balls B1, . . . ,B`, each of which is either good or bad.

A also prepares C bins, each of which is either good or bad. The balls {Bi}i2[`]

correspond to the triples {([xi], [yi], [zi])}i2[`] defined in step 3 of the protocol, and

the bins correspond to the triples {([w↵], [w�], [w�])} defined for the multiplication

gates during the circuit evaluation.

(2) Then, c random balls are chosen. If any of the chosen balls is bad, A loses.

Otherwise, the game proceeds to the next step.

(3) The remaining CB balls are randomly partitioned into the C bins, with each bin

receiving exactly B balls.

(4) We say that a bin is fully good (resp., fully bad) if it is labeled good and all the

balls inside it are good (resp., labeled bad and all the balls inside it are bad). A

63

wins if and only if there exists at least one bin that is fully bad, and all other bins

are either fully good or fully bad.

Lemma 3. Assume c � B. Then A wins the above game with probability at most
�
CB+c

B

��1
.

Proof. Assume A makes m bins bad for 1  m  C. It is easy to see that A can only

possibly win if exactly mB balls among B1, . . . ,B` are bad, and they are exactly placed

in the m bins that are bad. We compute the probability that A wins for some fixed m.

Since exactly mB balls of the ` = CB + c balls are bad, the probability that none of

the bad balls is chosen in step 2 of the game is exactly

�
`�mB

c

�
�
`
c

� =
(`�mB)! · (`� c)!

`! · (`�mB � c)!
=

(CB + c�mB)! · (CB)!

(CB + c)! · (CB �mB)!
.

Assume that this occurs. We are left with ` � c = CB balls, of which mB are bad. The

probability that B bad balls are placed in each bad bin is

p1 =
(mB)! · (CB �mB)!

(CB)!
.

Thus, the probability that A wins is exactly

�
`�mB

c

�
�
`
c

� · p1 =
(CB + c�mB)! · (mB)!

(CB + c)!
=

✓
CB + c

mB

◆�1

.

For c � B, 1  m  C, this is maximized when m = 1. ⇤

Now we prove security of protocol ⇧ZK.

64

Theorem 4. Let c � B. Protocol ⇧ZK UC-realizes FZK in the Fp,r
sVOLE-hybrid model. In

particular, no environment Z can distinguish the real-world execution from the ideal-world

execution except with probability at most
�
CB+c

B

��1
+ p�r + ✏open.

Proof. We first consider the case of a malicious prover (i.e., soundness) and then

consider the case of a malicious verifier (i.e., zero knowledge). In each case, we construct

a PPT simulator S given access to FZK, and running the PPT adversary A as a subroutine

while emulating functionality Fp,r
sVOLE for A. We always implicitly assume that S passes

all communication between A and Z.

Malicious prover. S interacts with adversary A as follows:

(1) S emulates Fp,r
sVOLE for A by choosing uniform� 2 Fpr and recording all the values

{�i}i2Iin , {(xi, yi, ri)}i2[`], and {si}i2[C], and their corresponding MAC tags, sent

to Fp,r
sVOLE by A. These values define corresponding keys in the natural way.

(2) If A makes a global-key query (guess,�0) to Fp,r
sVOLE, then S checks if � = �0.

If not, S sends abort to A, sends (prove, C,?) to FZK, and aborts. Otherwise, S

sends success to A and continues.

(3) When A sends {⇤i}i2Iin in step 4, S sets wi := �i + ⇤i for i 2 Iin.

(4) S runs the rest of the protocol as an honest verifier, using � and the keys defined

in the first step. If the honest verifier outputs false, then S sends (prove, C,?)

to FZK and aborts. If the honest verifier outputs true, then S sends (prove, C, w)

to FZK where w is defined as above.

We assume that A does not correctly guess �; this is true except with probability at

most p�r. It is clear that the view of A is perfectly simulated by S. Whenever the verifier

65

simulated by S outputs false, the real verifier outputs false as well (since S sends ? to

FZK). It thus only remains to bound the probability with which the simulated verifier run

by S outputs true but the witness w sent by S to FZK satisfies C(w) = 0. Below, we show

that if C(w) = 0 then the probability that the simulated verifier outputs true is at most
�
CB+c

B

��1
+ ✏open.

If C(w) = 0 then either wo = 0 or else at least one of the triples {([w↵], [w�], [w�])}

defined at the multiplication gates during the circuit evaluation must be incorrect. In

the former case, the probability that P succeeds when running CheckZero([wo]� 1) is at

most ✏open. In the latter case, Lemma 3 shows that the probability that A avoids being

“caught” in steps 6–8 is at most
�
CB+c

B

��1
; if A is caught, then it succeeds in opening

some incorrect value with probability at most ✏open. This completes the proof for the case

of a malicious prover.

Malicious verifier. If S receives false from FZK, then it simply aborts. Otherwise, S

interacts with adversary A as follows:

(1) S emulates Fp,r
sVOLE by recording the global key �, and the keys for all the authen-

ticated values, sent to the functionality by A. Then, S samples uniform values for

{�i}i2Iin , {(xi, yi, ri)}i2[`], and {si}i2[C], and computes their corresponding MAC

tags in the natural way.

(2) S executes steps 3–8 of protocol ⇧ZK by simulating the honest prover with input

w = 0|Iin|.

(3) In step 9, S computes K[wo] (based on the keys sent to Fp,r
sVOLE by A) and then

sets M[wo] := K[wo] +�. Finally, it uses M[wo] to run CheckZero([wo]� 1) with

A.

66

The view of A simulated by S is distributed identically to its view in the real protocol

execution. This completes the proof. ⇤

3.1.2. Other Approaches for Verifying Correct Behavior

Here we describe alternative approaches for checking correctness of multiplication gates

for large p (i.e., log p � ⇢).

Approach 1. The first approach can be viewed as a simplified version of the check

used by SPDZ [37]. Both parties now prepare a single authenticated multiplication triple

([x], [y], [z]) per multiplication gate (so only C in total), which may be incorrect if P is

malicious. To check correctness of a multiplication gate with authenticated values [w↵],

[w�] on the input wires and [w�] on the output wire, the verifier sends a uniform ⌘ 2 Fp to

the prover, who responds by running �↵ := Open(⌘ · [w↵]� [x]) and �� := Open([w�]� [y]),

followed by

CheckZero([z]� ⌘ · [w�] + �� · [x] + �↵ · [y] + �↵ · ��).

This has soundness error 1/p + ✏open. To see this, say w� = w↵w� + �w with �w 6= 0,

and let z = xy + �z. Then z � ⌘ · w� + �� · x + �↵ · y + �↵ · �� = 0 i↵ ⌘ = �z/�w,

which occurs with probability 1/p. Note that this checking procedure can be done for

all multiplication gates in parallel using a single value ⌘, and the overall soundness error

remains unchanged. It can also be made non-interactive using the Fiat-Shamir heuristic

in the random-oracle model.

Approach 2: Trading o↵ communication and computation. This approach, which

is a simplified and improved variant of the polynomial approach used by SPDZ [37],

reduces the communication complexity by roughly half (from 4 to 2 field elements per

67

gate) at the expense of increased computation. Intuitively, the prover and verifier define

polynomials F,G,H that interpolate to {wi
↵}, {wi

�}, and {wi
�}, respectively. If wi

� =

wi
↵ · wi

� for all i, then H = F · G, and this can be verified by checking whether H(⌫) =

F (⌫) ·G(⌫) at a random point ⌫ 2 Fpr . Details follow.

Assume p � 2C � 1. Let ([wi
↵], [w

i
�], [w

i
�]) be the authenticated values corresponding

to the ith multiplication gate. The parties additionally compute C� 1 authenticated val-

ues {[si]}i2[C+1,2C); they also compute an authenticated multiplication triple ([x], [y], [z])

(which may be incorrect if P is malicious) with x, y, z 2 Fpr .
1 They then do the following:

(1) Let F 2 Fp[X] (resp., G 2 Fp[X]) be the polynomial of degree at most C�1 such

that F (i) = wi
↵ (resp., G(i) = wi

�) for i 2 [C]. Note that P can compute F and

G explicitly, and P and V can compute the authenticated value [wk
↵]

def
= [F (k)]

(resp., [wk
�]

def
= [G(k)]) for any k 2 Fpr using Lagrange interpolation over the

shares {[wi
↵]}i2[C] (resp., {[wi

�]}i2[C]).

(2) For k 2 [C + 1, 2C), P sends d0k := wk
↵ · wk

� � sk to V , and both parties compute

[wk
�] := [sk] + d0k. Let H 2 Fp[X] be the polynomial of degree at most 2C � 2

such that H(i) = wi
� for i 2 [2C � 1]. Note that P can compute H explicitly,

while P and V can compute the authenticated value [H(k)] for any k 2 Fpr using

Lagrange interpolation over the shares [wi
�].

(3) V sends a uniform ⌫ 2 Fpr to P . Then the parties compute authenticated values

[F (⌫)], [G(⌫)], and [H(⌫)].

1A uniform authenticated value [z] with z 2 Fpr can be generated from r uniform authenticated values
[z1], . . . , [zr] with zi 2 Fp by setting z =

P
i zi·Xi. An authenticated multiplication triple can be computed

from such authenticated values in the natural way.

68

(4) Finally, V verifies that F (⌫) · G(⌫) = H(⌫) as in approach 1, above. That is, V

sends a uniform ⌘ 2 Fpr to P , who responds by running � := Open(⌘ · [F (⌫)]� [x])

and � := Open([G(⌫)]� [y]), followed by

CheckZero([z]� ⌘ · [H(⌫)] + � · [x] + � · [y] + � · �).

This has soundness error (2C � 1)/pr + ✏open. To see this, note that if there exists an

i 2 [C] with wi
↵ · wi

� 6= wi
� then the polynomials F · G and H are di↵erent, and so agree

in at most 2C � 2 points. Thus, F (⌫) · G(⌫) 6= H(⌫) except with probability at most

(2C � 2)/pr. When that is the case, an analysis in the first approach shows that the final

check fails except with probability at most 1/pr + ✏open.

This approach can also be made non-interactive using the Fiat-Shamir heuristic in the

random-oracle model.

3.2. Improved Committed Triple Verification

In this section, we present our ZK protocol for circuit satisfiability over any field

with communication of only one field element per multiplication gate using sVOLE as a

subroutine. First of all, we introduce a functionality (and the corresponding protocol) that

extends sVOLE to additionally support vector oblivious polynomial evaluation (VOPE),

which is crucial for our ZK protocols in this section and the next section. Then, we

provide the details of our ZK protocol, and give the formal security proof.

69

Functionality Fp,r
ext-sVOLE

Initialize: Upon receiving (init) from P and V, sample � Fpr if V is honest, and receive
� 2 Fpr from the adversary otherwise. Store � and send it to V, and ignore all subsequent
(init) commands.

Extend: This procedure can be run multiple times. Upon receiving (extend, `) from P and
V, do the following:

(1) If V is honest, sample K F`
pr . Otherwise, receive K 2 F`

pr from the adversary.

(2) If P is honest, sample x F`
p and computeM := K��·x 2 F`

pr . Otherwise, receive

x 2 F`
p and M 2 F`

pr from the adversary, and then recompute K := M+� ·x 2 F`
pr .

(3) Send (x,M) to P and K to V.
Vector Oblivious Polynomial Evaluation: Upon receiving (VOPE, d) from P and V, do
the following:

(1) If V is honest, sample B Fpr . Otherwise, receive B 2 Fpr from the adversary.
(2) If P is honest, sample Ai Fpr for i 2 [d] and compute A0 := B �

P
i2[d] Ai ·�i.

Otherwise, receive {Ai}i2[0,d] with Ai 2 Fpr from the adversary and recompute
B :=

P
i2[0,d] Ai ·�i.

(3) Send {Ai}i2[0,d] to P and B to V.

Figure 3.2. Functionality for extended subfield VOLE.

3.2.1. Extended Subfield Vector Oblivious Linear Evaluation

Extended sVOLE functionality. To accommodate our e�cient ZK protocols for cir-

cuits and polynomial sets (described in Section 3.2 and Section 3.3), we propose an ex-

tended sVOLE functionality Fp,r
ext-sVOLE defined in Figure 3.2 to generate authenticated

values and special correlations related to random polynomials. This functionality is the

same as that shown in Figure 2.1, except that it additionally allows two parties to ob-

tain VOPE correlations over Fpr with the guarantee that the same global key � is used

between sVOLE and VOPE. In particular, given a polynomial-degree d input by both

parties, this functionality will sample d+1 uniform coe�cients over extension field Fpr to

define a random polynomial g, and then output the coe�cients to a party P and g(�) to

the other party V .

70

Protocol for realizing extended sVOLE functionality. We construct the protocol

to UC-realize functionality Fp,r
ext-sVOLE by extending the sVOLE protocol. Recall that our

extended functionality can be viewed as adding the support to output VOPE correlations

over extension field Fpr . Our protocol to accomplish it takes two steps: 1) packing subfield

VOLE correlations between Fp and Fpr into VOLE correlations over Fpr ; 2) multiplying

independent VOLE correlations to obtain a VOPE correlation. We note that a malicious

party V could cause the outputting coe�cients A1, . . . , Ad�1 of honest party P to be

always 0 by setting � = 0 and all its keys as 0. To prevent the attack, we iteratively

multiply the VOLE correlations over Fpr , and use an extra independent VOLE correlation

to randomize the product of VOLE correlations after multiplication is computed in every

iteration. Details of the protocol are described in Figure 3.3.

The security of this protocol is proved in the following theorem.

Theorem 5. Protocol ⇧p,r
ext-sVOLE shown in Figure 3.3 UC-realizes Fp,r

ext-sVOLE with sta-

tistical error (d� 1)/pr and information-theoretic security in the Fp,r
sVOLE-hybrid model.

Proof. We construct a simulator S given access to Fp,r
ext-sVOLE, and running the adver-

sary A as a subroutine while emulating Fp,r
sVOLE for A. In particular, there is no commu-

nication between P and V . Thus, S can emulate Fp,r
sVOLE and record all the values sent by

A to Fp,r
sVOLE, and then compute the output value for the corrupted party following the

protocol specification, and send it to functionality Fp,r
ext-sVOLE. It is trivial to see that the

simulation is perfect.

Below, we show that the output of the honest party is statistically indistinguishable

between the real-world execution and ideal-world execution. We first prove if both parties

71

Protocol ⇧p,r
ext-sVOLE

Initialize. P and V send (init) to Fp,r
sVOLE, which returns a uniform � 2 Fpr to V.

Generate sVOLE correlations. On input (extend, `), two parties P and V call Fp,r
sVOLE to

directly generate ` sVOLE correlations.

Generate VOPE correlations. On input (VOPE, d), two parties P and V execute the
following:

(1) For each i 2 [2d� 1], two parties perform as follows:
(a) Both parties send (extend, r) to Fp,r

sVOLE, which returns {(mh, uh)}h2[r] to P
and {kh}h2[r] to V such that kh = mh + uh ·� 2 Fpr and uh 2 Fp for h 2 [r].

(b) P computes Mi :=
P

h2[r] mh · Xh�1 2 Fpr and Ui :=
P

h2[r] uh · Xh�1 2 Fpr ,

and V computes Ki :=
P

h2[r] kh · Xh�1 2 Fpr , where Ki = Mi + Ui ·�, and
recall that each element in Fpr

⇠= Fp[X]/f(X) is denoted by a polynomial.
(2) P defines g1(x) = M1 + U1 · x, and V sets B1 = K1. If d > 1, from i = 1 to d� 1,

two parties execute as follows:
(a) P computes the following univariate polynomial:

gi+1(x) = gi(x) · (Mi+1 + Ui+1 · x) + (Md+i + Ud+i · x).
(b) V computes Bi+1 := Bi · Ki+1 + Kd+i.
Then, P computes the coe�cients {Ai}i2[0,d] locally such that gd(x) =

P
i2[0,d] Ai ·

xi, and V defines B := Bd.
(3) P outputs {Ai}i2[0,d]; V outputs B.

Figure 3.3. Protocol for extended subfield VOLE in the Fp,r
sVOLE-hybrid

model.

compute their output locally following the protocol specification, then their outputs satisfy

the correct VOPE correlation. Specifically, from kh = mh + uh ·� for h 2 [r], we easily

obtain that for each i 2 [d],

Ki =
X

h2[r]

kh ·Xh�1 =
X

h2[r]

(mh + uh ·�) ·Xh�1

=
X

h2[r]

mh ·Xh�1 +
⇣X

h2[r]

uh ·Xh�1
⌘
·�

= Mi + Ui ·�.

72

It is easy to see that B1 = K1 = M1 + U1 ·� = g1(�). Below, we prove by induction. In

the i-th iteration with i 2 [d� 1], assuming that Bi = gi(�), we have the following holds:

Bi+1 = Bi ·Ki+1 +Kd+i

= gi(�) · (Mi+1 + Ui+1 ·�) + (Md+i + Ud+i ·�)

= gi+1(�).

Therefore, we obtain that B = Bd = gd(�) =
P

i2[0,d] Ai ·�i.

If V is honest, then its output is always defined by the output of malicious party P

and � (i.e., B =
P

i2[0,d] Ai · �i) in both worlds. In the following, we consider the case

that P is honest but V is malicious. The output values A0, . . . , Ad for P are uniformly

random such that B =
P

i2[0,d] Ai ·�i in the ideal-world execution, where B is the output

of malicious party V . In the real protocol execution, Ai for each i 2 [0, d] is computed as

the coe�cient of item xi for polynomial gd(x). According to the definition of Fp,r
sVOLE, uh

for h 2 [r] is uniform in Fp. Therefore, for i 2 [2d�1], we have that Ui :=
P

h2[r] uh ·Xh�1

is uniformly random in Fpr . For i 2 [d], we prove by induction that each coe�cient of

gi(x) except for constant term is uniformly distributed in Fpr , except with probability at

most 1/pr. This holds for g1(x) = M1 + U1 · x with probability 1. In the i-th iteration

with i 2 [d � 1], we have that the coe�cients Ai,1, . . . , Ai,i of degree-i polynomial gi(x)

are uniform by the induction assumption. From the definition of gi+1(x), we obtain the

73

following holds:

gi+1(x) = gi(x) · (Mi+1 + Ui+1 · x) + (Md+i + Ud+i · x)

=

iX

h=0

Ai,h · xh

!
· (Mi+1 + Ui+1 · x) + (Md+i + Ud+i · x)

= (Ai,0 ·Mi+1 +Md+i) + (Ai,1 ·Mi+1 + Ai,0 · Ui+1 + Ud+i) · x

iX

h=2

(Ai,h ·Mi+1 + Ai,h�1 · Ui+1) · xh + Ai,i · Ui+1 · xi+1.

From the uniformity of Ud+i, we directly obtain that the 1-degree term of gi+1(x) is

uniform. If Ui+1 6= 0 except with probability 1/pr, then the h-degree term of gi+1(x) for

h 2 [2, i+1] is uniform from the uniformity of Ai,h�1. Overall, except with probability 1/pr,

each coe�cient of gi+1(x) except for constant term is uniformly random. Therefore, the

coe�cients A1, . . . , Ad of polynomial gd(x) are uniform over Fpr , except with probability

at most (d � 1)/pr. Together with B = gd(�), we have that A0 = B �
P

i2[d] Ai · �i,

which completes the proof. ⇤

3.2.2. ZKP From Improved Triple Verification

We describe the details of the protocol in Figure 3.4. The online phase of the ZK protocol

requires three rounds of communication. At the end of this section, we will show that

the online phase can be made non-interactive in the random oracle model. Functionality

Fp,r
sVOLE can be securely realized in constant rounds using known protocols (e.g., [87, 25,

104, 95]), and thus Fp,r
ext-sVOLE is able to be instantiated using constant-round protocols.

74

Protocol ⇧p,r
ZK

Inputs: The prover P and the verifier V hold a circuit C over any field Fp with t multiplica-
tion gates. Prover P also holds a witness w such that C(w) = 1 and |w| = n (i.e., |Iin| = n).

Preprocessing phase: Both the circuit and witness are unknown.

(1) P and V send (init) to Fp,r
ext-sVOLE, which returns a uniform � 2 Fpr to V.

(2) P and V send (extend, n + t) to Fp,r
ext-sVOLE, which returns authenticated values

{[µi]}i2[n] and {[⌫i]}i2[t] to the parties.
(3) P and V send (VOPE, 1) to Fp,r

ext-sVOLE, which returns uniform (A⇤
0, A

⇤
1) to P and

B⇤ to V, such that B⇤ = A⇤
0 + A⇤

1 ·�.

Online phase: Now the circuit and witness are known by the parties.

(4) For i 2 Iin, P sends �i := wi � µi 2 Fp to V, and then both parties compute
[wi] := [µi] + �i.

(5) For each gate (↵, �, �, T) 2 C, in a topological order:
• If T = Add, then two parties locally compute [w�] := [w↵] + [w�].
• If T = Mult and this is the i-th multiplication gate, P sends di := w↵ ·w��⌫i 2
Fp to V, and then both parties compute [w�] := [⌫i] + di (with w� = w↵ · w�

in the honest case).
(6) For the i-th multiplication gate, two parties hold an authenticated triple

([w↵], [w�], [w�]) (with ki = mi + wi · � for i 2 {↵, �, �}) from the previous step
and execute the following:

• P computes A0,i := m↵ ·m� 2 Fpr and A1,i := w↵ ·m� +w� ·m↵ �m� 2 Fpr .
• V computes Bi := k↵ · k� � k� ·� 2 Fpr .

(7) P and V perform the following check to verify that Bi = A0,i+A1,i ·� for all i 2 [t].
(a) V samples � Fpr and sends it to P.
(b) P computes U :=

P
i2[t] A0,i ·�i+A⇤

0 and V :=
P

i2[t] A1,i ·�i+A⇤
1, and sends

(U, V) to V.
(c) Then V computes W :=

P
i2[t] Bi · �i + B⇤ and checks that W = U + V ·�.

If the check fails, V outputs false and aborts.
(8) For the single output wire h in the circuit C, both parties hold [wh] with kh =

mh + wh ·�, and check that wh = 1 as follows:
• In parallel with the previous step, P sends mh to V.
• V checks that kh = mh+�. If the check fails, then V outputs false. Otherwise,
V outputs true.

Figure 3.4. Zero-knowledge protocol for circuit satisfiability over any field
in the Fp,r

ext-sVOLE-hybrid model.

Overall, the ZK protocol shown in Figure 3.4 has constant rounds. In the following, we

prove the security of our ZK protocol.

75

Proof of security. When both parties are honest, we easily see that the verifier will

output true with probability 1. In particular, the check in protocol ⇧p,r
ZK always passes for

an honest execution. For an honest protocol execution, we always have that wh = 1 (and

thus kh = mh +�) for the single output wire h. Overall, our ZK protocol ⇧p,r
ZK shown in

Figure 3.4 achieves perfect completeness.

Theorem 6. Protocol ⇧p,r
ZK UC-realizes functionality FZK that proves the circuit sat-

isfiability in the Fp,r
ext-sVOLE-hybrid model with soundness error (t+3)/pr and information-

theoretic security.

Proof. We first consider the case of a malicious prover (i.e., soundness and knowledge

extraction) and then consider the case of a malicious verifier (i.e., zero knowledge). In

each case, we construct a simulator S given access to FZK, and running the adversary

A as a subroutine while emulating Fp,r
ext-sVOLE for A. We always implicitly assume that S

passes all communication between A and environment Z.

Malicious prover. S interacts with adversary A as follows:

(1) S emulates Fp,r
ext-sVOLE for A by choosing uniform � 2 Fpr , and recording all

the values {µi}i2[n] and {⌫i}i2[N] and their corresponding MAC tags, which are

received by Fp,r
ext-sVOLE from adversary A. These values define the corresponding

keys in the natural way. When emulating Fp,r
ext-sVOLE, S also receives (A⇤

0, A
⇤
1) 2

(Fpr)2 from A and defines B⇤ accordingly.

(2) When A sends {�i}i2Iin in step 4, S computes wi := �i + µi 2 Fp for i 2 Iin.

(3) S executes the rest of the protocol as an honest verifier, using � and the keys

defined in the first step. If the honest verifier outputs false, then S sends w = ?

76

and C to FZK and aborts. If the honest verifier outputs true, then S sends w and

C to FZK where w = (w1, . . . , wn) is defined as above.

Clearly, the view of adversary A simulated by S has the identical distribution as its view

in the real-world execution. Whenever the verifier in the real-world execution outputs

false, the verifier in the ideal-world execution outputs false as well (since S sends ? to

FZK in this case). Thus, it only remains to bound the probability that the verifier in the

real-world execution outputs true but the witness w sent by S to FZK satisfies C(w) = 0.

In the following, we show that if C(w) = 0 then the probability that the honest verifier

in the real-world execution outputs true is at most (t+ 3)/pr.

By induction, we prove that all the values on the wires in the circuit are correct. It is

trivial that the values associated with the input wires and the output wires of Add gates

are computed correctly. Therefore, we focus on analyzing the correctness of the values

related to the output wires of Mult gates. When we analyze the correctness of the output

value with respect to the i-th multiplication gate, we always assume that the output

values associated with the first (i� 1) multiplication gates are correct by induction. For

the i-th multiplication gate, two parties hold an authenticated triple ([w↵], [w�], [w�]) with

w� = w↵ ·w�+ei, where ei 2 Fp is an error chosen by adversary A by sending an incorrect

value d0i in step 5 of protocol ⇧p,r
ZK. Thus, we have k� = m�+w� ·� = m�+(w↵·w�)·�+ei·�.

77

Further, we have:

Bi = k↵ · k� � k� ·�

= (m↵ + w↵ ·�) · (m� + w� ·�)

� (m� + w↵ · w� ·�+ ei ·�) ·�

= m↵ ·m� + (w↵ ·m� + w� ·m↵ �m�) ·�� ei ·�2

= A0,i + A1,i ·�� ei ·�2.

In step 7 of the ZK protocol, A sends U 0 = U+Eu and V 0 = V +Ev to the honest verifier,

where U, V 2 Fpr are computed following the protocol description, and Eu, Ev 2 Fpr are

the adversarially chosen errors. Furthermore, we have the following:

W =
X

i2[t]

Bi · �i +B⇤

=
X

i2[t]

�
A0,i + A1,i ·�� ei ·�2

�
· �i + A⇤

0 + A⇤
1 ·�

= U + V ·��
⇣X

i2[t]

ei · �i
⌘
·�2

= (U 0 � Eu) + (V 0 � Ev) ·��
⇣X

i2[t]

ei · �i
⌘
·�2.

If the check passes in step 7, then we have that W = U 0 + V 0 ·�. Therefore, we obtain

that

Eu + Ev ·�+
⇣X

i2[t]

ei · �i
⌘
·�2 = 0.

78

If
P

i2[t] ei · �i 6= 0, then the above equation holds with probability at most 2/pr, as

� 2 Fpr is uniformly random and kept secret from the adversary’s view. Below, we

consider that
P

i2[t] ei ·�i = 0. If there exists some i 2 [t] such that ei 6= 0, the probability

that
P

i2[t] ei · �i = 0 is at most t/pr, as � is sampled uniformly at random after ei for

all i 2 [t] have been determined. Overall, all the values on the wires in the circuit are

correct, except with probability at most (t+ 2)/pr.

Now, we assume that all the values on the wires in the circuit are correct. If C(w) = 0

but the honest verifier outputs true in step 8, then adversary A must send mh +� to the

honest verifier where mh is an MAC tag on output wire h known by A. In other words,

A learns �, which occurs with probability at most 1/pr.

In conclusion, any unbounded environment Z cannot distinguish between the real-

world execution and ideal-world execution, except with probability (t+ 3)/pr.

Malicious verifier. If S receives false from FZK, then it simply aborts. Otherwise, S

interacts with adversary A as follows:

(1) In the preprocessing phase, S emulates Fp,r
ext-sVOLE by recording the global key �

and the keys for all the authenticated values, that are sent to this functionality

by A. S also receives B⇤ 2 Fpr from A when emulating Fp,r
ext-sVOLE.

(2) S executes steps 4–5 of protocol ⇧p,r
ZK by sending uniformly random �i for each

i 2 Iin and di for the i-th multiplication gate to adversary A.

(3) S executes steps 6–7 of the protocol as an honest prover, except that sampling

V Fpr and computing U := W �V ·� where W is computed using �, B⇤ and

the keys received from A following the protocol specification.

79

(4) In step 8 of the protocol, S computes kh (based on the keys sent to Fp,r
ext-sVOLE by

A) and then sets mh := kh+�, where h is the single output wire. Then, S sends

mh to A.

Since {µi}, {⌫i} and A⇤
1 are uniformly random and perfectly hidden against the view of

adversary A, we easily obtain that the view of A simulated by S is distributed identically

to its view in the real protocol execution. This completes the proof. ⇤

In the protocol ⇧p,r
ZK shown in Figure 3.4, if we set p = 261 � 1 and r = 1, then the

computation of �i for i 2 [t] is expensive (especially for large t). We can replace �i for

i 2 [t] with independent uniform coe�cient �i for i 2 [t] to obtain better computational

e�ciency. In this case, the verifier can send a random seed in {0, 1}� to the prover,

and then both parties compute �1, . . . ,�t using the seed and a random oracle. Now, the

soundness error is bounded by q/2� + 4/pr, where q is an upper bound of the number

of random oracle queries made by the adversary. 2 When using the random oracle, the

security is guaranteed in the computational sense.

Non-interactive online phase. In the online phase of our protocol ⇧p,r
ZK, the verifier

only sends a random coe�cient � to the prover. Thus, the communication cost is one

field element per multiplication gate even without random oracle. But the online phase

needs communication of three rounds.

We can use the Fiat-Shamir heuristic to make the online phase non-interactive at the

cost of that the information-theoretic security is degraded to the computation security.

Specifically, both parties can compute � 2 Fpr as H(d1, . . . , dt), where H : {0, 1}⇤ ! Fpr is

2This bound can be easily obtained by adapting the proof of Theorem 6 and computing the probability
that the adversary succeeds to guess the seed.

80

a cryptographic hash function modeled as a random oracle and pr � 2�. In this case, the

soundness error for the batch check of multiplication gates together with the correctness

of the single output is now bounded by (qH + t+ 3)/pr  (qH + t+ 3)/2�, where qH is an

upper bound of the number of H queries made by the adversary. When we set p = 2 and

r = 128, we can obtain a non-interactive online phase with a blazing-fast computation

given hardware-instruction support.

3.3. Zero-Knowledge For Polynomial Sets

The previous verification of a multiplication gate can also be viewed as the verification

of a simple degree-2 polynomial f(x0, x1) := x0 ·x1. It can be simply generalized to verify

a inner product defined as f(x0,x1) :=
P

i x0[i] · x1[i], in which (x0,x1) are committed

vectors. In this section, we discuss how to prove a set of arbitrary degree-d polynomial

(f1(x), . . . , ft(x)) with communication overhead O(|x|+ d).

We show the detailed ZKP protocol for polynomial sets in Figure 3.5. Similar to

the circuit-based ZK protocol described in Section 3.2.2, our polynomial-based ZK pro-

tocol is also constant-round. In Section 3.3.1, we provide the formal security proof of the

polynomial-based ZK protocol. In Section 3.3.2, we also present some practical applica-

tions of the polynomial-based ZK protocol, including how to optimize the zero-knowledge

proofs for proving matrix multiplication, proving knowledge of a solution to an SIS prob-

lem, proving integer multiplication over a ring and proving the circuits with some level of

weak uniformity.

81

Protocol ⇧p,r
polyZK

Inputs: The prover P and verifier V hold t number of d-degree polynomials f1, . . . , ft all
over n variables. Each polynomial fi is represented as fi =

P
h2[0,d] fi,h where all terms in

fi,h have degree h. P also holds a witness w 2 Fn
p , such that fi(w) = 0 for all i 2 [t].

Preprocessing phase: Both polynomials and witness are unknown.

(1) P and V send (init) to Fp,r
ext-sVOLE, which returns � 2 Fpr to V.

(2) P and V send (extend, n) to Fp,r
ext-sVOLE, which returns authenticated values {[si]}i2[n]

to the parties.
(3) P and V also send (VOPE, d � 1) to Fp,r

ext-sVOLE, which returns {A⇤
h}h2[0,d�1] to P,

B⇤ to V, such that
P

h2[0,d�1] A
⇤
h ·�h = B⇤.

Online phase: Now the polynomials and witness are known.

(4) For i 2 [n], P sends �i := wi�si 2 Fp to V, and both parties compute [wi] := [si]+�i.
Note that ki = mi + wi ·� for i 2 [n].

(5) From i = 1 to t, for the i-th polynomial fi, two parties perform the following:
• V computes Bi :=

P
h2[0,d] fi,h(k1, . . . , kn) ·�d�h.

• P defines a univariate d-degree polynomial over field Fpr as gi(x) =P
h2[0,d] fi,h(m1+w1 ·x, . . . ,mn+wn ·x) ·xd�h, and computes the coe�cients

{Ai,h}h2[0,d] such that gi(x) =
P

h2[0,d] Ai,h ·xh. Since Ai,d = fi(w1, . . . , wn) =

0, gi(x) can be written as
P

h2[0,d�1] Ai,h · xh.

(6) Two parties perform the following to check that
P

h2[0,d�1] Ai,h · �h = Bi for all
i 2 [t]:
(a) V samples � Fpr and sends it to P.
(b) For all h 2 [0, d� 1], P computes Uh :=

P
i2[t] Ai,h ·�i+A⇤

h and sends it to V.
(c) V computes W :=

P
i2[t] Bi ·�i+B⇤ and checks that W =

P
h2[0,d�1] Uh ·�h.

If the check fails, V outputs false; otherwise it outputs true.

Figure 3.5. Zero-knowledge for polynomial satisfiability over any field in
the Fp,r

ext-sVOLE-hybrid model.

Computing polynomial coe�cients. In the ZK protocol shown in Figure 3.5, prover

P can compute the coe�cients {Ai,h}h2[0,d�1] of polynomial gi(x) for i 2 [t] in the following

generic way.

• P computes yi,j := gi(↵j) for j 2 [d+1], where ↵1, . . . ,↵d+1 are any d+1 di↵erent

fixed points over extension field Fpr .

82

• Then P computes gi(x) :=
P

j2[d+1] yi,j · �j(x), where �j(x) =
Q

k 6=j
x�↵k
↵j�↵k

is a

fixed d-degree polynomial that can be precomputed in the preprocessing phase.

In a lot of practical applications, the polynomials {gi(x)} are usually simple, and thus

the coe�cients can be computed e�ciently without the need of using the above Lagrange

interpolation approach.

Computational complexity. In the Fp,r
ext-sVOLE-hybrid model, the computational cost of

protocol ⇧p,r
polyZK is dominated by polynomial evaluation (i.e., computing {Bi} and {Ai,h}).

We easily bound the computational complexities of prover P and verifier V by O(tdc+dn)

and O(tc) respectively, where c is the maximum cost to evaluate any polynomial on a

single point, and O(dn) is the cost to compute {mi + wi · ↵j}i2[n] for j 2 [d + 1]. Here,

we assume that the polynomial coe�cients {Ai,h}h2[0,d] for i 2 [t] are computed using

the generic Lagrange interpolation approach described as above. For many practical

applications, the computational complexity of the prover may be lower without using the

generic approach. Let z be the maximum number of terms in all t polynomials. Then we

have that c = O(dz), as each term in any polynomial has a degree at most d. Therefore,

the computational complexities of P and V can be bounded by O(td2z+ dn) and O(tdz),

respectively.

3.3.1. Proof of Security

When both parties are honest, it is not hard to see that the verifier will always output

true with probability 1. Specifically, from ki = mi + wi · � for i 2 [n], we have that

Bi =
P

h2[0,d�1] Ai,h ·�h for all i 2 [t]. Together with
P

h2[0,d�1] A
⇤
h ·�h = B⇤, we obtain

83

that the following holds:

W =
X

i2[t]

Bi · �i +B⇤

=
X

i2[t]

⇣ X

h2[0,d�1]

Ai,h ·�h
⌘
· �i +

X

h2[0,d�1]

A⇤
h ·�h

=
X

h2[0,d�1]

⇣X

i2[t]

Ai,h · �i + A⇤
h

⌘
·�h =

X

h2[0,d�1]

Uh ·�h.

Thus, our protocol shown in Figure 3.5 achieves perfect completeness.

Theorem 7. Protocol ⇧p,r
polyZK UC-realizes functionality FZK that proves polynomial

satisfiability in the Fp,r
ext-sVOLE-hybrid model with soundness error (d+t)/pr and information-

theoretic security.

Proof. We first consider the case of a malicious prover (i.e., soundness and knowledge

extraction) and then consider the case of a malicious verifier (i.e., zero knowledge). In

each case, we construct a simulator S, which is given access to FZK, runs the adversary

A as a subroutine while emulating Fp,r
ext-sVOLE for A. We always implicitly assume that S

passes all communication between adversary A and environment Z.

Malicious prover. S emulates functionality Fp,r
ext-sVOLE and interacts with adversary A

as follows:

(1) S emulates Fp,r
ext-sVOLE for A by choosing uniform � 2 Fpr , and recording all the

values {si}i2[n] and their corresponding MAC tags that are received by Fp,r
ext-sVOLE

from adversary A. These values define the corresponding keys in the natural

84

way. When emulating Fp,r
ext-sVOLE, S also receives {A⇤

h}h2[0,d�1] from A and defines

B⇤ =
P

h2[0,d�1] A
⇤
h ·�h.

(2) When A sends {�i}i2[n] in step 4, S extracts the witness as wi := �i + si for

i 2 [n].

(3) S executes the remaining part of protocol ⇧p,r
polyZK as an honest verifier, using �

and the keys defined in the first step. If the honest verifier outputs false, then

S sends w =? and C to FZK and aborts. If the honest verifier outputs true, S

sends w and C to FZK where w = (w1, . . . , wn) is extracted by S as above.

It is easy to see that the view of the adversary simulated by S has the identical distribution

as its view in the real-world execution. Whenever the honest verifier in the real-world

execution outputs false, the honest verifier in the ideal-world execution outputs false as well

(since S sends ? to FZK in this case). Therefore, we only need to bound the probability

that the verifier in the real-world execution outputs true but the witness w sent by S to

FZK satisfies that fi(w) 6= 0 for some i 2 [t]. Below, we show that this happens with

probability at most (d+ t)/pr.

Let fi(w) = fi(w1, . . . , wn) = yi with some yi 2 Fp for each i 2 [t], where w =

(w1, . . . , wn) is a vector extracted by S. According to the definition of Bi for i 2 [t], we

85

have the following:

Bi =
X

h2[0,d]

fi,h(k1, . . . , kn) ·�d�h

=
X

h2[0,d]

fi,h(m1 + w1 ·�, . . . ,mn + wn ·�) ·�d�h

=
X

h2[0,d�1]

Ai,h ·�h + yi ·�d.

In step 6, S receives U 0
h = Uh + Eh for h 2 [0, d � 1] from adversary A, where Uh is

computed with w and the corresponding MACs following the protocol specification, and

Eh 2 Fpr is an adversarially chosen error. Together with B⇤ =
P

h2[0,d�1] A
⇤
h · �h, we

obtain that the following equation holds:

W =
X

i2[t]

Bi · �i +B⇤

=
X

i2[t]

⇣ X

h2[0,d�1]

Ai,h ·�h + yi ·�d
⌘
· �i +

X

h2[0,d�1]

A⇤
h ·�h

=
⇣X

i2[t]

yi · �i
⌘
·�d +

X

h2[0,d�1]

⇣X

i2[t]

Ai,h · �i + A⇤
h

⌘
·�h

=
⇣X

i2[t]

yi · �i
⌘
·�d +

X

h2[0,d�1]

U 0
h ·�h �

X

h2[0,d�1]

Eh ·�h.

If the honest verifier outputs true, then we have W =
P

h2[0,d�1] U
0
h · �h. Therefore, we

have the following:

⇣X

i2[t]

yi · �i
⌘
·�d � Ed�1 ·�d�1 � · · ·� E1 ·�� E0 = 0.

86

If
P

i2[t] yi · �i 6= 0, the probability that the above equation holds is at most d/pr, as

� 2 Fpr is uniformly random and kept secret from the adversary’s view. In the following,

we assume that
P

i2[t] yi · �i = 0. If there exists some i 2 [t] such that yi 6= 0, then that

probability that
P

i2[t] yi · �i = 0 is at most t/pr, since � 2 Fpr is sampled uniformly at

random after yi for all i 2 [t] have been defined. Overall, the probability that the honest

verifier outputs true but fi(w) 6= 0 for some i 2 [t] is bounded by (d+t)/pr. In conclusion,

any unbounded environment Z cannot distinguish between the real-world execution and

ideal-world execution, except with probability (d+ t)/pr.

Malicious verifier. If S receives false from FZK, then it simply aborts. Otherwise, S

interacts with adversary A as follows:

(1) In the preprocessing phase, S emulates Fp,r
ext-sVOLE by recording the global key �

and the keys for all the authenticated values, which are received from adversary

A. Additionally, S also receives B⇤ 2 Fpr from A by emulating Fp,r
ext-sVOLE.

(2) S executes the step 4 of protocol ⇧p,r
polyZK by sending uniform �i 2 Fp for i 2 [n]

to adversary A.

(3) For steps 5–6 of the ZK protocol, S computes W by using �, the keys and B⇤ re-

ceived fromA following the protocol description, and then samples U1, . . . , Ud�1

Fpr and computing U0 := W �
P

h2[d�1] Uh ·�h. Then, S sends U0, . . . , Ud�1 to

A.

Note that {si}i2[n] and {A⇤
h}h2[d�1] are uniform and kept secret from the view of adversary

A. Therefore, we easily obtain that the view of A simulated by S is distributed identically

to its view in the real-world execution, which completes the proof. ⇤

87

3.3.2. Optimizing Practical Applications

In the following applications, for the sake of simplicity, we always assume that pr ⇡ 2

as the Fiat-Shamir heuristic is assumed to be implicitly used in the applications. For the

interactive case, we can also extend the applications to smaller extension fields, as long

as the soundness error is assured negligible in ⇢. In this section, the communication cost

is computed in the sVOLE-hybrid model.3

Optimizing matrix multiplication. The prover wants to prove that A · B = C,

where A,B 2 Fn⇥n
p are two secret matrices and C 2 Fn⇥n

p is a public matrix known

by the verifier. Using the circuit-based ZK protocol shown in Figure 3.1, this will need

communication of (2n2 + n3) log p+ 2� bits.

Using the polynomial-based ZK protocol described in Figure 3.5, we can directly

obtain a ZK protocol for inner product of two n-length vectors with communication of

2n log p+2� bits, by defining a polynomial f(x,y) =
P

i2[n] xi·yi for two vectors x,y 2 Fn
p .

The communication complexity remains unchanged, even if the inner product of t vector

pairs needs to be proved. This immediately gives us a ZK protocol for proving matrix

multiplication with communication of 2n2 log p+2� bits, since a matrix multiplication can

be written as the inner-product of n2 vector pairs, where the communication of 2n2 log p

bits is used to commit the entries in matrices A and B using sVOLE.

Proving solutions to lattice problems. Here, we assume the prover has a binary

vector s 2 {0, 1}m and intends to prove that A ·s = t, with public matrix A 2 Zn⇥m
q and

vector t 2 Zn
q . Here we assume that q is a prime. The SIS problem has been considered in

3We note that the communication for generating sVOLE correlations is sublinear to the number of re-
sulting sVOLE correlations, using the recent LPN-based protocols [87, 25, 104, 95].

88

prior work such as [10, 95]. Our ZK protocol for polynomial sets can be used to prove the

statements more e�ciently. To commit to all input bits s1, . . . , sm, the ZK protocol takes

m log q bits. Then we need to show that 1) the prover indeed commits bits and that 2) the

above linear equation holds. All of the above can be modeled as a set of m+n polynomials

with degree at most 2. In particular, we need to show that si · (si � 1) = s2i � si = 0

for all i 2 [m] and that
P

j2[m] ai,j · sj � ti = 0 for i 2 [n] where ai,j is the entry in the

i-th row and j-th column of matrix A. Since the polynomial degree is at most 2, the

communication cost would be 2 elements over the extension field, each of size roughly 

bits. Therefore, the total communication cost is m log q + 2 bits.

If the secret vector s is in [�B,B]m (with a small integer B) instead of a binary vector,

which has also been addressed by prior work [20, 21, 48, 95], we would need a degree-

(2B+1) polynomial to prove that f(si) = 0 for all i 2 [m] where f(x) = ⇧j2[�B,B](x� j),

with the total communication cost of m log q + (2B + 1) bits.

In Section 3.4.2, we evaluate the concrete performance to demonstrate that our polynomial-

based ZK protocol significantly outperforms prior work for proving knowledge of solutions

to SIS.

Optimizing integer operations over a ring. Arithmetic operations over a field may

often be su�cient for some applications. However, for applications where matching clear-

text computation is crucial, the statement to be proven may require native computation

over a ring Z2n such as Z232 . In this case, one may naturally think about ring operations.

Here we explore an alternative approach.

Our idea is to view integer multiplication over Z2n as a set of n polynomials that

take 2n variables as input. In this case, the maximum degree for these polynomials is

89

8n2, since the Boolean circuit for integer multiplication has a depth 2 log n+ 3 [33]. The

communication cost for proving a set of integer multiplications would become linear to n,

when the number of integer multiplications to be proven is large. In particular, if there

are t integer multiplications to be proven with t ⇡ 8n�, the amortized communication

cost for each multiplication will be 3n+ 8n2�
t ⇡ 4n bits.

Optimizing for circuits with weak uniformity. Inspired by the above concrete ex-

amples, we summarize a blueprint to optimize circuits with some level of weak uniformity

(i.e., the polynomial representations of sub-circuits are all bounded by some degree d).

Assume that the circuit to be proven is C, which contains t multiplication gates. We

let C1, . . . , Ck be k non-overlapping sub-circuits of C, such that for sub-circuit Ci, it has

ti multiplication gates without counting the multiplication gates that include the output

wires of Ci. Each sub-circuit can be represented as a set of polynomials with the degree

at most d. In a nutshell, our ZK protocol can be constructed as follows:

(1) Use sVOLE to commit to all the wire values in C \ {C1, . . . , Ck}, including the

input wires go into the sub-circuits C1, . . . , Ck and the output wires go out of

these sub-circuits.

This step takes t�
Pk

i=1 ti elements over Fp for communication.

(2) Prove that all multiplication gates in C \ {C1, . . . , Ck} are computed correctly

using our ZK protocol for circuit satisfiability shown in Figure 3.1.

This step takes 2 bits of communication.

(3) For each sub-circuit Ci, represent it as a set of polynomials, one for each output of

Ci. Prove that all the polynomials with respect to all sub-circuits are computed

correctly using our ZK protocol for polynomial satisfiability shown in Figure 3.5.

90

This step takes d bits of communication, because all input and output wire

values have already been committed with sVOLE.

In summary, the communication of the above protocol is essentially (t�
P

i2[k] ti) log p+

(d+2) bits. Now the task is really about how to “dig” as many “holes” as possible from

C, while keeping all holes relatively simple. In practice, this is fairly common, as the

real-life computations are written in succinct libraries, which means the same subroutine

is often called for many times. We leave it as a future work to fully explore its potential

and build an automated optimizer to maximize the practical e�ciency.

3.4. Implementation and Benchmarking

We implemented our ZK protocols and report their performance. Unless otherwise

specified, our evaluation results are reported over two Amazon EC2 machines of type

m5.2xlarge with throttled network bandwidth (with latency about 0.1 ms) and one

thread. Each machine has 8 virtual CPUs, which means 4 CPU cores. We instanti-

ate the COT protocol (i.e., sVOLE with p = 2 and r = �) and the VOLE protocol over a

61-bit field by using the recent protocols [104, 95], and use SHA-256 as the cryptographic

hash function modeled as a random oracle. We take advantage of hardware AES-NI and

binary-field multiplication when applicable. All our implementations achieve computa-

tional security parameter  = 128 and statistical security parameter ⇢ ⇡ 100 for Boolean

circuits, and  = 128 and ⇢ � 40 for arithmetic circuits over a 61-bit field where Mersenne

prime p = 261 � 1 is used as in prior work. The implementation is openly available at

EMP [94].

91

Threads
Boolean Circuits

10 Mbps 20 Mbps 30 Mbps 50 Mbps Local-host

1 4.4 M 6.2 M 7.0 M 7.5 M 7.6 M
2 5.3 M 8.1 M 9.9 M 11.8 M 11.8 M
3 5.7 M 9.1 M 11.4 M 13.9 M 14.3 M
4 5.8 M 9.9 M 12.2 M 14.9 M 15.8 M

Threads
Arithmetic Circuits

100 Mbps 500 Mbps 1 Gbps 2 Gbps Local-host

1 1.2 M 3.4 M 4.2 M 4.8 M 4.8 M
2 1.3 M 4.4 M 6.1 M 7.0 M 7.1 M
3 1.4 M 4.9 M 7.2 M 8.4 M 8.4 M
4 1.4 M 5.0 M 7.5 M 8.9 M 8.9 M

Table 3.1. Benchmark the performance of our circuit-based ZK proto-

col. The benchmark results are the number of AND/MULT gates per second
that can be proven using our protocol, where “M” means “million”. Benchmark
was obtained with di↵erent network settings and number of threads.

3.4.1. Benchmarking Our Circuit-based ZK Proof

We benchmarked the performance of our ZK protocol by proving circuits with 3 ⇥ 108

AND/MULT gates. Similar to prior work [95, 8], we observe that the performance does

not depend on the shape of the circuit and is linear to the circuit size; and thus we focus

on the speed in terms of “million gates per second”. In Table 3.1, we benchmarked the

performance of our circuit-based ZK protocol under di↵erent network settings and number

of threads. The performance of our protocol ranges from 4.4 million to 15.8 million AND

gates per second (or from 1.2 million to 8.9 million multiplication gates per second),

depending on the network setting and number of threads. When we increase the number

of threads and/or the network bandwidth, we could see an increase in the performance.

The computation becomes the e�ciency bottleneck of our protocol for Boolean circuits

(resp., arithmetic circuits) when the network bandwidth is increased to 50 Mbps (resp.,

2 Gbps), and thus the performance is not improved much beyond that.

92

Protocol
Boolean Circuit Arithmetic Circuit

Size Speed Size Speed

Wolverine [95] 7 1.25 M/sec 4 0.66 M/sec
Mac0n0Cheese [8] � � 3 0.4 M/sec

LPZK [45] � � 1 �
QS 1 7.7 M/sec 1 4.8 M/sec

Table 3.2. Comparing our work (QS) with prior related work. Size
represents the number of field elements to send for each multiplication gate,
which is also the number of (s)VOLEs. Speed represents the number of mul-
tiplication gates that can be executed per second with unlimited bandwidth
and a single thread.

Comparison with prior work. We compared the performance of our ZK protocol and

prior related work in Table 3.2. Since Mac0n0Cheese [8] only reported the performance

of their protocol with one thread and local-host, we compare the performance of all

protocols using this setup. In the Boolean setting, we observe 6⇥ improvement in compu-

tation and 7⇥ improvement in communication compared to the state-of-the-art protocol

Wolverine [95]. For arithmetic circuits, our protocol improves by at least 7⇥ in com-

putation and 3⇥–4⇥ in communication compared to Wolverine and Mac0n0Cheese. Note

that Wolverine studied the performance of their ZK protocol when used for DECO [107]

and Blind CA [93], as well as other applications like Merkle trees, and proving bugs

in a set of code snippets [66]. Our performance improvement directly translates to the

improvements for all of these applications.

Stress-testing of our ZK protocol. We stress-test our circuit-based ZK protocol

on the cheapest instance of Amazon EC2 that only costs 2 to 5 cents per hour, and

93

Instance Information Boolean Circuits Arithmetic Circuits

Type
Price

CPU
Speed Cost Speed Cost

cents/hour gates/sec gates/cent gates/sec gates/cent

c6g.medium 1.9 ARM 5.3 M 10.0 B 2.2 M 4.1 B

c5.large 4.7 Intel 5.9 M 4.5 B 2.9 M 2.2 B

c5a.large 4.2 AMD 7.3 M 6.3 B 3.0 M 2.6 B

Table 3.3. Performance of stress-testing our ZK protocol on dif-
ferent Amazon EC2 instances. All instances have 2 vCPUs and 1 GB
memory.

Binary field F2 Large field F261�1

Length of vectors 106 107 108 106 107 108

Process witness (s) 0.24 2.4 23.8 0.39 3.9 39.2
Prove inner product (ms) 36.6 69.3 423.5 42.8 100.3 703.8

Table 3.4. Performance of our ZK protocol for inner product. We report
separately the cost to process the witness and the cost to prove the inner product
after the witness was processed.

summarize the experimental results in Table 3.3.4 For all protocol executions, we use

only a single thread. The Boolean circuits (resp., arithmetic circuits) are tested under the

network bandwidth of 20 Mbps (resp., 500 Mbps). Although the computational power and

memory are limited, our protocol still achieves high throughput. The speed for computing

Boolean circuits ranges from 5.3 million to 7.3 million gates per second and the speed for

arithmetic circuits ranges from 2.2 million to 3 million gates per second. Taking the

low cost into consideration, our ZK protocol is very a↵ordable. The lowest cost to prove

Boolean circuits is about 10 billion gates per cent; and roughly 2.2–4.1 billion gates per

cent for arithmetic circuits.

4Price is based on AWS defined-duration spot instances. There are cheaper t3.medium, t3a.medium
burstable instances, but the cost is higher than the instances in Table 3.3 unless the average CPU
usage is kept below 20%.

94

Protocol Execution Time Communication

Spartan [89] � 5000 s  100 KB
Virgo [108] 357 s 221 KB

Wolverine [95] 1627 s 34 GB
Mac0n0Cheese [8] 2684 s 25.8 GB

QuickSilver (Circuit) 316 s 8.6 GB
QuickSilver (Polynomial) 10 s 25.2 MB

Table 3.5. Performance of proving matrix multiplication using various

protocols. All numbers are based on proving knowledge of two 1024 ⇥ 1024
matrices over a 61-bit field, whose product is a public matrix. The execution
time for Wolverine and Mac0n0Cheese is based on local-host, while our protocols
and Virgo are based on a 500 Mbps network. Spartan consumed 600 GB memory
before crash, and thus we extrapolate the execution time based on a smaller
proving instance. Our protocols use just 1 GB of memory, but Virgo needs 148
GB of memory.

3.4.2. Benchmarking Our Polynomial-based ZK Proof

While our ZK protocol for polynomial satisfiability is generic, here we focus on some

useful applications that use low-degree polynomials to demonstrate how powerful it can

be. We leave exploration of compiler-based optimization and more complicated examples

as the future work. In all of the experiments below, we use the network bandwidth of 20

Mbps for a binary field and 500 Mbps for a 61-bit field, and always use a single thread.

Inner product. In this benchmark, the witness consists of two vectors of n field elements

(namely x and y), and the prover wants to prove that the inner product of two vectors

hx,yi =
P

i2[n] xi · yi equals to some public value. We report the cost of processing the

witness and the cost of proving the inner product separately in Table 3.4. We found that

processing the witness could be free in a larger computation. This is because when using

inner product as a sub-circuit in a larger circuit, the input witness of this subcircuit is

the output of some prior computation and thus need not be processed again. In this case,

95

Protocol ENS Wolverine QuickSilver
[48] [95]

Communication 53 KB 32.8 KB 4.1 KB
Execution time � 220 ms 2 ms

Table 3.6. Performance comparison of our ZK protocol Wand vs. prior

work for proving knowledge of an SIS solution. The solution is assumed
to be a ternary-vector and n = 2048, m = 1024, log q = 32.

the cost of the ZK proof for inner product is simply the second line. We can see that even

for proving inner product of two vectors of length 108, the cost is very small.

Matrix multiplication. We report the performance of our ZK protocol for proving

matrix multiplication, and compare it with prior work in Table 3.5. We observe that

our polynomial-based ZK protocol is 31⇥ faster than our own circuit-based protocol,

which is already faster than prior protocols. It also uses 340⇥ less communication than

our circuit-based protocol. Our proof size is still significantly larger than Spartan and

Virgo, but our ZK protocols (Wand) benefit in other aspects including execution time

and memory usage. We note that the prover time of GKR-style protocols like Virgo could

be further improved based on the technique in interactive proofs [92]. We did not find

any ZK proof that implements this technique, but anticipate that the prover time will be

of the same order of magnitude when incorporating this technique into Virgo.

Proving knowledge of solutions to lattice-based problems. Here we focus on

proving knowledge of a solution to a short integer solution (SIS) problem. We assume

that the prover knows a vector s 2 [�B,B]m, such that A · s = t, where both parties

know the public matrix A 2 Zn⇥m
q and vector t 2 Zn

q (here we assume that q is a prime).

Checking the matrix multiplication is easy since the matrix A is public and thus the main

96

work is to check that all coordinates in s are bounded. This can be done by proving that

⇧j2[�B,B](si � j) = 0 for all i 2 [m]. In typical SIS problems, e.g., the one studied in

the recent work [48], B is set to 1, resulting in a degree-3 polynomial. The checking

procedure of our ZK protocol is essentially free compared to the cost of obtaining the

committed input to the polynomial. We show the performance comparison in Table 3.6,

where the execution time for [48] is not available from their paper. Due to our improved

protocol for low-degree polynomials, our protocol outperforms prior work. When the

solution is restricted to a binary vector, our ZK protocol Wand is still very faster than

the state-of-the-art protocol Wolverine, which outperforms other protocol [10].

97

CHAPTER 4

VOLE-ZK with Sublinear Communication

The VOLE-based ZKPs mentioned in Chapter 3 demonstrate concrete e�ciency and

scalability. However, they still require communication linear to the circuit size. In this

section, we show how to reduce the communication cost of VOLE-ZK by generalizing

the underlying IT-PAC to a polynomial commitment and adapt the verification protocol

for it. In this chapter, we first show how to achieve sublinear communication for SIMD

circuits, then generalize it to arbitrary circuits. We also discuss the implementation and

performance evaluation.

4.1. Information-Theoretic Polynomial Authentication Codes

In this section, we present the notion of information-theoretic polynomial authen-

tication codes (IT-PACs). In our ZK protocol, IT-PACs are used as commitments on

polynomials. We also describe a useful procedure to check consistency of the evaluation

of two sets of polynomials at multiple points. Then, we present a concretely e�cient

protocol that generates a batch of IT-PACs.

4.1.1. Definition of IT-PACs

For the sake of simplicity, we define IT-PACs over a large field F. Nevertheless, one can

extend the definition of IT-PACs to a more general case in a straightforward manner,

where the values are defined over a small field F (e.g., F = F2) and authenticated over

98

a large extension field K. Specifically, the definition of IT-PACs over a large field F is

described as follows:

• Commitments with IT-PACs. A verifier V holds a uniform global key � 2 F

and another uniform key ⇤ 2 F referred to as a polynomial key. Both keys

are reused across di↵erent IT-PACs. An IT-PAC commitment on a degree-k

polynomial f(·) =
Pk

i=0 ci · X i 2 F[X] is denoted by [f(·)], where P holds a

polynomial f(·) 2 F[X] and an MAC M 2 F, while V holds keys K,�,⇤ 2 F,

such that M = K + f(⇤) ·�. As in IT-MACs, the key K is also called as a local

key. We could also consider an IT-PAC on polynomial f(·) as an IT-MAC on

value f(⇤).

• Opening. To open a commitment [f(·)], P sends (f(·),M) to V , who checks

whether M = K+ f(⇤) ·�.

If the malicious P cheats, it must either forge an MAC M0 = K + f 0(⇤) · �

on message f 0(⇤) 6= f(⇤) with probability at most 1/|F|, or find a di↵erent

polynomial f 0(·) 6= f(·) such that f 0(⇤) = f(⇤). If the second case occurs, then

f 0(·)�f(·) is a non-zero polynomial of degree at most k, and thus the probability

that it is equal to 0 at a random point ⇤ is at most k/|F|, according to the

Schwartz–Zippel lemma. Therefore, the probability that P succeeds to cheat is

at most (k + 1)/|F|.

• Linear combination. Similar to IT-MACs, IT-PACs are also additively homo-

morphic. Specifically, given the public coe�cients c0, c1, . . . , c` 2 F and IT-PACs

[f1(·)], . . . , [f`(·)], P and V can locally compute [g(·)] =
P`

i=1 ci · [fi(·)]+c0, where

g(·) =
P`

i=1 ci · fi(·) + c0, Mg =
P`

i=1 ci ·Mfi and Kg =
P`

i=1 ci · Kfi � c0 ·�.

99

Procedures BatchCheckk,m,t

Inputs. Two parties P and V hold the following inputs:

• Two sets of IT-PACs {[f1(·)], . . . , [f`(·)]} and {[g1(·)], . . . , [g`(·)]} where fi() is a
degree-k polynomial and gi() is a degree-m polynomial for i 2 [1, `].

• Let {↵1, . . . , ↵t} and {�1, . . . , �t} be two sets of public elements over F. Let H :
{0, 1}� ! F` be a random oracle.

Consistency check. P and V check fj(↵i) = gj(�i) for all i 2 [1, t], j 2 [1, `] as follows.

Linear combination phase: Before the polynomial key ⇤ is opened, P and V execute as
follows.

(1) P samples two random polynomials r(·) and s(·) of respective degrees k and m in
F[X] such that r(↵i) = s(�i) for i 2 [1, t]. Then, P and V generate the correspond-
ing IT-PACs [r(·)] and [s(·)].

(2) V samples seed {0, 1}� and sends it to P. Then, two parties compute
(�1, . . . , �`) := H(seed) 2 F`.

(3) P and V locally compute [f(·)] :=
P`

j=1 �j · [fj(·)] + [r(·)] and [g(·)] :=
P`

j=1 �j ·
[gj(·)]+ [s(·)]. Then, P sends the polynomial pair (f(·), g(·)) to V, who checks that
f(·), g(·) have the degrees k and m respectively and f(↵i) = g(�i) for all i 2 [1, t].
If the check fails, V aborts.

Check phase:

(4) P and V locally compute [µ] := [f(⇤)]� f(⇤) and [⌫] := [g(⇤)]� g(⇤). Then, two
parties run CheckZero([µ], [⌫]) to check that µ = 0 and ⌫ = 0. If the check fails,
then V aborts, else V accepts.

Figure 4.1. Procedure for checking the consistency of polynomial evaluation
for two sets of IT-PACs.

For a public polynomial f(·) 2 F[X], P and V can directly define the MAC and key

in the IT-PAC [f(·)] as 0 and �f(⇤) · � respectively without any interaction. Given

k + 1 distinct elements ↵1, . . . ,↵k+1 2 F, an IT-PAC [f(·)] also commits to the values

f(↵1), . . . , f(↵k+1), since k+1 values uniquely determine a degree-k polynomial and vice

versa.

100

4.1.2. Batch Check of Polynomial Evaluation

We present an interactive procedure to check the consistency of polynomial evaluation

of two sets of IT-PACs at a single point or multiple points. The consistency check is

done in a batch with communication independent of the number of IT-PACs. Specifically,

given two sets of public field elements {↵i}i2[1,t] and {�i}i2[1,t] and two sets of IT-PACs

{[fj(·)]}j2[1,`] and {[gj(·)]}j2[1,`] as input, this procedure allows to check that fj(↵i) =

gj(�i) for each i 2 [1, t], j 2 [1, `], where fj(·) is a degree-k polynomial and gj(·) is

a degree-m polynomial for j 2 [1, `]. We require that the procedure does not reveal

any secret information on these polynomials except that the equalities hold. This is

realized by first generating two random IT-PAC commitments [r(·)] and [s(·)] such that

r(↵i) = s(�i) for i 2 [1, t] if P is honest, and then opening [f(·)] =
P`

i=1 �i · [fi(·)] + [r(·)]

and [g(·)] =
P`

i=1 �i · [gi(·)] + [s(·)] where �1, . . . ,�` are public coe�cients sampled at

random by V . To achieve better communication e�ciency, we can use a random oracle to

compress these public coe�cients into a random seed. We denote the consistency-check

procedure by BatchCheck, which is described in Figure 4.1. We let P send two polynomials

f(·) and g(·) to V , meaning that P sends the coe�cients of the two polynomials to V .

The communication complexity of this procedure is O(k +m).

In the following, we give an important lemma, which will be used in the security proof

of our ZK protocol.

Lemma 4. Let P be a malicious party who interacts with an honest verifier V during

the execution of BatchCheck. Let H be a random oracle. If there exists some i 2 [1, t], j 2

101

[1, `] such that fj(↵i) 6= gj(�i), then the probability that V accepts at the end of BatchCheck

is at most max{k,m}+2
|F| + negl(�).

Proof. Let f(·) and g(·) be the polynomials committed in IT-PACs [f(·)] and [g(·)]

respectively, where [f(·)] =
P

j2[1,`] �j · [fj(·)]+[r(·)] and [g(·)] =
P

j2[1,`] �j · [gj(·)]+[s(·)].

This means that f(·) =
P

j2[1,`] �j ·fj(·)+ r(·) 2 F[X] and g(·) =
P

j2[1,`] �j · gj(·)+ s(·) 2

F[X]. Let f 0(·) and g0(·) be two polynomials opened by the malicious P in the step 3 of

the BatchCheck procedure.

Let E1 be the event that f 0(⇤) 6= f(⇤) or g0(⇤) 6= g(⇤) but V accepts in the CheckZero

procedure. According to the security of CheckZero, we have that Pr[E1]  1
|F| + negl(�).

Let E2 be the event that f 0(⇤) = f(⇤) and g0(⇤) = g(⇤) but f 0(·) 6= f(·) or g0(·) 6= g(·).

Note that the polynomials f 0(·) and g0(·) are opened by malicious P before the polynomial

key ⇤ known by P . At least one of two polynomials f 0(·) � f(·) and g0(·) � g(·) is non-

zero, and the degrees of f 0(·)� f(·) and g0(·)� g(·) are bounded by k and m respectively.

Therefore, for a uniform ⇤ 2 F, the probability that f 0(⇤)�f(⇤) = 0 and g0(⇤)�g(⇤) = 0

is at most max{k,m}
|F| . In other words, Pr[E2]  max{k,m}

|F| .

Let E3 be the event that there exists some i 2 [1, t], j 2 [1, `] such that fj(↵i) 6= gj(�i)

but V accepts at the end of BatchCheck. We assume that both E1 and E2 do not happen.

Thus, we have that f 0(·) =
P

j2[1,`] �j · fj(·)+ r(·) or g0(·) = g(·) =
P

j2[1,`] �j · gj(·)+ s(·).

Since V accepts, we obtain that f 0(↵i) = g0(↵i) for i 2 [1, t]. Therefore,
P

j2[1,`] �j ·

(fj(↵i)� gj(↵i))+ (r(↵i)� s(↵i)) = 0 for each i 2 [1, t]. If the malicious P does not make

a query seed to random oracle H before receiving seed, then �1, . . . ,�` are determined

after the polynomials {fj(·), gj(·)}`j=1, r(·) and s(·) have already been defined, and thus

are independent of these polynomials. In this case we have that Pr[E3 | ¬(E1 [E2)]  1
|F| .

102

The probability that P queried seed to random oracle H before V sends seed to P is at

most q
2� , where q is the number of queries to random oracle H. Together, we obtain that

Pr[E3 | ¬(E1 [E2)]  1
|F| +

q
2� = 1

|F| + negl(�).

Overall, we have the following:

Pr[E3] = Pr[E3 |E1 [E2] · Pr[E1 [E2] + Pr[E3 | ¬(E1 [E2)] · Pr[¬(E1 [E2)]

 Pr[E1 [E2] + Pr[E3 | ¬(E1 [E2)]

 Pr[E1] + Pr[E2] + Pr[E3 | ¬(E1 [E2)]

 max{k,m}+ 2

|F| + negl(�),

which completes the proof. ⇤

We can easily extend the BatchCheck procedure shown in Figure 4.1 to check the

correctness of opening ` degree-k polynomials to the values of these polynomials at t

di↵erent points. Specifically, P can send (fj(↵1), . . . , fj(↵t)) for each j 2 [1, `] to V .

Both parties locally compute an IT-PAC [gj(·)] for each j 2 [1, `], where gj(·) is a public

degree-(t�1) polynomial reconstructed from the values fj(↵1), . . . , fj(↵t) using Lagrange

interpolation. Then, P and V run the BatchCheckk,(t�1),t procedure to check fj(↵i) =

gj(↵i) for all i 2 [1, t], j 2 [1, `]. In the special case of t = k+1, the above procedure is to

check the correctness of opening the whole polynomials. In this case, it is unnecessary to

mask the linear combination of input IT-PACs [f1(·)], . . . , [f`(·)] with a random IT-PAC.

The extended procedure as described above may be useful in other ZK protocols and

applications.

103

Protocol ⇧k
IT-PAC

Let AHE = (Setup,KeyGen,Enc,Dec) be an additively homomorphic encryption scheme.
Suppose that two parties P and V have already agreed a set of public parameters par =
Setup(1�). Let PRG be a PRG. Let ` be the number of IT-PACs to be generated in one
execution and k be the maximum degree of the polynomials committed in each IT-PAC.

Initialize. Two parties P and V send (init) to FVOLE, which returns a uniform � 2 F to V.
Create and encrypt polynomial keys.

(1) V samples seed {0, 1}�, and then V and P call the (Commit) command of FCom

with input seed, which returns a handle ⌧1 to P.
(2) V samples ⇤ F and runs h⇤ii Enc(sk,⇤i; ri) for all i 2 [1, k] where

(r0, r1, . . . , rk) = PRG(seed) and sk KeyGen(par; r0). Then, V sends the AHE
ciphertexts h⇤1i, . . . , h⇤ki to P.

Pre-generation of IT-PACs.

(3) P and V sends (extend, `) to FVOLE, which returns u,w 2 F` to P and v 2 F` to
V, such that w = v + u ·�.

(4) For each j 2 [1, `], on input the j-th polynomial fj(·) =
Pk

i=0 fj,i · Xi 2 F[X], P
computes a ciphertext hbji with uj+bj = fj(⇤) via hbji =

Pk
i=1 fj,i ·h⇤ii+fj,0�uj .

(5) P and V call the (Commit) command of FCom with inputs hb1i, . . . , hb`i, which
returns a handle ⌧2 to V.

Generation of IT-PACs and opening polynomial keys.

(6) V and P call the (Open) command of FCom on input ⌧1, which returns (seed, ⌧1)
to P. In parallel, V sends ⇤ to P. Then, P computes (r0, r1, . . . , rk) := PRG(seed)
and runs sk KeyGen(par; r0). P checks that h⇤ii = Enc(sk,⇤i; ri) for all i 2 [1, k],
and aborts if the check fails. For each j 2 [1, `], P sets Mj := wj .

(7) P and V call the (Open) command of FCom on input ⌧2, which returns
(hb1i, . . . , hb`i, ⌧2) to V. Then, for each j 2 [1, `], V runs bj Dec(sk, hbji), and
then computes Kj := vj � bj ·� 2 F.

(8) For each j 2 [1, `], two parties obtain an IT-PAC [fj(·)], where P holds (fj(·),Mj)
and V holds Kj .

Figure 4.2. Protocol for generating IT-PACs without ZK proofs in the
(FVOLE,FCom)-hybrid model.

4.1.3. E�cient Protocol to Generate IT-PACs

Below, we present a concretely e�cient protocol of generating IT-PACs. This protocol

works in the (FVOLE, FCom)-hybrid model, and adopts AHE to generate the additive shares

104

of the polynomial-evaluation values at the secret point ⇤. Using the additive shares, a

VOLE correlation can be locally transformed to a batch of IT-PACs.

For the AHE ciphertexts sent by a verifier V , one can adopt a ZK proof to prove the

validity of these ciphertexts. However, the usage of ZK proofs introduces significantly

communication overhead (particularly, the size of ciphertexts need to be significantly

larger to cover the so-called slack brought about by the ZK proofs). To reduce the com-

munication overhead, we replace the ZK proof with the “commit-then-open” approach.

In particular, the correctness of the ciphertexts produced by a verifier V is guaranteed by

committing the randomness to generate the ciphertexts and then opening the randomness

at some later point. The randomness can be generated with a random seed and a pseudo-

random generator (PRG) to reduce the communication cost. When the ciphertexts sent

by V may be incorrect before the randomness is opened, we let the party P first com-

mit to its homomorphically computed ciphertexts and then open these ciphertexts after

checking the correctness of the ciphertexts received from V . This allows us to remove the

possible leakage of secret polynomials, which is incurred by homomorphically performing

polynomial evaluation upon incorrect ciphertexts. The “commit-then-open” approach is

su�cient, as the polynomial key ⇤ will be always opened.

Based on the “commit-then-open” approach, the concretely e�cient protocol for gen-

erating IT-PACs is described in Figure 4.2. While the initialization phase to generate

a global key � needs to be run only once, other phases can be executed multiple times

where every execution creates a fresh polynomial key ⇤ and a batch of IT-PACs under

the key ⇤. For generating ` IT-PACs on degree-k polynomials, the total communication

complexity is O(k + `), where the communication complexity for generating ` random

105

VOLE correlations is either O(
p
` log `) or O(log2 `) depending on the choices of LPN

assumptions.

4.2. Zero-Knowledge Proofs with Sublinear Communication

4.2.1. Sublinear ZK Proof for SIMD Circuits

In Figure 4.3 and 4.4, we describe the details of our ZK protocol ⇧SIMD
ZK on proving satis-

fiability of SIMD circuits in the FVOLE-hybrid model. This protocol also invokes ⇧(2B�2)
PAC

as a sub-protocol, and thus needs to call a commitment functionality FCom as well. When

executing sub-protocol ⇧(2B�2)
PAC to generate IT-PACs, the generation of the local keys held

by the verifier V are delayed to the time point after the polynomial key ⇤ is opened. Thus,

the computation of the local keys on the output IT-PACs of addition gates also has to

be postponed. While prover P can execute the check phase of the underlying BatchCheck

procedure before ⇤ is opened, the values from P could be checked by verifier V after ⇤

is opened and the local keys on the IT-PACs are computed.

When FVOLE is instantiated by the recent LPN-based VOLE protocol with sublinear

communication, protocol ⇧SIMD
ZK has the communication complexity of O(B + |C|) for

proving (B, |C|)-SIMD circuits, where note that addition gates are free for our protocol.

If the underlying DVZK proof has at most two rounds (e.g., DVZK is instantiated by [46,

100, 44]), the protocol ⇧SIMD
ZK has 6 rounds in the FVOLE-hybrid model. Note that all

invocations of sub-protocol ⇧(2B�2)
PAC can be made in parallel and all CheckZero executions

can be combined into one execution. Since the LPN-based VOLE protocol realizing FVOLE

has constant rounds, our ZK protocol has also constant rounds.

106

Protocol ⇧SIMD
ZK (Part 1)

Inputs. The prover P and verifier V hold a generic circuit C over a large field F, where C
contains n = |C| multiplication gates and m input gates. P holds B witnesses w1, . . . ,wB 2
Fm such that C(wi) = 0 for all i 2 [1, B]. Let ↵1, . . . , ↵B 2 F be B distinct elements that are
fixed for the whole protocol execution. Let �i(X) =

Q
j2[1,B],j 6=i(X�↵j)/(↵i�↵j) 2 F[X] be

a degree-(B�1) polynomial for each i 2 [1, B], which is referred to as a Lagrange polynomial.

Initialization. P and V send (init) to FVOLE, which returns a uniform � 2 F to V.
Circuit evaluation. For B executions of circuit C, P and V pack B same-type gates into
a group in a straightforward way. In particular, for an index i, the parties pack the i-th
input/output/multiplication/addition gates from all B executions of circuit C into a group.

(1) P and V run sub-protocol ⇧(2B�2)
PAC shown in Figure 4.2 to create a uniform key

⇤ 2 F.
(2) The parties execute the following steps to process the inputs:

(a) P and V send (extend, mB) to FVOLE, which returns IT-MACs
{[ai,j]}i2[1,B],j2[1,m] to the parties.

(b) For i 2 [1, B], j 2 [1, m] (i.e., corresponding to the j-th circuit-input wire of
the i-th execution of circuit C), P sends bi,j := wi,j � ai,j to V, and then both
parties locally compute [wi,j] := [ai,j] + bi,j .

(c) For j 2 [1, m], for the j-th group of B input gates with input vector
(w1,j , . . . , wB,j), P defines a degree-(B�1) polynomial uj(·) such that uj(↵i) =
wi,j for i 2 [1, B].

(d) P and V run sub-protocol ⇧(2B�2)
PAC to generate IT-PACs [u1(·)], . . . , [um(·)].

(3) Following a predetermined topological order for circuit C, P and V execute as
follows:
(a) For each group of addition gates with input IT-PACs [f(·)] and [g(·)], both

parties locally compute an output IT-PAC [h(·)] := [f(·)] + [g(·)].
(b) For the j-th group of multiplication gates with input IT-PACs [fj(·)] and [gj(·)]

where j 2 [1, n], P computes a degree-(2B�2) polynomial ehj(·) := fj(·)·gj(·) 2
F[X] and a degree-(B � 1) polynomial hj(·) such that hj(↵i) = ehj(↵i) for all

i 2 [1, B]. Then, P and V run sub-protocol ⇧(2B�2)
PAC to generate two IT-PACs

[hj(·)] and [ehj(·)].

Figure 4.3. Sublinear zero-knowledge protocol for SIMD circuits in the
(FVOLE,FCom)-hybrid model (Part 1).

4.2.1.1. Proof of Security. For the security of protocol ⇧SIMD
ZK , we prove the following

theorem. In this theorem, we assume that the soundness error ✏dvzk of the underlying ZK

proof DVZK is at most 3/|F|+ negl(�), e.g., it is instantiated by QuickSilver [100].

107

Protocol ⇧SIMD
ZK (Part 2)

Correctness check of multiplication gates. P convinces V that the multiplication gates
are evaluated correctly.

(4) P and V execute the linear-combination phase of the BatchCheck(B�1),(2B�2),B

procedure on inputs {[h1(·)], . . . , [hn(·)]} and {[eh1(·)], . . . , [ehn(·)]} to check that
hj(↵i) = ehj(↵i) for all i 2 [1, B], j 2 [1, n].

(5) P and V run sub-protocol ⇧(2B�2)
PAC to open ⇤ to P, and then V can compute the

local keys on all IT-PACs.
(6) Then, P and V execute the check phase of BatchCheck(B�1),(2B�2),B to complete

the above check. If the check fails, V aborts.
(7) P and V run a VOLE-based zero-knowledge proof

DVZK
n
([fj(⇤)], [gj(⇤)], [ehj(⇤)])j2[1,n] | 8j 2 [1, n], ehj(⇤) = fj(⇤) · gj(⇤)

o
.

Consistency check of input gates and output gates. P convinces the verifier V that
[uj(·)] is consistent to ([w1,j], . . . , [wB,j]) for j 2 [1, m], and the values on all output gates
are 0.

(8) For each j 2 [1, m], P and V locally compute an IT-MAC [zj] :=
P

i2[1,B] �i(⇤) ·
[wi,j], and then run CheckZero([uj(⇤)] � [zj]) to check uj(⇤) = zj . If the check
fails, V aborts.

(9) Let [v(·)] be the IT-PAC associated with the output values of B executions of
circuit C. The parties P and V run CheckZero([v(⇤)]) to check v(⇤) = 0, and V
aborts if the check fails.

(10) If V will abort in some step, then V outputs false and aborts, else it outputs true.

Figure 4.4. Sublinear zero-knowledge protocol for SIMD circuits in the
(FVOLE,FCom)-hybrid model (Part 2).

Theorem 8. If the AHE scheme satisfies the CPA security, degree-restriction and

circuit privacy along with PRG is a pseudorandom generator, protocol ⇧SIMD
ZK shown in Fig-

ure 4.3 and 4.4 UC-realizes functionality FB
ZK on (B, |C|)-SIMD circuits in the (FVOLE,FCom)-

hybrid model and the random oracle model with soundness error at most 2B+3
|F| + negl(�).

In this section, we give the formal proof of Theorem 8. First of all, we extend Lemma 4

from the information-theoretic setting to the computational setting. While Lemma 4 as-

sumes that the polynomial key ⇤ is information-theoretically secure, we prove that the

108

result claimed in the lemma still holds, even if the malicious P is given the AHE cipher-

texts Enc(⇤), . . . ,Enc(⇤h) with h = max{k,m} and the input IT-PACs of the BatchCheck

procedure are generated by executing the protocol ⇧h
IT-PAC. In particular, we have the

following lemma:

Lemma 5. Let the IT-PACs used in the BatchCheck procedure be generated by two

parties P and V by running protocol ⇧h
IT-PAC shown in Figure 4.2 where h = max{k,m}.

Let H be a random oracle and PRG be a pseudorandom generator. If the AHE scheme

is CPA secure and satisfies the degree-restriction property, then the probability that there

exists some i 2 [1, t], j 2 [1, `] such that fj(↵i) 6= gj(�i) but an honest verifier V accepts

at the end of BatchCheck is bounded by max{k,m}+2
|F| + negl(�).

Proof. We consider that P is corrupted by a PPT malicious adversary A and V is

honest. In this proof, we will reuse the notation used in the proof of Lemma 4. For

example, the events E1, E2, E3 and the polynomials f 0(·), g0(·) opened by P during the

BatchCheck procedure. In the protocol ⇧h
IT-PAC, if A sends a ciphertext evaluated on

a polynomial of degree h0 > h to the honest verifier V , then it is easy to construct an

algorithm who breaks the degree-restriction property of the AHE scheme. 1 In the following

proof, we always assume that the degree of the polynomials committed in the IT-PACs

generated by protocol ⇧h
IT-PAC is bounded by h = max{k,m}.

We consider a hybrid-check procedure denoted by HybridCheck, which is the same as

BatchCheck except that the verification of CheckZero([µ], [⌫]) is modified as follows:

1If the stronger notion of linear targeted malleability [16] is used, it is unnecessary to construct such an
algorithm, and the simulation-based security excludes the computation on the ciphertexts of powers of ⇤
other than a�ne linear maps.

109

• Let Mµ and M⌫ be the MACs involved in the IT-MACs [µ] and [⌫] respectively,

where [µ] = [f(⇤)]� f 0(⇤) and [⌫] = [g(⇤)]� g0(⇤). Use Mµ and M⌫ to check the

correctness of the hash value sent by P .

• Check that z1 = f 0(⇤) and z2 = g0(⇤), where z1, z2 are the values committed in

the IT-MACs [f(⇤)] and [g(⇤)].

It is easy to see that the output of HybridCheck is identical to that of CheckZero, unless

event E1 occurs with probability at most 1
|F| + negl(�). Note that global key � 2 F is

uniformly random in the FVOLE-hybrid model. Below, we assume that E1 does not occur.

Based on the HybridCheck procedure, we construct the following hybrid protocol that

is executed between adversary A and a PPT simulator Shybrid:

(1) On behalf of an honest verifier, Shybrid simulates the phase to create and encrypt

a uniform polynomial key ⇤ following the protocol description, except that the

secret key sk and randomness used in the AHE ciphertexts are now sampled at

random rather than being generated from a random seed. The resulting cipher-

texts h⇤i, . . . , h⇤hi are sent to A.

(2) Shybrid emulates functionality FVOLE by recording the vectors u,w 2 F2`+2 sent

by A to FVOLE, where there are 2` + 2 IT-PACs that need to be generated.

Then, Shybrid sets Mi = wi for i 2 [1, 2` + 2] as the MACs in the IT-PACs

{([fj(·)], [gj(·)])}j2[1,`] and (r[·], s[·]).

(3) Shybrid emulates functionality FCom by receiving the ciphertexts hb1i, . . . , hb2`+2i

sent by A to FCom and sending a handle ⌧2 to A. Then, Shybrid obtains bi by

running Dec(sk, hbii) for i 2 [1, 2` + 2]. Simulator Shybrid computes yi := bi + ui

110

for all i 2 [1, 2` + 2] as the values {fj(⇤), gj(⇤)}j2[1,`], r(⇤) and s(⇤), where the

underlying polynomials are unknown for Shybrid.

(4) Using (yi,Mi) for all i 2 [1, 2` + 2], Shybrid runs the linear-combination phase of

the HybridCheck procedure with A, and then obtains the values Mµ,M⌫ , z1, z2 2 F

and the opened polynomials f 0(·), g0(·). Then, Shybrid checks that f 0(↵i) = g0(�i)

for i 2 [1, t] and aborts if the check fails.

(5) Shybrid sends ⇤ to A, and emulates FCom by receiving a handle ⌧2 from A.

(6) Using the key ⇤, (Mµ,M⌫ , z1, z2) and (f 0(·), g0(·)), Shybrid runs the check phase of

the HybridCheck procedure with A.

For the case of a malicious prover P , we only need to consider the soundness. In this case,

it is unnecessary to commit and open a random seed that is used to generate the secret key

and randomness, as the verifier is always honest. Together with that the output of PRG is

pseudorandom, the above hybrid protocol is computationally indistinguishable from the

protocol ⇧h
IT-PAC combining with BatchCheck, when only considering the soundness.

In the following, we assume that event E2 happens in the above hybrid protocol,

meaning that z1 = f 0(⇤) and z2 = g0(⇤) but f 0(·) 6= f(·) or g0(·) 6= g(·) always hold,

where z1 and z2 are computed by Shybrid as described above. Specifically, for a PPT

adversary A who makes E2 happen, we construct a PPT algorithm B who breaks the

CPA security of the AHE scheme. Algorithm B interacts with A as follows:

(1) B samples two random values ⇤,⇤⇤ F, and then sends h message pairs

(⇤i, (⇤⇤)i) for i 2 [1, h] to the CPA game. Then, B obtains h challenge ci-

phertexts c1, . . . , ch from the CPA game, where ci is the encryption of either ⇤i

or (⇤⇤)i for i 2 [1, h]. Algorithm B sends c1, . . . , ch to A.

111

(2) B emulates functionality FVOLE by recording the vectors u,w sent by A to FVOLE,

and then sets Mi = wi for i 2 [1, 2`+ 2].

(3) B emulates FCom by receiving the ciphertexts hb1i, . . . , hb2`+2i sent by A to FCom

and sending a handle ⌧2 to A.

(4) Using {Mi}i2[1,2`+2], B runs the linear-combination phase of the HybridCheck pro-

cedure with A, and then obtains the values Mµ,M⌫ 2 F and the opened polyno-

mials f 0(·), g0(·). Then, B checks that f 0(↵i) = g0(�i) for i 2 [1, t] and aborts if

the check fails.

(5) Using ⇤, (Mµ,M⌫) and (f 0(·), g0(·)), B runs the check phase of the HybridCheck

procedure with A. In particular, B always uses ⇤ to check that z1 = f 0(⇤) and

z2 = g0(⇤), ignoring which key (⇤ or ⇤⇤) is used to compute {ci}i2[1,h]. Actually,

this check is implicit and assumed to be passed as E2 occurs. Additionally, B

uses the MACs Mµ and M⌫ to check the correctness of the hash value sent by A

in the CheckZero procedure.

In the case that event E2 occurs, B behaves just like as Shybrid, except for the encryption

of a polynomial key. If the challenge ciphertexts c1, . . . , ch are the encryption of the

powers of ⇤, then the protocol execution simulated by B is the same as the above hybrid

protocol. Otherwise, the key ⇤ used in the HybridCheck procedure is independent of

the adversary’s view, and thus is information-theoretically secure. From the proof of

Lemma 4, we have that the event E2 occurs with probability at most max{k,m}
|F| in this

case. Therefore, the successful probability of adversary A in the above hybrid protocol

is bounded by max{k,m}
|F| + ✏cpa, where ✏cpa is the advantage of a PPT adversary to break

the CPA security of the AHE scheme. Overall, the probability, that event E2 occurs

112

in the BatchCheck procedure for the IT-PACs generated by protocol ⇧h
IT-PAC, is at most

max{k,m}
|F| + negl(�).

Given the probabilities that the events E1 and E2 happen, we can easily obtain the

probability that event E3 occurs following the proof of Lemma 4. In particular, we have

that Pr[E3]  max{k,m}+2
|F| + negl(�), which completes the proof. ⇤

Theorem 9 (Theorem 8, restated). If the AHE scheme satisfies the CPA security,

degree-restriction and circuit privacy along with PRG is a pseudorandom generator, pro-

tocol ⇧SIMD
ZK shown in Figure 4.3 and 4.4 UC-realizes functionality FB

ZK on (B, |C|)-SIMD

circuits in the (FVOLE,FCom)-hybrid model and the random oracle model with soundness

error at most 2B+3
|F| + negl(�).

Proof. We first consider the case of a malicious prover (i.e., soundness) and then

consider the case of a malicious verifier (i.e., zero knowledge). In each case, we construct

a PPT simulator SZK given access to functionality FB
ZK, and running a PPT adversaryA as

a subroutine while emulating FVOLE and FCom for A. For each case, we show that no PPT

environment Z can distinguish the real-world execution from the ideal-world execution.

We always implicitly assume that SZK passes all communication between adversary A

and environment Z. Let SDVZK be a PPT simulator for the underlying VOLE-based ZK

proof DVZK.

Malicious prover. Firstly, we construct a PPT simulator SPAC to simulate the adver-

sary’s view in the execution of sub-protocol ⇧(2B�2)
IT-PAC . Specifically, SPAC interacts with A

as follows:

113

(1) SPAC samples a random seed 2 {0, 1}�, and then emulates the (Commit) command

of FCom by sending a handle ⌧1 to A.

(2) Following the protocol specification, SPAC samples ⇤ F, and simulates the

encryption of polynomial key ⇤ honestly where a secret key sk is derived from

seed. Then, SPAC sends the ciphertexts h⇤i, . . . , h⇤(2B�2)i to A.

(3) SPAC emulates FVOLE by sampling uniform � 2 F and recording the vectors

u,w 2 F` sent by A to FVOLE, where ` = 2n+m+2 when applying sub-protocol

⇧(2B�2)
IT-PAC into protocol ⇧SIMD

ZK . Then, SPAC computes v := w � u ·�.

(4) By emulating the (Commit) command of FCom, SPAC receives the ciphertexts

hb1i, . . . , hb`i from A, and sends a handle ⌧2 to A. For each j 2 [1, `], SPAC com-

putes bj by decrypting the ciphertext hbji with secret key sk, and then computes

Kj := vj � bj ·� following the protocol description.

(5) SPAC emulates the (Open) command of functionality FCom by sending (seed, ⌧1)

to A, and also sends ⇤ to A. In addition, SPAC emulates the (Open) command

of FCom by receiving ⌧2 from adversary A.

By invoking SPAC and SDVZK, the simulator SZK simulates the view of adversary A for the

protocol execution of ⇧SIMD
ZK as follows:

(1) SZK emulates FVOLE by invoking SPAC to generate a uniform global key � 2 F.

(2) SZK invokes SPAC to generate a uniform polynomial key ⇤ 2 F.

(3) SZK emulates functionality FVOLE by recording the values and MACs on {[ai,j]}i2[1,B],j2[1,m]

received from A, and then computes the corresponding local keys in the natural

way.

114

(4) After receiving bi,j 2 F for i 2 [1, B], j 2 [1,m] from A, SZK computes wi,j :=

ai,j+bi,j 2 F for each i 2 [1, B], j 2 [1,m], and then defineswi = (wi,1, . . . , wi,m) 2

Fm as a witness for each i 2 [1,m].

(5) Simulator SZK invokes SPAC to simulate the execution of sub-protocol ⇧(2B�2)
IT-PAC for

generating the IT-PACs {[uj(·)]}j2[1,m], {([hj(·)], [ehj(·)])}j2[1,n] and ([r(·)], [s(·)]).

Following the topological order, SZK computes the local key on the output wire

of every addition gate. Now, SZK holds the local keys of the IT-PAC on every

wire and the local keys of the IT-MAC on every circuit-input wire.

(6) Following the protocol specification, the simulator SZK executes the linear-combination

phase of the BatchCheck(B�1),(2B�2),B procedure with A. Then, SZK invokes SPAC

to open the key ⇤ to A. Next, SZK uses the � and local keys to execute the

check phase of BatchCheck(B�1),(2B�2),B with A.

(7) SZK invokes SDVZK to perform the verification of the VOLE-based ZK proof DVZK

using the global key � and local keys.

(8) Following the protocol description, SZK executes the CheckZero procedure with

A for the consistency check of input gates and output gates.

(9) If SZK who acts as an honest verifier will abort in some check step, SZK sends

wi = ? for i 2 [1, B] along with a circuit C to FB
ZK and then aborts. Otherwise,

SZK sends the extracted witnesses (w1, . . . ,wB) and C to FB
ZK.

It is easy to see that the simulation of SZK is perfect, where recall that the DVZK simula-

tion of SDVZK invoked by SZK is perfect. Whenever the honest verifier outputs false in the

real-world execution, the verifier also outputs false in the ideal-world execution, as SZK

sends ? to FB
ZK in this case. Therefore, it only remains to bound the probability that the

115

verifier in the real-world execution outputs true, but there exists some i 2 [1, B] such that

C(wi) 6= 0 where wi is extracted by SZK. Below, we show if C(wi) 6= 0 for some i 2 [1, B],

then the probability that the verifier outputs true in the real protocol execution is at most

2B+3
|F| + negl(�).

By induction, we prove that all addition and multiplication gates in all B executions of

circuit C are evaluated correctly. It is trivial that all addition gates in the (B, |C|)-SIMD

circuit are computed correctly from the additively homomorphic property of IT-PACs.

Thus, we focus on analyzing the correctness of computing multiplication gates. From the

soundness of the DVZK proof, we obtain that ehj(⇤) = fj(⇤) · gj(⇤) for all j 2 [1, n],

except with probability at most ✏dvzk = 3
|F| + negl(�). Thus, we can replace the IT-

PAC [ehj(·)] with [fj(·) · gj(·)] for each j 2 [1, n]. From Lemma 5 for the soundness

of BatchCheck(B�1),(2B�2),B, we have that hj(↵i) = fj(↵i) · gj(↵i) for all i 2 [1, B], j 2

[1, n] hold for the IT-PACs {([hj(·)], [fj(·) · gj(·)])}j2[1,n], except with probability at most

2B
|F| + negl(�). Together, for each j 2 [1, n], we have that the j-th multiplication gate

in all B executions of circuit C is evaluated correctly, except with probability at most

2B+3
|F| + negl(�).

In the following, we prove that the IT-PACs on the input gates and output gates

in the (B, |C|)-SIMD circuit are computed in the way consistent to the witnesses and

0 respectively. Specifically, for each j 2 [1,m], we define a polynomial u⇤
j(·) such that

u⇤
j(↵i) = wi,j for all i 2 [1, B], where wi,j = ai,j + bi,j for i 2 [1, B], j 2 [1,m]. From

the definition of [zj] =
P

i2[1,B] �i(⇤) · [wi,j], we have that [zj] = [u⇤
j(⇤)]. The probability

that there exists some j 2 [1,m] such that uj(⇤) 6= u⇤
j(⇤) but the verifier accepts in the

CheckZero([uj(⇤)]� [u⇤
j(⇤)]) procedure is at most 1

|F| + negl(�), where [uj(·)] is generated

116

by running sub-protocol ⇧(2B�2)
IT-PAC . Let E4 be the event that there exists some j 2 [1,m]

such that uj(⇤) = u⇤
j(⇤) but uj(·) 6= u⇤

j(·). According to the proof of Lemma 5, we know

that Pr[E4]  2B�2
|F| + negl(�). Therefore, the witnesses are consistent to the IT-PACs on

the input gates, except with probability at most 2B�1
|F| +negl(�). Since the verifier accepts

in the CheckZero([v(⇤)]) procedure, we have that v(⇤) = 0 except with probability at

most 1
|F| + negl(�), where [v(·)] be the IT-PAC committing to the values on the output

gates. Let E5 be the event that v(⇤) = 0 but v(·) 6= 0. Again, according to the proof of

Lemma 5, we obtain that Pr[E5]  2B�2
|F| + negl(�).

Overall, we conclude that if C(wi) 6= 0 for some i 2 [1, B], then the probability that

the verifier outputs true in the real-world execution is bounded by 2B+3
|F| + negl(�), where

the repeated computation of probabilities is merged.

Malicious verifier. As such, we first construct a PPT simulator SPAC to simulate the

adversary’s view in the execution of sub-protocol ⇧(2B�2)
IT-PAC . In particular, SPAC interacts

with A as follows:

(1) SPAC emulates FVOLE by recording � 2 F and a vector v 2 F` that are sent by A

to FVOLE.

(2) SPAC emulates the (Commit) command of FCom by receiving a seed from A and

sending a handle ⌧1 to A. Then SPAC computes the secret key sk and randomness

r0, r1, . . . , r(2B�2) with seed following the protocol specification.

(3) On behalf of an honest verifier, SPAC receives the AHE ciphertexts c1, . . . , c(2B�2)

from A.

117

(4) For j 2 [1, `], SPAC samples bj F and encrypts bj as hbji using secret key sk.

Then, SPAC emulates the (Commit) command of FCom by sending a handle ⌧2 to

A.

(5) SPAC emulates the (Open) command of functionality FCom by receiving a handle

⌧1 from A. After receiving ⇤ 2 F from A, SPAC verifies the correctness of the

ciphertexts sent by A by checking ci = Enc(sk,⇤i; ri) for i 2 [1, 2B � 2]. If the

check fails, SPAC aborts. Otherwise, SPAC computes Kj := vj � bj · � for each

j 2 [1, `].

(6) SPAC emulates the (Open) command of FCom by sending the ciphertexts hb1i, . . . , hb`i

as well as ⌧2 to adversary A.

For the CheckZero procedure, the verifier checks that the hash value sent by the prover is

identical to that computed from the local keys. Therefore, the simulator can use the local

keys held by the verifier to simulate CheckZero by computing the hash value from the

local keys. If SZK receives false from functionality FB
ZK, then it simply aborts. Otherwise,

by invoking SPAC and SDVZK, SZK interacts with A as follows:

(1) SZK emulates FVOLE by invoking SPAC to receive a global key � 2 F from A, and

stores �.

(2) SZK invokes SPAC to simulate the execution about creating a polynomial key ⇤.

(3) SZK emulates FVOLE by recording the local keys on IT-MACs [ai,j] for i 2 [1, B], j 2

[1,m] that are sent by A to FVOLE.

(4) For each i 2 [1, B], j 2 [1,m], SZK samples bi,j F and sends it to A, and then

computes the local key on the IT-MAC [wi,j].

118

(5) SZK invokes SPAC to simulate the execution of ⇧(2B�2)
IT-PAC for generating the IT-PACs

{[uj(·)]}j2[1,m], {([hj(·)], [ehj(·)])}j2[1,n] and ([r(·)], [s(·)]). SZK also computes the

local key on the output wire of every addition gate. Now, SZK holds the local

keys on all IT-PACs and IT-MACs.

(6) For the linear-combination phase of BatchCheck(B�1),(2B�2),B, SZK receives a seed

from A, and then samples two random polynomials f(·) and g(·) in F[X] such

that f(↵i) = g(↵i) for all i 2 [1, B], where the degrees of f(·) and g(·) are B � 1

and 2B � 2 respectively. Then, SZK sends f(·) and g(·) to A.

(7) SZK invokes SPAC to simulate the execution of receiving the key ⇤ from A. For the

check phase of BatchCheck(B�1),(2B�2),B, SZK computes the local keys on IT-MACs

[f(⇤)] � f(⇤) and [g(⇤)] � g(⇤), and then uses them to execute the CheckZero

procedure with A, where note that f(⇤) and g(⇤) can be computed by SZK.

(8) Using � and the local keys, simulator SZK invokes SDVZK to simulate the protocol

execution of DVZK without knowing the underlying witness.

(9) Following the protocol specification, SZK computes the local keys on IT-MACs

[uj(⇤)] � [zj] for all j 2 [1,m], and then uses them to execute the CheckZero

procedure with A.

(10) SZK uses the local key on [v(·)] to run the CheckZero([v(⇤)]) procedure with A,

where the local key in IT-MAC [v(⇤)] is equal to that in IT-PAC [v(·)].

Clearly, the simulation of functionalities FVOLE and FCom is perfect. In the real execution

of sub-protocol ⇧(2B�2)
IT-PAC , the ciphertexts h⇤i, . . . , h⇤(2B�2)i sent by A are guaranteed to

be computed correctly by the opening and checking step. In the FVOLE-hybrid model, for

each j 2 [1, `], uj is uniform in F, and thus bj = f(⇤) � uj is also uniform in F. For

119

the j-th ciphertext hbji with j 2 [1, `] in the execution of sub-protocol ⇧(2B�2)
IT-PAC , while

hbji is computed as hbji =
Pk

i=1 fj,i · h⇤ii + fj,0 � uj in the real-world execution, hbji

is computed as Enc(sk, bj) for a random bj 2 F in the ideal-world execution. For each

j 2 [1, `], the message bj has the identical distribution in both worlds, and the only

di↵erence between the real-world execution and ideal-world execution is the computation

method of ciphertext hbji. The di↵erence is easy to be bounded by a reduction to the

circuit privacy of the underlying AHE scheme, and thus is negligible in �.

For the input processing, for each i 2 [1, B], j 2 [1,m], while bi,j = wi,j � ai,j 2 F

in the real-world execution, bi,j 2 F is sampled uniformly at random in the ideal-world

execution. Due to the uniformity of ai,j for i 2 [1, B], j 2 [1,m], the distribution of

{bi,j}i2[1,B],j2[1,m] is identical in both worlds. In the real protocol execution, the random

linear combination of polynomials hj(·),ehj(·) for j 2 [1, n] is masked by two random poly-

nomials r(·), s(·) with r(↵i) = s(↵i) for i 2 [1, B]. Therefore, the resulting polynomials

f(·) =
P`

j=1 �j · hj(·) + r(·) and g(·) =
P`

j=1 �j · ehj(·) + s(·) are uniform in F[X] such

that f(↵i) = g(↵i) for all i 2 [1, B]. Therefore, the polynomials f(·) and g(·) simulated

by SZK have the identical distribution as that in the real protocol execution. Since SZK

computes the local keys in the same way as that done by verifier V , the simulation of

CheckZero has the identical distribution as the CheckZero execution in the real world.

From the zero-knowledge property of DVZK, we have that the simulation of protocol

DVZK is indistinguishable from the real protocol execution.

Overall, any PPT environment Z cannot distinguish between the real-world execution

and ideal-world execution, which completes the proof. ⇤

120

Our protocol is also secure for a relaxed degree-restriction property: given ciphertexts

h⇤i, . . . , h⇤(2B�2)i, it is infeasible to compute any ciphertext of f(⇤) such that polynomial

f has a degree greater than d for some d � 2B � 2. In this case, the soundness error

stated in Theorem 8 is bounded by d+5
|F| + negl(�).

4.2.1.2. Streaming ZK proofs. For a large circuit, our ZK protocol ⇧SIMD
ZK is able to

prove it batch-by-batch, i.e., a batch of gates are proved each time, where ⇧SIMD
ZK can

process the circuit gate-by-gate. For B executions of a circuit C, the memory complexity

of ⇧SIMD
ZK is O(BM) that is independent of circuit size |C|, where M is the number of

multiplication gates in a batch for each circuit copy.

For every protocol execution of ⇧SIMD
ZK , the polynomial key ⇤ is opened, and thus

the IT-PAC commitments, which are generated after ⇤ was opened, are not binding any

more. Thus, for the next protocol execution, the verifier has to sample a fresh key ⇤0

by running the sub-protocol ⇧(2B�2)
PAC . Then, two parties P and V need to convert the

IT-PACs [v1(·)]⇤, . . . , [v`(·)]⇤ that commit to the output values in the current batch into

the IT-PACs [v1(·)]⇤0 , . . . , [v`(·)]⇤0 on the same polynomials, which are used as the input

IT-PACs for the next batch.

To realize the conversion of IT-PACs [v1(·)]⇤, . . . , [v`(·)]⇤ from the key ⇤ to a new

key ⇤0, both parties generate the IT-PACs [v1(·)]⇤0 , . . . , [v`(·)]⇤0 by running sub-protocol

⇧(2B�2)
PAC before the polynomial keys ⇤ and ⇤0 are opened, and then check the consistency of

polynomials between two sets of IT-PACs {[vi(·)]⇤}i2[1,`] and {[vi(·)]⇤0}i2[1,`]. Specifically,

the consistency check of polynomial-key conversion of IT-PACs is performed as follows:

• Linear combination phase: Before both polynomial keys ⇤ and ⇤0 are opened,

two parties P and V do the following:

121

(1) P and V generate two random IT-PACs [r(·)]⇤ and [r(·)]⇤0 under di↵erent

polynomial keys by running sub-protocol ⇧(2B�2)
PAC , where r(·) is a random

polynomial and has the same degree as vi(·) for i 2 [1, `].

(2) V samples seed {0, 1}� and sends it to P . Then, both parties compute

(�1, . . . ,�`) := H(seed) 2 F`.

(3) P and V locally compute [v(·)]⇤ :=
P`

i=1 �i · [vi(·)]⇤ + [r(·)]⇤ and [v(·)]⇤0 :=

P`
i=1 �i · [vi(·)]⇤0 + [r(·)]⇤0 . Then, P sends the polynomial v(·) =

P`
i=1 �i ·

vi(·) + r(·) to V .

• Check phase:

(4) P and V locally compute [✏] := [v(⇤)] � v(⇤) and [�] := [v(⇤0)] � v(⇤0).

Then, both parties run CheckZero([✏], [�]) to check that ✏ = 0 and � = 0. If

the check fails, V aborts.

V is able to execute the above check phase after both keys ⇤ and ⇤0 were opened in which

the local keys are obtained by V . The linear combination of v1(·), . . . , v`(·) is masked by a

random polynomial r(·), which assures the zero-knowledge property. Following the proof

of Lemma 4, the soundness error is at most 2B
|F| + negl(�), as all IT-PACs are generated

before the public coe�cients �1, . . . ,�` are determined and both polynomial keys are

opened, and a single polynomial v(·) is opened for guaranteeing consistency.

4.2.1.3. Integrating AntMan with VOLE-based ZK proofs. While the recent

VOLE-based ZK proofs [96, 46, 9, 100, 97, 6, 44] have a communication linear to

the circuit size for proving a single generic circuit, our ZK protocol ⇧SIMD
ZK shown in Fig-

ure 4.3 and 4.4 achieves the sublinear communication for proving SIMD circuits. We

122

can seamlessly integrate ⇧SIMD
ZK into a VOLE-based ZK protocol to obtain better com-

munication e�ciency for proving a single generic circuit. In particular, ⇧SIMD
ZK is used to

prove the sub-circuits that have the SIMD structure, and the VOLE-based ZK protocol

is used to prove the remaining parts of the circuit. While protocol ⇧SIMD
ZK evaluates the

circuit using IT-PACs, the VOLE-based ZK protocol adopts IT-MACs to perform the

circuit evaluation. Therefore, we need to give e�cient procedures that allow to convert

between IT-PACs and IT-MACs. Protocol ⇧SIMD
ZK shown in Figure 4.3 and 4.4 has im-

plied the conversion procedure from IT-MACs to IT-PACs. We only need to present the

conversion procedure from IT-PACs to IT-MACs, which is totally similar. Specifically,

let [v1(·)], . . . , [v`(·)] be the IT-PACs generated by protocol ⇧SIMD
ZK , and yj,i = vj(↵i) for

i 2 [1, B], j 2 [1, `] be the output values that need to be committed by IT-MACs. For

each i 2 [1, B], j 2 [1, `], P and V can generate an IT-MAC [yj,i] before the polynomial

key ⇤ is opened. In particular, for i 2 [1, B], j 2 [1, `], the parties call functionality FVOLE

to generate a random IT-MAC [rj,i], and then P sends dj,i = yj,i � rj,i to V and both

parties compute [yj,i] := [rj,i]+dj,i. After ⇤ was opened, P and V execute the verification

procedure described in Figure 4.3 and 4.4 to check the consistency between IT-PAC [vj(·)]

and IT-MACs ([yj,1], . . . , [yj,B]) for j 2 [1, `]. That is, for each j 2 [1, `], P and V locally

compute an IT-MAC [yj] :=
P

i2[1,B] �i(⇤) · [yj,i], and then run CheckZero([vj(⇤)] � [yj])

to check vj(⇤) = yj.

123

4.2.2. Sublinear ZK Proof for Generic Circuits

Below, we show how to extend the ZK protocol on SIMD circuits (as shown in Figure 4.3

and 4.4) into a ZK protocol that proves satisfiability of a single generic circuit with sublin-

ear communication. To do this, we first compile a generic circuit C into another equivalent

circuit C 0 with |C 0| = |C| + O(B), where B is the number of wire values committed by a

single IT-PAC. The new circuit C 0 needs to satisfy the following properties:

(1) For each input w, C(w) = C 0(w).

(2) The number of input gates, addition gates and multiplication gates is the multiple

of B. There are at least B output gates.

(3) Every B same-type gates are divided into a group, where the B related wire

values in a group will be committed by an IT-PAC.

This is easy to be realized by adding “dummy” wires and gates following the approach [102],

where the values on the “dummy” wires are set as 0.

Now we need to deal with the case that the input wires of B gates in a group are not

corresponding to the output wires of B gates in any group of previous layers. In this case,

the values on these input wires have not been committed by existing IT-PACs. Thus,

we let the prover and verifier generate such an IT-PAC by running sub-protocol ⇧(2B�2)
PAC .

However, for a malicious prover, the values committed by the IT-PAC may be inconsistent

with the values on the output wires of B gates from di↵erent groups in previous layers.

Therefore, we give an e�cient consistency check to detect such malicious behavior based

on the BatchCheck procedure shown in Figure 4.1. Specifically, for each input IT-PAC

[ĝ(·)], if the j-th wire value ĝ(↵j) comes from the i-th wire value f̂(↵i) committed by an

output IT-PAC [f̂(·)], we need to check f̂(↵i) = ĝ(↵j). This corresponds to the wire that

124

carries the value ĝ(↵j) = f̂(↵i) in the circuit. Following the previous work [61, 102], we

refer to a tuple ([f̂(·)], [ĝ(·)], i, j) as a wire tuple.

In detail, the sublinear ZK protocol ⇧generic
ZK for proving a single generic circuit can be

constructed by extending the protocol ⇧SIMD
ZK on SIMD circuits (as described in Figure 4.3

and 4.4) in the following way.

• Preprocess circuit. P and V preprocess the input circuit C and obtain an

equivalent SIMD-friendly circuit C 0 with the same output. Let w 2 FmB be the

input of circuit C 0 that consists of an actual witness and “dummy” zero values.

• Circuit evaluation. The input preprocessing is the same as that of protocol

⇧SIMD
ZK , except for the following di↵erences:

– w is written as (w1, . . . ,wB) where w1,j, . . . , wB,j for each j 2 [1,m] are

packed in a group and will be committed by an IT-PAC. Meanwhile, w will

also be committed bymB IT-MACs. Note that (w1,j, . . . , wB,j) for j 2 [1,m]

corresponds to B input gates in the j-th group.

– If wi,j for i 2 [1, B], j 2 [1,m] corresponds to a “dummy” zero value, the

IT-MAC [wi,j] = [0] can be generated locally by P and V . If (w1,j, . . . , wB,j)

for j 2 [1,m] corresponds to B “dummy” zero values, the IT-PAC [uj(·)]

with uj(↵i) = wi,j = 0 for i 2 [1, B] can also be generated locally by both

parties.

Following a predetermined topological order, P and V can evaluate the addition

and multiplication gates as in protocol ⇧SIMD
ZK , except for the following di↵erences:

125

– If the input wires of B gates in a group are not corresponding to the output

wires of B gates in any group of previous layers, then P computes a degree-

(B�1) polynomial ĝ(·) such that ĝ(↵i) = zi for all i 2 [1, B], where {zi}i2[1,B]

are the values on these input wires.

– Then, P and V run sub-protocol ⇧(2B�2)
PAC shown in Figure 4.2 to generate an

IT-PAC [ĝ(·)].

• Consistency check of wire tuples. Let L(i, j) be a set of all wire tuples

{([f̂h(·)], [ĝh(·)], i, j)} such that f̂h(↵i) = ĝh(↵j). For each i, j 2 [1, B], P and V

check the consistency of the wire tuples in L(i, j) as follows:

(1) Let ` be the size of L(i, j), and ([f̂1(·)], [ĝ1(·)], i, j), . . . , ([f̂`(·)], [ĝ`(·)], i, j) be

the wire tuples in L(i, j).

(2) The parties P and V execute the linear-combination phase of the BatchCheck(B�1),(B�1),1

procedure (as shown in Figure 4.1) on inputs {[f̂1(·)], . . . , [f̂`(·)]} and {[ĝ1(·)], . . . , [ĝ`(·)]}

to check that f̂h(↵i) = ĝh(↵j) for all h 2 [1, `] before the polynomial key ⇤

is opened.

(3) P and V execute the check phase of BatchCheck(B�1),(B�1),1 to complete the

above check, where V can perform the check after the key ⇤ was opened and

local keys on the IT-PACs were computed. If the check fails, V aborts.

A direct optimization for the consistency check as describe above is that V sends only

one random seed to P for all B2 executions of BatchCheck, and then both parties can

use the seed and a random oracle to generate the public coe�cients for all BatchCheck

executions. Note that all B2 executions of BatchCheck can be run in parallel. The above

consistency check can be executed in parallel with the correctness check of multiplication

126

gates. Therefore, the ZK protocol ⇧generic
ZK has the same rounds as protocol ⇧SIMD

ZK , and thus

is constant-round. The communication complexity of protocol ⇧generic
ZK is O(|C|/B + B3),

and becomes O(|C|3/4) sublinear to the circuit size if B = |C|1/4. The communication for

addition gates is only from the possible IT-PAC generation when the values on the input

wires of these gates are not committed by any existing IT-PAC, and thus depends on the

circuit structure.

The security proof of protocol ⇧generic
ZK is similar to that of protocol ⇧SIMD

ZK , where

the simulation of sub-protocol ⇧(2B�2)
PAC for generating IT-PACs {[ĝ(·)]} is the same as

that of ⇧(2B�2)
PAC for generating IT-PACs {([hj(·)], [ehj(·)])}. Furthermore, the consistency-

check procedure for wire tuples is easy to be simulated by invoking the simulator for the

BatchCheck procedure involved in the proof of Theorem 8. Therefore, for the security

proof of protocol ⇧generic
ZK , we only need to analyze the soundness error of the consistency-

check procedure on wire tuples, and the other part of the proof just follows the proof of

Theorem 8. In particular, we have the following lemma.

Lemma 6. For a malicious prover P and an honest verifier V, if there exists an

inconsistent wire tuple, V aborts in the execution of protocol ⇧generic
ZK except with probability

at most 2B
|F| + negl(�).

Based on Lemma 4 and Lemma 5, the proof of the above lemma is straightforward.

Particularly, if there exists some h 2 [1, `] such that f̂h(↵i) 6= ĝh(↵j) for some i, j 2 [1, B],

the BatchCheck procedure will abort except with probability 2B
|F| +negl(�). Combining the

proof of Theorem 8 with Lemma 6, we can obtain the following corollary.

127

Corollary 1. Protocol ⇧generic
ZK UC-realizes functionality F1

ZK on a single generic circuit

in the (FVOLE,FCom)-hybrid model with soundness error at most 4B+3
|F| + negl(�).

We are not aware of how to stream our ZK protocol ⇧generic
ZK in a gate-by-gate way.

However, if a circuit of size |C| can be divided into small chunks, each of size M (so

that each can fit into the memory), then each chunk can be processed in communication

O(M3/4), where our protocol ensures the consistency of wire values across chunks. The

total communication would be O(|C|/M1/4), a memory-communication trade-o↵.

4.3. Implementation and Benchmarking

4.3.1. Practical Optimizations

Faster polynomial interpolation and multiplication. For every multiplication gate,

we have the input polynomials f(·), g(·) 2 F[X] of degree (B�1), and need to compute the

polynomial eh(·) = f(·) · g(·) and a degree-B polynomial h(·) such that h(↵i) = eh(↵i) for

i 2 [1, B]. To maximize the performance, we represent every degree-(B�1) polynomial by

the polynomial values evaluated at all B-th roots of unity in F. This representation brings

a lot of benefits: 1) we can directly use number theoretic transformation (NTT) to switch

between the representation of polynomial values and the representation of polynomial

coe�cients; 2) the set of polynomial values representing eh(·) evaluated at all (2B � 1)-th

roots of unity contains the set of polynomial values representing h(·) evaluated at all B-th

roots of unity. In this way, the polynomial-value representation of h(·) can be directly

computed by B field multiplications. The computation of polynomial eh(·) only requires

additionally applying inverse NTT and NTT to switch between di↵erent representations

of the polynomials f(·) and g(·), followed by B field multiplications.

128

Better utilization of plaintext slots in AHE. The AHE schemes based on ring-LWE

such as [30, 29, 49] support the e�cient computation over multiple independent slots, and

allow to manipulate multiple plaintexts at once using SIMD operations. Taking advantage

of multiple plaintext slots is the key to obtain high e�ciency in the AHE schemes. In

our IT-PAC generation protocol with simplified notation, the verifier has a vector a 2 Fk

(where k = 2B � 2 when applying this protocol into our ZK protocol), and the prover

has a matrix M 2 F`⇥k and is desired to get a vector M · a 2 F`. Let S be the number

of slots (which is 8192 in our implementation). One way to accomplish this task is to

have the prover obtaining the ciphertexts on plaintext vectors âi = (ai, . . . , ai) 2 FS for

all i 2 [1, k]. However, the communication cost in this case is O(BS). To reduce the

communication, we adopt the “diagonal method” in prior work [64]. In particular, the

verifier fills S slots with copies of a and sends a rotation key to the prover. Then, the

prover uses the key to rotate the ciphertexts on vector a and obtains the encryption of a

cyclic matrix A defined by a. The rest of the computation remains the same except for

homomorphically operating on the ciphertext of matrix A.

4.3.2. Parameters and Testbed Configuration

We implemented our ZK protocol AntMan for proving SIMD circuits. We use two Amazon

EC2 c5.9xlarge instances located in the same region to act as the prover and verifier.

We use 4 threads and throttle the bandwidth to 1 Gbps unless otherwise specified. Our

protocol AntMan adopts the BGV homomorphic encryption with a single level [30] to

instantiate the AHE scheme, and uses the LPN-based VOLE protocol [96] to realize

129

216 217 218 219 220 221 222 223 224

Circuit size |C|

5.0

6.0

7.0

8.0

Th
ro

ug
hp

ut
(m

gp
s)

B = 64
B = 256

Figure 4.5. The throughput of our ZK protocol with respect to
the circuit size. The performance is measured as million MULT gates
per second (mgps), and is shown for proving (B, |C|)-SIMD circuits where
B 2 {64, 256} and |C| 2 {216, . . . , 224}.

functionality FVOLE. In our ZK protocol, addition gates are free and the performance is

dominated by evaluating and checking multiplication gates.

There are two implementation versions that depend on the underlying homomorphic

encryption libraries: one relies on private library TOTA [105] and the other depends on

an open-sourced library SEAL [88]. Compared to SEAL, TOTA supports faster rotation

operations, and reduces the size of rotation keys by a factor of about 8⇥. Thus, TOTA

allows AntMan to achieve less setup cost. In the following, we evaluate the performance

of our ZK protocol implemented using SEAL. The source code will be available in the

EMP-toolkit library [94].

We use a finite field F defined by a prime p = 259 � 228 + 1, which guarantees that

2N -th roots of unity exist for any N = 2k and k < 28. We set the computational security

parameter � = 128 and statistical security parameter ⇢ = log |F| � log(2B + 3) > 40,

where B is the number of executions of a circuit and chosen from 16 to 2048. We often

130

refer to B as a batch size as well. In our implementation, we consider a setup phase

to generate the AHE ciphertexts on the powers of a polynomial key ⇤ and rotate these

ciphertexts as described in Section 4.3.1. The setup cost is independent of the circuit size

and only depends on the parameter B. Our experimental results involve the running time

to execute the setup phase. For performance evaluation, we compare AntMan with the

state-of-the-art VOLE-based ZK implementation QuickSilver [100].

4.3.3. Performance for Circuit Size and Batch Size

The performance of our ZK protocol AntMan does not depend on the circuit structure,

and is only related to the circuit size |C| and the batch size B. Therefore, we evaluate the

performance using random circuits.

Performance vs. circuit size. In Figure 4.5, we analyze how the throughput of AntMan

changes over di↵erent circuit sizes. We study the performance on proving (B, |C|)-SIMD

circuits with B 2 {64, 256} and that |C| is chosen from 216 to 224. From this figure,

we observe that the overall performance of our ZK protocol increases as the circuit size

becomes larger. This is because the setup cost of O(B) is amortized over the circuit, and

thus a larger circuit leads to a smaller amortized cost. The highest throughput is reached

when the circuit size is larger than 220, after that the throughput is stable. Indeed, the

throughput in this case is roughly the throughput without counting the setup cost.

Performance vs. batch size. Now we fix the circuit size |C| to be 221 and study how

di↵erent batch sizes (i.e., B) impacts the performance of our ZK protocol. In Table 4.1, we

report the running time and communication cost of AntMan with batch sizes B changed

from 16 to 2048.

131

B
Running time Communication

Setup (ms) Per gate (µs) Per gate (field elements)

16 449 0.259 0.78
32 472 0.186 0.39
64 525 0.151 0.19
128 645 0.139 0.098
256 936 0.134 0.049
512 1877 0.143 0.0242
1024 5480 0.146 0.0122
2048 18505 0.152 0.0061

QuickSilver 0 0.169 1

Table 4.1. The communication and running time of our ZK proto-
col. The running time is benchmarked with 4 threads and 1 Gbps band-
width. The circuit size |C| = 221 for the whole table. The setup communi-
cation cost for all B in the table is 40 MB.

Because our AHE parameters support up to 8192 slots, the communication cost for

the setup phase is 40 MB for all choices of B. This mainly consists of rotation keys of

which the size is 35.5 MB. When B is greater than 2048, more ciphertexts need to be sent

but it does not impact the overall setup communication by much. The setup computation

cost is mostly brought from rotation operations.

As for the performance without the setup cost, we observe that we are able to achieve

better than one-field-element per multiplication gate once B � 16. The amortized run-

ning time per multiplication gate of AntMan decreases as the number of circuit executions

increases from 16 to 256, and deteriorates when batch size is greater than 256. 2 Mean-

while, it is faster than QuickSilver under the 1 Gbps network bandwidth when B � 64.

In terms of communication cost, the communication per multiplication gate for AntMan

2The running time of polynomial multiplication increases fast as batch size B increases. When B > 256,
this leads to the decrease of throughput of AntMan.

132

is reduced by half every time B doubles. When B = 2048, the communication cost per

multiplication gate of our ZK protocol is about 0.0061 field elements, which improves

the state-of-the-art ZK implementation QuickSilver by a factor of more than 164⇥. This

means that when the network bandwidth is low, our ZK protocol is significantly better.

Memory comparison. Our ZK protocol will require more memory cost than QuickSilver.

For example, for circuit size |C| = 221, AntMan needs about 0.88 GB, 1.97 GB and 6.13

GB memory for B = 64, B = 256 and B = 1024 respectively, while QuickSilver only

needs about 400 MB memory for any B.

4.3.4. Performance for Threads and Bandwidthes

In Table 4.2, we show how multi-threading and di↵erent bandwidthes a↵ect the perfor-

mance of the ZK protocol AntMan. In particular, we fix the batch size B = 1024 and

the circuit size |C| = 221. Our ZK protocol is computationally heavy, and thus the multi-

threading boosts the e�ciency significantly. In a high bandwidth setting (1 Gbps), the

throughput of AntMan increases from 2.04 to 17.85 mgps when the number of threads

increases from 1 to 16. On the other hand, AntMan is highly communication-e�cient,

and thus performs well in low bandwidth settings. The throughput of AntMan does not

significantly benefit from the increase of network bandwidthes when it is higher than 50

Mbps. It is due to the fact that the communication cost is reduced by a factor of B

asymptotically, compared to the ZK protocol QuickSilver [100].

133

Protocol-thread
Network Bandwidth

10 Mbps 50 Mbps 100 Mbps 500 Mbps 1 Gbps

AntMan-1 1.76 2.00 2.00 2.01 2.04
AntMan-2 3.04 3.70 3.74 3.83 3.84
AntMan-4 4.57 6.27 6.54 6.74 6.84
AntMan-8 6.33 10.04 10.85 11.57 11.71
AntMan-16 7.78 14.31 15.98 17.57 17.85

QuickSilver-1 0.17 0.85 1.7 8.47 16.95

Table 4.2. The performance of our ZK protocol subject to the
bandwidth and the number of threads. The benchmark results are the
number of million MULT gates per second (mgps). QuickSilver-1 refers to
the theoretical performance of QuickSilver with infinity computational power
and thus the running time is solely determined by the communication.

Operations Running Time (ns)

BGV homomorphic evaluation 106.46
BGV decryption 3.17

Polynomial multiplication 9.92
Hashing (SHA-256) 0.84

Check of MULT gates 3.69
Others 10.65

Total 134.73

Table 4.3. The microbenchmark of our ZK protocol. The running
time is the amortized time for proving one multiplication gate. The com-
munication time is involved in the “Others” part.

4.3.5. Microbenchmarking

To understand the slowest part of our ZK protocol, we conduct a microbenchmark of

the protocol execution in Table 4.3. In this experiment, we synthesize a random circuit

with |C| = 222 multiplication gates, and prove B = 256 executions of a circuit (and

thus 230 multiplication gates in total). In this table, 5 major expensive operations are

counted. The computation cost mainly comes from the homomorphic operations of AHE

134

and NTT operations. The homomorphic evaluation of BGV ciphertexts dominates the

whole computation cost, and takes around 79% of the total running time. The polynomial

multiplication (involving the operations of NTT and inverse NTT) takes about 7.4% of the

total running time. Note that the BGV encryption and rotation operations are performed

only once at the setup phase, and the setup cost can be amortized to negligible when

proving a large circuit.

135

CHAPTER 5

E�cient Conversions for Zero-Knowledge Proofs

In previous chapters, we discussed ZKP schemes that respectively work for Boolean

or arithmetic circuits. However, some statements can be better compiled into the compo-

sition of these two. For example, the circuit for the neural network inference can be split

into linear and non-linear layers. The former is better represented as arithmetic circuits

and the latter can be more e�ciently translated to Boolean circuits. In this chapter, we

study the conversion in VOLE-based ZKPs that allows to compose di↵erent components of

a statement with di↵erent representations. We start with the conversion between Boolean

and arithmetic circuits, and then discuss the conversion between the public commitments

and private authenticated values. In the end, we demonstrate their power by prototype

experiments that prove the correct inference of a ResNet-101 neural network model.

5.1. Arithmetic-Boolean Conversion for Zero-Knowledge Proofs

In this section, we provide full details on how to construct ZK-friendly extended doubly

authenticated bits (zk-edaBits) e�ciently, and then show how to use them to securely realize

conversions between arithmetic and Boolean circuits. Our construction is based on the

previously described VOLE-ZK. In our implementation, we make use of the most e�cient

generic VOLE-ZK protocol Quicksilver [100]. We use a macro shown in Figure 5.1 to

describe the commitment procedure.

136

Macro Auth(x, q)
On input x 2 Fq and q 2 {2, p}, this subroutine interacts with two parties P and V ,
and generates an authenticated value [x] for the parties. Let k = � and � = � if
q = 2. Let k 2 N such that qk � 2⇢ and � = � if q = p.

(1) If V is honest, sample K Fqk . Otherwise, receive K 2 Fqk from the adver-
sary.

(2) If P is honest, compute M := K + � · x 2 Fqk . Otherwise, receive M 2 Fqk

from the adversary and recompute K := M� � · x 2 Fqk .
(3) Output [x] to the parties, i.e., send (x,M) to P and K to V .

Figure 5.1. Macro used by functionalities FauthZK and Fzk-edaBits to
generate authenticated values.

Functionality Fzk-edaBits

This functionality is parameterized by a prime p > 2 and an integer k � 1 with pk � 2⇢.
Let m = dlog pe.
Initialize: On input (init) from P and V, sample � F2� and � Fpr if V is honest, and
receive � 2 F2� and � 2 Fpr from the adversary otherwise. Store two global keys (�,�)
and send them to V, and ignore all subsequent (init) commands.

Generate random ZK-friendly edaBits: On input (random, id, id0, . . . , idm�1) from two
parties P and V where id, id0, . . . , idm�1 are fresh identifiers, generate a random zk-edaBit
([r0]2, . . . , [rm�1]2, [r]p) with ri 2 F2 for i 2 [0, m) and r =

Pm�1
i=0 ri · 2i 2 Fp as follows:

(1) If P is honest, sample r Fp. Otherwise, receive r 2 Fp from the adversary.
Decompose r to (r0, . . . , rm�1) such that r =

Pm�1
i=0 ri · 2i mod p.

(2) Execute [ri]2 Auth(ri, 2) for i 2 [0, m) and [r]p Auth(r, p), where
the macro Auth(·) is described in Figure 5.1. Thus, the two parties obtain
([r0]2, . . . , [rm�1]2, [r]p).

(3) Store (id, p, [r]p) and (idi, 2, [ri]2) for i 2 [0, m).

Figure 5.2. Functionality for ZK-friendly extended doubly authen-
ticated bits.

5.1.1. Extended Doubly Authenticated Bits for Zero-Knowledge Proofs

zk-edaBit is a key tool in this work to e�ciently perform conversions between arithmetic

and Boolean circuits. A zk-edaBit consists of a set ofm authenticated bits ([r0]2, . . . , [rm�1]2)

137

Protocol ⇧zk-edaBits

Parameters: Let p > 2 be a prime, m = dlog pe and k 2 N with pk � 2⇢. Two parties want
to generate N zk-edaBits. Let B, c be some parameters to be specified later and ` = NB+c.

Initialize: P and V send (init) to FauthZK, which returns two uniform global keys to V.
Generating random zk-edaBits:

(1) The parties generate random authenticated values [ri]p for i 2 [1, `]. Then, for
i 2 [1, `], P decomposes ri to (ri0, . . . , r

i
m�1) such that ri =

Pm�1
h=0 rih · 2h mod p.

(2) For i 2 [1, `], P inputs (ri0, . . . , r
i
m�1) 2 Fm

2 to FauthZK, which returns
([ri0]2, . . . , [r

i
m�1]2) to the parties.

(3) Place the first N zk-edaBits into N buckets in order, where each bucket has exactly
one zk-edaBit. Then, V samples a random permutation ⇡ : [N + 1, `] ! [N + 1, `]
and sends it to P. Use ⇡ to permute the remaining `�N zk-edaBits.

(4) The parties check that the last c zk-edaBits are correctly computed and abort if not.
Divide the remaining N(B� 1) (unopened) zk-edaBits into N buckets accordingly,
such that each bucket has B zk-edaBits.

(5) For each bucket, both parties choose the first zk-edaBit ([r0]2, . . . , [rm�1]2, [r]p)
(that is placed into the bucket in the step 3), and for every other zk-edaBit
([s0]2, . . . , [sm�1]2, [s]p) in the same bucket, execute the following check:
(a) Compute [t]p := [r]p + [s]p, and then execute ([t0]2, . . . , [tm�1]2) :=

AdderModp([r0]2, . . . , [rm�1]2, [s0]2, . . . , [sm�1]2) by calling functionality
FauthZK, where AdderModp is the modular-addition circuit, and

Pm�1
h=0 th · 2h

=
Pm�1

h=0 rh · 2h +
Pm�1

h=0 sh · 2h mod p.
(b) Execute the BatchCheck procedure on ([t0]2, . . . , [tm�1]2) to obtain

(t0, . . . , tm�1), and then compute t0 :=
Pm�1

h=0 th · 2h mod p.
(c) Execute the CheckZero procedure on [t]p � t0 to verify that t = t0.

(6) If any check fails, V aborts. Otherwise, the parties output the first zk-edaBit from
each of the N buckets.

Figure 5.3. Protocol for generating ZK-friendly edaBits in the
FauthZK-hybrid model.

along with a random authenticated value [r]p such that r =
Pm�1

h=0 rh ·2h 2 Fp. We provide

the ideal functionality for zk-edaBits in Figure 5.2.

A prover P and a verifier V can generate faulty zk-edaBits by calling functionality

FauthZK, and then use a “cut-and-bucketing” technique to check the consistency of resulting

zk-edaBits. We provide the details of our zk-edaBits protocol in Figure 5.3. In this protocol,

the prover and verifier use FauthZK with only circuit-based commands to compute a Boolean

138

circuit AdderModp, which e�ciently realizes the module-addition computation that adds

two m-bit integers and then modules a prime p.

Theorem 10. Protocol ⇧zk-edaBits shown in Figure 5.3 UC-realizes functionality Fzk-edaBits

in the presence of a static, malicious adversary with statistical error at most

0

B@
N(B � 1) + c

B � 1

1

CA

�1

+

1
pk in the FauthZK-hybrid model.

Given the number N of zk-edaBits, we can choose suitable parameters B and c such

that

0

B@
N(B � 1) + c

B � 1

1

CA

�1

 2�⇢. For example, when N = 106, we can choose B = 3 and

c = 2, and achieve at least 40-bit statistical security.

5.1.1.1. Proof of Security. The security of protocol ⇧zk-edaBits shown in Figure 5.3 in

the presence of a malicious prover crucially depends on the “cut-and-bucketing” procedure.

As in previous work [51, 3, 95], we model this procedure as the “balls-and-buckets” game:

(1) Adversary A prepares ` = NB + c balls denoted by B1, . . . ,B`. Every ball

corresponds to a zk-edaBit, and can be either good or bad depending on whether

it is honestly generated by A.

(2) The first N balls {B1, . . . ,BN} are placed into N buckets, where Bi is assigned

into the i-th bucket.

(3) In the set {BN+1, . . . ,B`}, c balls are randomly chosen and opened. If one of the

chosen balls is bad, then A loses the game. Otherwise, the game proceeds to the

next step.

(4) The remaining N(B � 1) balls are randomly divided into the N buckets, such

that each bucket has an equal size B.

139

(5) We define that a bucket is fully good (resp., fully bad) if all the balls inside it are

good (resp., bad). A wins if and only if there exists at least one bucket that is

fully bad, and all other buckets are either fully good or fully bad.

Lemma 7. Assume c � B�1, then adversary A wins the above game with probability

at most

0

B@
N(B � 1) + c

B � 1

1

CA

�1

.

Proof. Assume that A makes m buckets bad for 1  m  N . A wins if exactly mB

balls are bad, and they are placed into the m buckets. The probability of this event is

computed below. In the step 2, N balls of ` balls are first placed in the N buckets, and

thus m bad balls of N balls defines the m bad buckets. Let B⇤ = B�1 and `⇤ = NB⇤+ c.

At the step 3 of the game, the probability that none of mB⇤ bad balls is chosen is

p1 =

0

B@
`⇤ �mB⇤

c

1

CA

0

B@
`⇤

c

1

CA

=
(NB⇤ + c�mB⇤)!(NB⇤)!

(NB⇤ + c)!(NB⇤ �mB⇤)!
.

Assuming that this occurs. We are left with `⇤�c = NB⇤ balls that have not been placed

in the buckets, of which mB⇤ balls are bad. In the step 4, the probability that mB⇤ bad

balls are exactly put in the m bad buckets is

p2 =
(NB⇤ �mB⇤)!(mB⇤)!

(NB⇤)!
.

140

Overall, the probability that adversary A wins the game is

p = p1 · p2 =
(NB⇤ + c�mB⇤)!(mB⇤)!

(NB⇤ + c)!
=

0

B@
NB⇤ + c

mB⇤

1

CA

�1

.

When c � B � 1 = B⇤ and 1  m  N , the probability p is maximized in the case of

m = 1. So the probability that A wins the game is bounded by

0

B@
N(B � 1) + c

B � 1

1

CA

�1

. ⇤

Below, we give the formal proof of Theorem 10.

Proof. We first consider the case of a malicious prover, and then consider the case

of a malicious verifier. In each case, we construct a PPT simulator S given access to

functionality Fzk-edaBits, which runs a PPT adversary A as a subroutine when emulating

FauthZK. In both cases, we show that no PPT environment Z can distinguish the real-world

execution from the ideal-world execution.

Malicious prover. S interacts with adversary A as follows:

(1) In the process of generating faulty zk-edaBits, S emulates FauthZK for A by sam-

pling uniform “dummy” global keys, and recording all the values {ri}i2[1,`] and

{(ri0, . . . , rim�1)}i2[1,`] and their corresponding MAC tags received from adversary

A. Note that these values and MAC tags naturally define corresponding local

keys.

(2) Simulator S plays the role of an honest verifier to perform the consistency-check

procedure with A, using the “dummy” global keys and the local keys. In the

process of computing modular-addition circuit AdderModp, S emulates FauthZK

by sending the bits on the output wires of all gates to A, and recording the

141

corresponding MAC tags sent to FauthZK by A. Then, S uses the output bits of

circuit AdderModp and their MAC tags to define corresponding local keys.

(3) S acts as an honest verifier and executes the consistency-check procedure with

adversary A, where S uses the “dummy” global keys and local keys recorded by

itself to execute the BatchCheck and CheckZero procedures. If the check fails, S

sends abort to functionality Fzk-edaBits and aborts. Otherwise, S sends r1, . . . , rN

to Fzk-edaBits, and also sends their corresponding MAC tags and the MAC tags of

{(ri0, . . . , rim�1)}i2[1,N] to Fzk-edaBits.

It is clear that the view of adversary A is perfectly simulated by S, since the “dummy”

global keys sampled by S have the same distribution as the real global keys, global keys

are only used to check validity of opened values, and the local keys are totally determined

by the values and MAC tags chosen by A. If the honest verifier aborts in the real protocol

execution, then the verifier also aborts in the ideal-world execution (as S sends abort to

Fzk-edaBits). Therefore, it remains to bound the probability of the event BadEvent that

the honest verifier accepts in the real protocol execution, but there exists one outputting

zk-edaBit (ri0, . . . , r
i
m�1, r

i) for some i 2 [1, N] such that ri 6=
Pm�1

h=0 rih · 2h mod p. In the

following, we show that BadEvent occurs with probability at most

0

B@
N(B � 1) + c

B � 1

1

CA

�1

+

1
pk + negl(�).

In the BatchCheck procedure, the probability which the honest verifier does not abort

but there exists some value that is opened incorrectly is bounded by negl(�). Below,

we assume that this does not happen. In the consistency-check procedure, if there are

142

a correct zk-edaBit and an incorrect zk-edaBit in the same bucket, then the honest ver-

ifier would abort unless A breaks the security of CheckZero with probability at most

1/pk + negl(�). Now, we assume that there is no mixed zk-edaBits in the same bucket.

Therefore, according to Lemma 7, we have the probability that BadEvent occurs is at

most

0

B@
N(B � 1) + c

B � 1

1

CA

�1

.

If BadEvent doest not occur except with probability at most

0

B@
N(B � 1) + c

B � 1

1

CA

�1

+

1
pk + negl(�), the output distributions of the honest verifier in the real-world and ideal-

world executions are identical, as global keys are uniform, and the local keys are uniquely

determined by the values and MAC tags known by A and the independent global keys.

Malicious verifier. Simulator S has access to functionality Fzk-edaBits, and interacts with

A as follows:

(1) S emulates FauthZK by recording global keys �,� and the local keys for all au-

thenticated values, which are sent to FauthZK by A. Then S sends � and � to

Fzk-edaBits.

(2) S receives a permutation ⇡ from A, and places the zk-edaBits into N buckets

following the protocol specification. In the opening procedure of c zk-edaBits

(step 4), for i 2 [1, c], S samples ri Fp and decomposes it as (ri0, . . . , r
i
m�1),

and defines corresponding MAC tags using these values as well as global keys

�,� and the related local keys. Then, S executes the BatchCheck procedure

with A using {(ri0, . . . , rim�1, r
i)}i2[1,c] and these MAC tags.

143

(3) For each bucket, in the checking procedure between the first zk-edaBit and every

other zk-edaBit, S simulates as follows:

(a) S samples t Fp and computes its corresponding MAC tag using � and

the associated local key defined as above, and also defines (t0, . . . , tm�1) such

that t =
Pm�1

i=0 ti · 2i mod p.

(b) In the process of executing circuit AdderModp, S emulates FauthZK by record-

ing the local keys on ti for all i 2 [0,m), which are computed using the keys

sent to FauthZK by A. Then S defines the MAC tags on t0, . . . , tm�1 using �

and the corresponding local keys.

(c) Simulator S uses t0, . . . , tm�1 along with their corresponding MAC tags to

execute the BatchCheck procedure with adversary A.

(d) S uses the MAC tag on [t]p to run the CheckZero procedure with A.

In the FauthZK-hybrid model, the arithmetic values over Fp on all zk-edaBits are uniformly

random from the view of adversary A. Therefore, in the real protocol execution, for each

check in the step 5, the value t is uniform in Fp, where r is always masked by a uniform

value s. Besides, S will pass the checks in the BatchCheck and CheckZero procedures, as

it always uses the correct MAC tags and the opened bits t0, . . . , tm�1 satisfy the relation

t =
Pm�1

i=0 ti · 2i mod p for every pairwise check. Overall, the view of adversary A is

perfectly simulated by S. It is clear that the output distribution of the honest prover in

the real-world execution is identical to that in the ideal-world execution, since the output

values over F2 or Fp by the honest prover are uniform under the zk-edaBit condition in

both worlds, and the MAC tags output by the honest prover are totally determined by

the keys chosen by A and these output values. This completes the proof. ⇤

144

Protocol ⇧A2B
Convert

Let p > 2 be a prime and m = dlog pe.
Initialize: P and V send (init) to Fzk-edaBits, which returns two uniform global keys to V.
Input: The parties have an authenticated value [x]p.

Convert: P and V convert an authenticated value over field Fp into m authenticated bits
as follows:

(1) Call funcationality Fzk-edaBits, which returns ([r0]2, . . . , [rm�1]2, [r]p) to the parties.
(2) Compute [z]p := [x]p � [r]p, and then execute the BatchCheck procedure on [z]p to

obtain z.
(3) Decompose z 2 Fp as (z0, . . . , zm�1) 2 Fm

2 such that z =
Pm�1

h=0 zh · 2h mod p, and
then compute ([x0]2, . . . , [xm�1]2) := AdderModp(z0, . . . , zm�1, [r0]2, . . . , [rm�1]2)
by calling FauthZK where z0, . . . , zm�1 are public constants.

(4) Output ([x0]2, . . . , [xm�1]2).

Figure 5.4. Protocol for conversion from arithmetic to Boolean in
the (Fzk-edaBits,FauthZK)-hybrid model.

5.1.2. Arithmetic-Boolean Conversion Protocols

Using functionality Fzk-edaBits e�ciently realized in the previous sub-section, we propose

two e�cient protocols to convert authenticated wire values from an arithmetic circuit to a

Boolean circuit and to convert in another direction. In the two protocols, the prover and

verifier would also use functionality FauthZK with only circuit-based commands to compute

a Boolean circuit AdderModp. In both protocols, we assume that Fzk-edaBits shares the same

initialization procedure with FauthZK, and thus the same global keys are used in the two

functionalities. This is the case, when we use the protocol ⇧zk-edaBits shown in Figure 5.3

to UC-realize Fzk-edaBits in the FauthZK-hybrid model. We also assume that FauthZK can

use authenticated values generated by Fzk-edaBits. This is easy to be realized by viewing

Fzk-edaBits as a part of FauthZK.

145

Protocol ⇧B2A
Convert

Let p > 2 be a prime and m = dlog pe.
Initialize: P and V send (init) to Fzk-edaBits, which returns two uniform global keys to V.
Input: Two parties P and V hold m authenticated bits [x0]2, . . . , [xm�1]2.

Convert: P and V convert m authenticated bits into one authenticated value over field Fp

as follows:

(1) Call funcationality Fzk-edaBits, which returns ([r0]2, . . . , [rm�1]2, [r]p) to the parties.
(2) Compute ([z0]2, . . . , [zm�1]2) := AdderModp([x0]2, . . . , [xm�1]2, [r0]2, . . . , [rm�1]2)

by calling functionality FauthZK, such that
Pm�1

h=0 zh·2h =
Pm�1

h=0 xh·2h+
Pm�1

h=0 rh·2h
mod p.

(3) Execute the BatchCheck procedure on ([z0]2, . . . , [zm�1]2) to obtain (z0, . . . , zm�1),
and then compute z :=

Pm�1
h=0 zh · 2h mod p.

(4) Compute and output [x]p := z � [r]p.

Figure 5.5. Protocol for conversion from Boolean to arithmetic in
the (Fzk-edaBits,FauthZK)-hybrid model.

We provide the full details about the conversion from arithmetic to Boolean circuits

in Figure 5.4. In Figure 5.5, we describe in details how to perform an e�cient conversion

from Boolean to arithmetic circuits.

5.1.2.1. Proof of Security. Below, we prove the security of the two protocols in the

following theorems.

Theorem 11. Protocol ⇧A2B
Convert UC-realizes the convertA2B command of functionality

FauthZK in the presence of a static, malicious adversary with statistical error 1/pk in the

(Fzk-edaBits,FauthZK)-hybrid model.

Proof. We consider two cases of a malicious prover or a malicious verifier. In each

case, we construct a PPT simulator S, which runs a PPT adversary A as a subroutine,

when emulating FauthZK with only circuit-based commands. In both cases, we show that

146

no PPT environment Z can distinguish the real-world execution from the ideal-world

execution.

Malicious prover. S interacts with adversary A as follows:

(1) S emulates Fzk-edaBits by receiving a field element r fromA, writing r to (r0, . . . , rm�1)

with r =
Pm�1

i=0 ri · 2i mod p, and recording their corresponding MAC tags sent

to Fzk-edaBits by A.

(2) S executes the BatchCheck procedure with A. If the values sent by A are not

consistent with z = x� r mod p and the corresponding MAC tag, then S sends

abort to FauthZK and aborts. Note that x has been extracted by S in the procedure

of generating authenticated value [x]p.

(3) S decomposes z as (z0, . . . , zm�1) 2 {0, 1}m. Then S emulates FauthZK with

circuit-based commands to execute the evaluation of circuit AdderModp with

A. In particular, S sends x0, . . . , xm�1 to A and records their corresponding

MAC tags computed with the MAC tags received from A, where
Pm�1

h=0 xh · 2h

mod p = x.

(4) S sends the MAC tags on bits x0, . . . , xm�1 to FauthZK.

In the real protocol execution, if the value opened by A is not equal to z = x�r mod p in

the BatchCheck procedure, then the honest verifier would abort except with probability at

most 1/pk+negl(�). If the opened value is identical to z, then using the MAC tag to check

the correctness of the opened value, is equivalent to using the global and local keys to

check, according to the IT-MAC relationship. Thus, the BatchCheck procedure simulated

by S is indistinguishable from the real checking procedure. In the real-world execution,

if z = x � r mod p, then we easily see that adversary A obtains the bit decomposition

147

of x (i.e., x0, . . . , xm�1) from the evaluation of circuit AdderModp. Overall, the view of

adversary A that is simulated by S is indistinguishable from the view of A in the real

protocol execution.

Malicious verifier. S interacts with adversary A as follows:

(1) In the initialization phase, S emulates Fzk-edaBits and receives two global keys from

A, and then sends them to functionality FauthZK.

(2) S emulates Fzk-edaBits by recording the local keys on (r0, . . . , rm�1, r), sent to

Fzk-edaBits by A.

(3) S runs the BatchCheck procedure with A by sampling z Fp, and sending it

and the corresponding MAC tag to A, where the local keys on [x]p and [r]p have

been extracted by S, and thus the MAC tag on [z]p can be computed by S with

the global and local keys.

(4) S decomposes z as (z0, . . . , zm�1) 2 {0, 1}m, and executes the evaluation of circuit

AdderModp withA when emulating FauthZK with circuit-based commands. During

the procedure, S records the local keys on the output bits of circuit AdderModp,

which are computed with the global and local keys received from A. Then, S

sends these local keys to functionality FauthZK.

In the (Fzk-edaBits,FauthZK)-hybrid model, r is uniformly random from the view of adversary

A. Therefore, field element z in the real protocol execution is uniform, as it is masked by

r. In conclusion, the view of adversary A simulated by S is perfectly indistinguishable

from its view in the real-world execution, which completes the proof. ⇤

148

Theorem 12. Protocol ⇧B2A
Convert UC-realizes the convertB2A command of functionality

FauthZK in the presence of a static, malicious adversary in the (Fzk-edaBits,FauthZK)-hybrid

model.

Proof. As such, we consider two cases of a malicious prover or a malicious verifier.

In each case, we construct a PPT simulator S, which runs a PPT adversary A as a

subroutine when emulating functionality FauthZK with circuit-based commands. In both

cases, we show that any PPT environment Z cannot distinguish the real-world execution

from the ideal-world execution.

Malicious prover. S interacts with adversary A as follows:

(1) S emulates functionality Fzk-edaBits by receiving a field element r from A, de-

composing r to (r0, . . . , rm�1) with r =
Pm�1

i=0 ri · 2i mod p, and recording their

corresponding MAC tags sent to Fzk-edaBits by A.

(2) S emulates FauthZK with only circuit-based commands, by sending the bits on the

output wires of all gates to A, and also receiving their corresponding MAC tags

from A. Then S defines z0, . . . , zm�1 as the output bits of circuit AdderModp and

records their corresponding MAC tags.

(3) S executes the BatchCheck procedure with A. If the opened bits are not equal to

z0, . . . , zm�1, or the checking value sent by A does not match with that computed

by S with the recorded MAC tags, then S sends abort to FauthZK and aborts.

(4) S computes the MAC tag on [x]p = z � [r]p locally where z =
Pm�1

h=0 zh · 2h

mod p, and sends it to FauthZK.

149

Clearly, the view of adversary A simulated by S is perfect, except for the BatchCheck

procedure. In the real protocol execution, the honest verifier checks the correctness of

bits to be opened using its keys. In the ideal-world execution, S executes this procedure

using the desired bits z0, . . . , zm�1 and corresponding MAC tags. For BatchCheck, we know

that the opened bits are correct (and thus are equal to z0, . . . , zm�1) if the honest verifier

does not abort, except with probability negl(�). In this case, the checking procedure using

the keys is the same as that using the MAC tags, according to the IT-MAC relationship.

Therefore, the view of adversary A simulated by S is indistinguishable from the real view

of A. From the definitions of functionality FauthZK and circuit AdderModp, we have that

Pm�1
h=0 zh · 2h =

Pm�1
h=0 xh · 2h +

Pm�1
h=0 rh · 2h mod p (and thus z = x + r mod p). Then

adversary A will obtain the value x =
Pm�1

h=0 xh · 2h in the real protocol execution. Thus,

the output of the honest verifier in the real-world execution is indistinguishable from that

in the ideal-world execution, where the verifier’s output (i.e., the local key on x 2 Fp) is

determined by its global key and the value and MAC tag known by A.

Malicious verifier. S interacts with adversary A as follows:

(1) In the initialization phase, S emulates Fzk-edaBits and receives two global keys from

A, and then sends them to functionality FauthZK.

(2) S emulates Fzk-edaBits by recording the local keys on (r0, . . . , rm�1, r), sent to

Fzk-edaBits by A.

(3) S emulates FauthZK with only circuit-based commands, and records the local keys

on the output wires of all gates from adversary A. Then, from these local keys,

S defines and records the local keys on the output bits of circuit AdderModp.

150

(4) S samples z Fp and decomposes it to (z0, . . . , zm�1) 2 {0, 1}m, where
Pm�1

h=0 zh ·

2h = z mod p. Then, S executes the BatchCheck procedure with A using

z0, . . . , zm�1 and their corresponding MAC tags, where the MAC tags are com-

puted with the global and local keys recorded by S.

(5) S computes the local key on [x]p = z � [r]p locally and sends it to functionality

FauthZK.

In the (Fzk-edaBits,FauthZK)-hybrid model, r is uniform in Fp and kept secret against adver-

saryA. In the real protocol execution, we have that (z0, . . . , zm�1) is the bit-decomposition

of a uniform element z, based on the uniformity of r. Therefore, the view of adversary

A simulated by S is perfectly indistinguishable from its view in the real-world execution,

which completes the proof. ⇤

Optimization using circuit-based zk-edaBits. In the conversion protocols described

as above, a prover P and a verifier V generate random zk-edaBits using functionality

Fzk-edaBits in the preprocessing phase, and then convert authenticated values between arith-

metic and Boolean circuits using these random zk-edaBits in the online phase.

We can use an alternative approach to convert authenticated values between arithmetic

and Boolean circuits, and obtain better whole e�ciency but larger online cost. Specifically,

for authenticated bits [x0]2, . . . , [xm�1]2 on m output wires of a Boolean circuit, P can

compute x :=
Pm�1

h=0 xh · 2h mod p locally. Then, P sends (input, x, p) to FauthZK and V

sends (input, p) to FauthZK, which returns [x]p to the parties. Similarly, the parties can

also convert an authenticated value [x]p on an output wire of an arithmetic circuit into

m authenticated bits [x0]2, . . . , [xm�1]2, by calling the (input) command of FauthZK. In

151

this way, two parties can create N circuit-based zk-edaBits for some integer N . However,

in the circuit-based zk-edaBits, a malicious prover may cause the field elements over Fp

are inconsistent with corresponding bits. Verifier V can check the consistency of these

circuit-based zk-edaBits using the cut-and-bucketing technique. Specifically, in the online

phase, two parties can execute the checking procedure shown in Figure 5.3 to check

the consistency of these circuit-based zk-edaBits by sacrificing (B � 1)N + c random

zk-edaBits generated in the preprocessing phase. Using this optimization, for computing

N circuit-based zk-edaBits, we can save N random zk-edaBits and N evaluations of circuit

AdderModp in terms of the whole e�ciency, but increase the online cost by a factor of

B � 1.

5.2. Converting Publicly Committed Values to Privately Authenticated

Values

The second type of conversions that we would like to study is the conversion from

publicly committed data to privately authenticated data. Here, publicly committed data

referred to those committed with a short digest, which can be published on something that

can be modeled as a bulletin board (e.g., well-established websites or some blockchain).

Privately authenticated data refers to the values only known by a prover that are authen-

ticated by a designated verifier based on IT-MACs, and thus can be e�ciently used to

prove any mixed arithmetic-Boolean circuit using the recent ZK protocols [95, 45, 8, 101]

and our arithmetic-Boolean conversion protocols. The conversion from publicly commit-

ted data to privately authenticated data will allow us to e�ciently prove statements on

consistent committed data to multiple di↵erent verifiers for multiple times.

152

Protocol ⇧NICom![·]

Let q � 2 be a prime. Let H : {0, 1}⇤ ! {0, 1}2� be a cryptographic hash function modeled
as a random oracle, and PRF : {0, 1}� ⇥ {0, 1}� ! Fm

q be a pseudorandom function.

Compute a public commitment: A prover P computes and publishes a non-interactive
commitment on values:

(1) Sample sk, r {0, 1}�; compute Commit0 := H(sk, r).
(2) On input x1, . . . ,x` 2 Fm

q with `, m 2 N, compute ci := PRF(sk, i) + xi 2 Fm
q for

i 2 [1, `].
(3) Compute di := H(ci) for all i 2 [1, `]; build a Merkle tree on these values using H

with Commit1 as the root.
(4) Publish the commitment (Commit0,Commit1).

Initialize: Prover P and a verifier V send (init) to FauthZK, which returns two uniform
global keys to V.
Convert committed values into authenticated values: This procedure can be executed
multiple times. For some i 2 [1, `], P and V convert a committed value xi 2 Fm

q only known
by P to m authenticated values [xi,1], . . . , [xi,m]:

(1) Let pathi be the set containing all siblings of the nodes in the path from the i-th
leaf to the root Commit1. Prover P sends (ci, pathi) to V, who verifies that H(ci)
is a leaf node rooted in Commit1.

(2) By calling functionality FauthZK, the parties obtain authenticated bit-vectors
[sk]2, [r]2 on key sk and randomness r, and then P proves in zero-knowledge that
Commit0 = H([sk]2, [r]2).

(3) The parties call functionality FauthZK to compute ([xi,1], . . . , [xi,m]) ci �
PRF([sk]2, i) 2 Fm

q , and then output {[xi,j]}j2[1,m].

Figure 5.6. Protocol for converting committed values into authen-
ticated values in the FauthZK-hybrid model.

Our commitment-authentication conversion protocol. We present our e�cient

conversion protocol in Figure 5.6. This protocol consists of two phases: 1) generating

a non-interactive commitment and 2) converting publicly committed values to privately

authenticated values in an interactive manner. To commit a large volume of data or

di↵erent types of data, we divide them into pieces, where the i-th piece is denoted by

xi 2 Fm
q with a prime q � 2 and a parameter m. Then, we let the prover sample a

random key sk and a uniform randomness r both in {0, 1}�. Our commitment consists

153

of Commit0 = H(sk, r) and ci = PRF(sk, i) + xi 2 Fm
q for all i 2 [1, `] with some ` 2 N,

where H is a random oracle and PRF is a pseudorandom function. To perform conversion,

the prover P proves knowledge of sk and xi, such that Commit0 and ci are computed with

the key and data piece. Since ci can be put in the public domain, one can further reduce

the size of the overall commitment by computing a Merkle tree on top of all ci’s. In this

way, the commitment only has a size of 4� bits, including Commit0 and the root of the

Merkle tree (i.e., Commit1).

Since key sk 2 {0, 1}� has a high entropy, we can actually remove the randomness r.

That is, the prover can just set H(sk) as Commit0 in the commitment phase and prove

Commit0 = H([sk]2) in the conversion phase. This will slightly improve the e�ciency of

this protocol.

Theorem 13. Let H be a random oracle and PRF be a pseudorandom function. Then

protocol ⇧NICom![·] shown in Figure 5.6 UC-realizes the convertC2A command of function-

ality FauthZK in the presence of a static, malicious adversary in the FauthZK-hybrid model.

Below, we discuss the intuition of the above theorem and provide the formal security

proof. We commit to sk using a standard UC commitment in the random-oracle model,

and so sk is computationally hiding, meaning that PRF(sk, i) for all i 2 [1, `] are indis-

tinguishable from uniformly random values in Fm
q . In the FauthZK-hybrid model, the ZK

proof does not reveal any information of committed values. Overall, the committed data

is hidden. In the proof of security, the simulator can extract the key sk from Commit0

in the random-oracle model. Once sk was extracted, the simulator can easily recover xi

by decrypting ci for i 2 [1, `]. This also implies the binding property. Together with the

154

soundness of the ZK protocol realizing FauthZK, we can ensure the consistency between

authenticated values and committed values.

Note that this commitment (Commit0,Commit1) itself is not equivocal if we use the nat-

ural “open” algorithm that sends (sk, r): although it is possible to equivocate the key sk

to any value by programming the random oracle, the function PRF is fixed. Equivocating

from xi to x0
i would require finding a key sk0 such that PRF(sk0, i)�PRF(sk, i) = xi�x0

i

over Fm
q . However, we can make it equivocal by an interactive opening: instead of

directly sending (sk, r), we can send ci and the corresponding path that can be ver-

ified with Commit1, and prove knowledge of a key sk and a randomness r such that

Commit0 = H(sk, r) and the other relationship on ci hold. In this way, we can use the

zero-knowledge property to equivocate the commitment.

Proof. We prove the security against a malicious prover and a malicious verifier sep-

arately. In each case, we construct a PPT simulator S, who runs a PPT adversary A as

a subroutine and emulates FauthZK with only circuit-based commands. In both cases, we

show that no PPT environment Z can distinguish between the real-world execution and

ideal-world execution.

Malicious prover. S interacts with adversary A as follows:

(1) S simulates random oracle H by recording the queries made by A, and sending

the random responses to A when keeping the consistency of responses.

(2) In the commitment phase, after receiving (Commit0,Commit1) from A, simulator

S extracts sk by retrieving the H query whose output is Commit0. If no such

155

query or there exists two di↵erent queries whose outputs are Commit0, S sends

abort to functionality FauthZK and aborts.

(3) S extracts ci for all i 2 [1, `] by retrieving the random-oracle queries whose

responses are identical to the values from the root Commit1 of the Merkle tree to

the leaves. If no such queries is found or there is a collision for H, S sends abort

to functionality FauthZK and aborts. Otherwise, for i 2 [1, `], S computes xi :=

ci � PRF(sk, i) 2 Fm
q , and then sends (commit, xi,j, q) to FauthZK for j 2 [1,m].

(4) For a conversion execution, after receiving (c0i, pathi) from A for some i 2 [1, `],

S checks that c0i = ci where ci is extracted as above. If the check fails, S aborts.

(5) In the procedure of proving Commit0 = H([sk]2, [r]2), S emulates functionality

FauthZK with only circuit-based commands by recording sk0 that consists of the

bits sent to FauthZK by A. If sk0 6= sk then S aborts, where sk is the secret key

extracted by S.

(6) During the process of evaluating authenticated values from ci � PRF([sk]2, i)

for some i 2 [1, `], S continues to emulate FauthZK by storing the output values

xi,1, . . . , xi,m 2 Fq, and recording their corresponding MAC tags sent to FauthZK

by A. For j 2 [1,m], S sends the MAC tag on xi,j to functionality FauthZK for

the (convertC2A) command.

In the random-oracle model, if no related query is made by adversary A, then A suc-

cessfully guesses the hash output (either Commit0 or Commit1) with probability at most

1/22� = negl(�). As the output of random oracle H is uniformly random, the probability

that there exists a collision is bounded by q2H/2
2� = negl(�), where qH is the number of

queries made by adversary A to random oracle H. In the following, we assume that the

156

bad events do not happen. In this case, S can successfully extract key sk from Commit0.

Based on the security of Merkle trees, S can also extract the ci for all i 2 [1, `] by observ-

ing the random-oracle queries and responses. Therefore, all the committed values can be

extracted successfully by S via computing xi := ci � PRF(sk, i) for all i 2 [1, `].

In the ideal-world execution, for the emulation of FauthZK, S directly checks whether

the secret key sk0 input by A is consistent with sk extracted by it. In the real-world

execution, the secret key sk0 input by A to FauthZK is the same as that committed by

it, unless a collision for H is found with probability qH/22�. In the following, we assume

that the secret key input by A to FauthZK is consistent with that committed by itself.

According to the definition of functionality FauthZK, the output values xi,1, . . . , xi,m in the

conversion phase are consistent with the values that have been committed by A in the

commitment phase.

Overall, the PPT environment Z cannot distinguish the real-world execution from the

ideal-world execution, except with probability negl(�).

Malicious verifier. S interacts with adversary A as follows:

(1) S simulates H by recording the queries made by A, and responds with random

strings when keeping the consistency.

(2) In the commitment phase, S samples Commit0 {0, 1}2� and ci Fm
q for

i 2 [1, `]. Then, it computes Commit1 as a root of Merkle tree with leaves ci for all

i 2 [1, `] following the protocol description, and then sends (Commit0,Commit1)

to A.

157

(3) In the initialization procedure, S emulates FauthZK with circuit-based commands

by recording two global keys, sent to FauthZK by A. Then S sends the global keys

to functionality FauthZK in the ideal-world execution.

(4) In the conversion phase, for some i 2 [1, `], S sends (ci, pathi) to A following the

protocol specification. Then, for the procedures that proving knowledge of (sk, r)

such that Commit0 = H(sk, r) and computing authenticated values, S emulates

FauthZK with only circuit-based commands by recording the local keys, sent to

FauthZK by A.

(5) Finally, S computes and sends the local keys on [xi,j] for j 2 [1,m] to functionality

FauthZK.

For the emulation of FauthZK, the simulation of S is perfect. Thus, we focus on prov-

ing the indistinguishability of commitment (Commit0,Commit1). The probability that

adversary A makes the query (sk, r) to random oracle H is at most qH/22�. Therefore,

Commit0 simulated by S is computationally indistinguishable from the real value, except

with probability negl(�). By the pseudo-randomness of PRF, we have that the {ci}i2[1,`]

computed with PRF and key sk are computationally indistinguishable from uniformly

random vectors in Fm
q . Given the {ci}i2[1,`], S computes Commit1 in the same way as the

real protocol execution. Thus, the simulation for Commit1 is also computationally indis-

tinguishable from the real value. Overall, no PPT environment Z can distinguish between

the real-world execution and ideal-world execution, except with probability negl(�). This

completes the proof. ⇤

158

Instantiation of PRF. We use LowMC [1] to instantiate PRF for reducing circuit com-

plexity. One issue with LowMC is that it contains a lot of XOR gates. Although they

are free cryptographically, the computation complexity can be fairly high. We adopt the

following optimizations for competitive performance:

• Similar to the signature scheme Picnic [106], we need to run PRF on a single key

for many times, and thus can precompute the matrix multiplication about the

key only once and use it for all PRF evaluations.

• We pick the block size as 64 bits to further reduce the number of XOR opera-

tions. The resulting protocol is highly e�cient, and can convert 18,000 publicly

committed data blocks (totally 144KB) to authenticated values per second.

• To reduce the number of rounds in LowMC, we choose the data complexity to

be 230 blocks, which is su�cient to commit 8 GB data. If the data is larger than

that, we can just pick a new PRF key and commit this key.

Comparing with other candidates. We briefly discuss the concrete e�ciency of our

protocol for one commitment-authentication conversion, and compares it with other alter-

natives shown in Table 5.1. Here, we ignore the e�ciency comparison for the commitment-

generation phase, as it needs to be executed only once.

Scheme This work SHA-256 LowMC-256

Time (µs) 55 395 � 1000
Comm. (bits) 62 705 49

Table 5.1. E�ciency comparison between our protocol and alterna-
tive protocol with natural commitments. Running time in microsec-
ond (µs) is based on two Amazon EC2 machines of type m5.2xlarge.

159

For SHA-256 and LowMC-256, they refer to building a hash function modeled as a

random oracle, and further construct a commitment on message x via H(x, r) with a ran-

domness r. For SHA-256, one invocation takes 22573 AND gates and can commit 256 bits

of messages. For LowMC-256, we first pick a LowMC block cipher with 256-bit key and

block sizes, and then use Davies–Meyer to build a hash function. The SHA-256 method

requires a lot of communication due to a large circuit size. The LowMC-256 approach

is significantly slower compared to ours because: 1) our 64-bit block cipher only com-

putes 64-bit matrix multiplication, but LowMC-256 needs 256-bit matrix multiplication

meaning 16 times more operations; 2) we only need 11 rounds but LowMC-256 needs 53

rounds; 3) we can use a fixed key for all messages but LowMC-256 needs to rekey for

every block of the message.

Conversion from authenticated values to publicly committed values. In some

applications, two parties P and V may want to convert authenticated values (say, out-

put by some MPC protocol) into a public commitment on the same values. Based on

the protocol ⇧NICom![·] shown in Figure 5.6, this is easy to be realized by the following

execution:

(1) To convert authenticated values {[xi,j]}i2[1,`],j2[1,m] into publicly committed val-

ues, P commits these vectors (xi,1, . . . , xi,m) for i 2 [1, `] by executing the

commitment-generation phase of protoocol ⇧NICom![·]. Then P publishes the

resulting commitment (Commit0,Commit1).

(2) Then, P and V execute protocol⇧NICom![·] to convert commitment (Commit0,Commit1)

into authenticated values {[x0
i,j]}i2[1,`],j2[1,m].

160

Figure 5.7. Execution-time decomposition for ResNet-101 Infer-
ence. The top bar is for public-model private-feature inference; the bottom
bar is for private-model private-feature inference. The network bandwidth
is throttled to 200 Mbps.

(3) The parties call the CheckZero procedure on [x0
i,j]�[xi,j] for all i 2 [1, `], j 2 [1,m],

and abort if the check fails.

5.3. Performance Evaluation

In this section, we benchmark the speed of Mystique and how it performs on large-scale

ML-inspired applications. We used three neural network models: LeNet-51 (5 layers, 62000

model parameters), ResNet-50 (50 layers, 23.5 million model parameters), and ResNet-

101 (101 layers, 42.5 million model parameters). All experimental results are obtained by

running the protocol over two Amazon EC2 machines of type m5.2xlarge, each with 32

GB memory. We use all CPU resources but only a fraction of the memory. The largest

example is for ResNet-101 that uses 12 GB of memory. Our implementations use the

latest sVOLE-based protocol [101] as the underlying ZK proof. All our implementations

achieve the computational security parameter � = 128 and statistical security parameter

⇢ � 40.

161

50 Mbps 200 Mbps 500 Mbps 1 Gbps

Conversions

A2B 107 µs 45 µs 34 µs 29 µs
B2A 109 µs 49 µs 38 µs 33 µs
C2A 56 µs 55 µs 55 µs 55 µs

Fix2Float 50 µs 46 µs 46 µs 46 µs
Float2Fix 49 µs 46 µs 46 µs 46 µs

Machine Learning (ML) Functions

Sigmoid 2.1 ms 1.6 ms 1.6 ms 1.6 ms
Max Pooling 1.6 ms 0.5 ms 0.4 ms 0.4 ms

ReLU 908 µs 262 µs 185 µs 188 µs
SoftMax-10 209 ms 157 ms 161 ms 171 ms
Batch Norm 415 ms 261 ms 257 ms 269 ms

Matrix Multiplications

MatMult-512 361 ms 186 ms 185 ms 185 ms
MatMult-1024 2.42 s 1.48 s 1.39 s 1.37 s
MatMult-2048 15.19 s 11.30 s 10.63 s 10.39 s

Table 5.2. Performance of the basic building blocks. The dimension
ofMax Pooling is 2⇥2. The dimension of Batch Normalization is [1, 16, 16, 4],
which stands for the batch size, height, weight and channels. For ML func-
tions, the inputs and outputs are authenticated values in Fp with p = 261�1.
The performance result assumes that the inputs and outputs are all private
to the verifier.

5.3.1. Benchmarking Our Building Blocks

We test the performance of our key building blocks discussed in this paper and summarized

the results in Table 5.2. From this table, we can see that our protocol is highly scalable

and all basic operations are highly e�cient. The arithmetic-Boolean conversion (i.e., A2B

and B2A) consists of two phases. In the preprocessing phase, two parties generate random

zk-edaBits, and the execution time per zk-edaBit decreases from 95 µs to 19 µs when the

bandwidth increases from 50 Mbps to 1 Gbps. In the online phase, two parties can convert

1We use ReLU as activation function instead of tanh for better accuracy.

162

authenticated wire values between arithmetic and Boolean circuits cheaply. The e�ciency

of the conversion from a public commitment to privately authenticated values (i.e., C2A)

is mainly dominated by the computation of PRF in a Boolean circuit. It only takes around

56 µs to apply the PRF to a 64-bit data block, when the network bandwidth is at least

50 Mbps, due to the high communication e�ciency of our protocol. The terms Fix2Float

and Float2Fix represent the conversions between fixed-point and floating-point numbers,

where the execution time for both conversions is around 46 µs per conversion when the

network bandwidth is larger than 50 Mbps.

For the ZK proof of matrix multiplication (i.e., MatMul), our protocol can obtain

around 185 ms of execution time for dimension 512⇥ 512, when the network bandwidth

is at least 200 Mbps. The execution time is increased to about 1.5 s and 11 s for dimensions

1024 ⇥ 1024 and 2048 ⇥ 2048, respectively. The main e�ciency bottleneck is the local

computation of matrix multiplication by the prover. Compared to the state-of-the-art

ZK proof for matrix multiplication [101], which takes 10 seconds to prove a 1024⇥ 1024

matrix multiplication over a network bandwidth of 500 Mbps, our ZK protocol achieves

a 7⇥ improvement.

5.3.2. Benchmarking Private Inference

With these building blocks, we connect them together to build a ZK system to prove the

inference of large neural networks. We consider three canonical settings, where the model

parameters and model feature input can either be private to the prover or public to both

parties. We focus on three neural networks: LeNet-5, ResNet-50, and ResNet-101. While

163

Model Image LeNet-5 ResNet-50 ResNet-101

Communication

Private Private 16.5 MB 1.27 GB 1.98 GB
Private Public 16.5 MB 1.27 GB 1.98 GB
Public Private 16.4 MB 0.53 GB 0.99 GB

Execution time (seconds) in a 50 Mbps network

Private Private 7.3 465 736
Private Public 7.5 463 735
Public Private 6.5 210 369

Execution time (seconds) in a 200 Mbps network

Private Private 5.9 333 535
Private Public 5.5 336 541
Public Private 4.9 158 262

Table 5.3. Performance of zero-knowledge neural-network infer-
ence. All models are trained using the CIFAR-10 dataset.

the first example is relatively simple, the last two examples represent the state-of-the-art

neural networks in terms of accuracy and complexity.

In Table 5.3, we summarize the performance for all neural networks, where the commit-

ment on a model or data is not involved. After all optimizations, the slowest component in

our protocol is Batch Normalization, which only exists in ResNet-50 and ResNet-101. For

all models, we observe that when the model is private, the overall execution time is higher

than the case in which the model parameters are public. This is because more operations

have to be done in ZK proofs for private models. Regardless of this setting, LeNet-5

inference takes several seconds to finish. For all settings, ResNet-50 (resp., ResNet-101)

takes about 2.6–5.6 (resp., 4.4–9) minutes to accomplish under a 200 Mbps network.

Microbenchmark. Figure 5.7 reports the microbenchmark of our ResNet-101 infer-

ence. We collect the time usage of di↵erent components including the protocol setup,

164

0.000 0.002 0.004 0.006 0.008 0.010
`2-error of the predicted probability vector

0

200

400

600

800
Fr

eq
ue

nc
y

95th percentile
ResNet-50

95th percentile
ResNet-101

ResNet50
ResNet101

Figure 5.8. `2-norm distance between the plaintext-inference prob-
ability vector and the ZK-inference probability vector. The mean
di↵erence is 0.0011 for ResNet-50 and 0.0019 for ResNet-101.

private input (i.e., computing corresponding authenticated values), di↵erent operators

and framework overhead. Significant amount of costs are used in Batch Normalization,

ReLU, convolution2D and framework overhead. When the model is private, an additional

proportion of time will also be used for private input. Note that the Batch Normalization

takes around 70% of time in both cases because it involves complicated arithmetic opera-

tions and conversions between floating-point and fixed-point numbers, which are costly to

maintain accuracy. It will be an interesting future work to further improve the e�ciency

of Batch Normalization and ReLU without losing accuracy.

Benchmarking the accuracy. Our approach is highly accurate, but could still cause

some accuracy loss. This could particularly be a concern for deep neural networks with

hundred of layers where the error could propagate and get amplified. To benchmark the

accuracy of our protocol, we ran the whole CIFAR-10 testing dataset [80] containing 10000

165

ML applications LeNet-5 ResNet-50 ResNet-101

ZK for evasion attacks 9.8 s 316 s 524 s
ZK for genuine inference 7.2 s 16.4 m 28 m
ZK for private benchmark 8.2 m 4.4 h 7.3 h

Table 5.4. E�ciency of our ZK system in di↵erent applications.
All execution time is reported based on a 200 Mbps network and two
m5.2xlarge machines.

imagines. CIFAR is one of the standard ML dataset to benchmark the performance of

algorithms. Imagines in CIFAR-10 are all labeled within 10 di↵erent classes, each imagine

is a 32 ⇥ 32 color picture. The accuracy di↵erence between the plaintext model and our

ZK model is only 0.02% for both ResNet-50 and ResNet-101. To further understand the

accuracy di↵erence, we also compare the underlying probability vector predicted for each

testing imagine. The dataset CIFAR-10 has 10 classes, and thus each inference produces a

probability vector of length 10, denoted as pi for all i 2 [1, 10000]. The final prediction of

the i-th testing imagine is ArgMaxi(pi). We are interested in the distribution of kpi�p0
ik2,

where pi is from plaintext inference and p0
i is from ZK inference. In Figure 5.8, we show

the `2-norm di↵erences of all 10000 inferences, and we can see that even for ResNet-101,

the `2-norm di↵erence is smaller than 0.006 for 95% of the case. For LeNet-5, 99.9%

of the `2-norm di↵erence are below 0.006. Therefore, for top-k accuracy such as k = 5

(commonly used for ImageNet), our ZK inference will be highly accurate.

5.3.3. End-to-End Applications

By connecting the private models/features to publicly committed models/features,Mystique

can be used to build the three end-to-end applications mentioned in the Introduction.

Since we use CIFAR-10 dataset, each image is of size 32 ⇥ 32 pixels and each pixel uses

166

3 bytes to represent the color. This means that one image is of size 3072 bytes and takes

about 2.6 milliseconds to convert from publicly committed values to privately authenti-

cated values. The sizes of three models considered in this paper are 0.25 MB, 94 MB, and

170 MB. They take 1.7 seconds, 646 seconds, and 1169 seconds to convert from a public

commitment to authenticated values that can be used in our protocols directly. The cost

to “pull” a publicly committed model to be used in ZK proofs is high, but it could always

be amortized over multiple private inferences.

• ZK proofs for evasion attacks. In this case, we need to prove knowledge of

two almost identical inputs that get classified to di↵erent results under a public

model. Therefore, the main cost is to prove the classification result in zero-

knowledge under a public model twice.

• ZK proofs for genuine inference. In this application, the model parameters

are private but publicly committed, while the input data is public. The main

overhead is from: 1) proving the consistency between committed values and au-

thenticated values for all model parameters; and 2) proving correct classification

with private model and public input.

• ZK proofs for private benchmark. In this application, the testing data set

is publicly committed and the model is public. Therefore, the main overhead

comes from: 1) proving the consistency between committed testing data and

authenticated data; and 2) proving correct classification with private input data

and public model. In our example, we assume a testing data set of 100 images,

and thus the second step is executed for 100 times, once for each image.

167

The execution time for every end-to-end application is reported in Table 5.4. Note that in

the “ZK for private benchmark” application, 100 testing images were publicly committed,

and then are converted to privately authenticated values using our conversion protocol

shown in Section 5.2. Thus, the execution time for this application is significantly higher.

168

References

[1] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 430–454. Springer,
Heidelberg, April 2015.

[2] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 2087–2104. ACM Press, October / November 2017.

[3] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel
Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In
2017 IEEE Symposium on Security and Privacy, pages 843–862. IEEE Computer
Society Press, May 2017.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More ef-
ficient oblivious transfer and extensions for faster secure computation. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
535–548. ACM Press, November 2013.

[5] Laasya Bangalore, Rishabh Bhadauria, Carmit Hazay, and Muthuramakrishnan
Venkitasubramaniam. On black-box constructions of time and space e�cient sub-
linear arguments from symmetric-key primitives. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 417–446.
Springer, Heidelberg, November 2022.

[6] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benôıt Razet, and Peter
Scholl. Appenzeller to brie: E�cient zero-knowledge proofs for mixed-mode arith-
metic and Z2k. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
192–211. ACM Press, November 2021.

169

[7] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl.
MozZ2karella: E�cient vector-OLE and zero-knowledge proofs over Z2k . In Yev-
geniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume
13510 of LNCS, pages 329–358. Springer, Heidelberg, August 2022.

[8] Carsten Baum, Alex J. Malozemo↵, Marc Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for arithmetic circuits with nested disjunctions. Cryptology
ePrint Archive, Report 2020/1410, 2020. https://eprint.iacr.org/2020/1410.

[9] Carsten Baum, Alex J. Malozemo↵, Marc B. Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828
of LNCS, pages 92–122, Virtual Event, August 2021. Springer, Heidelberg.

[10] Carsten Baum and Ariel Nof. Concretely-e�cient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part I, volume 12110 of LNCS, pages 495–526. Springer, Heidelberg, May 2020.

[11] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Hei-
delberg, August 1993.

[12] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 31–60. Springer, Heidelberg, October / November 2016.

[13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKs and proof-carrying data. Cryptology ePrint
Archive, Report 2012/095, 2012. https://eprint.iacr.org/2012/095.

[14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120.
ACM Press, June 2013.

[15] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interac-
tive proofs and their e�ciency benefits. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 255–272. Springer, Heidelberg,
August 2012.

[16] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai,

https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2012/095

170

editor, TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Heidelberg,
March 2013.

[17] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Public-coin zero-knowledge arguments with (almost) minimal time and space
overheads. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 168–197. Springer, Heidelberg, November 2020.

[18] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Time- and space-e�cient arguments from groups of unknown order. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 123–152, Virtual Event, August 2021. Springer, Heidelberg.

[19] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gemini:
Elastic SNARKs for diverse environments. In Orr Dunkelman and Stefan Dziem-
bowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 427–
457. Springer, Heidelberg, May / June 2022.

[20] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for
short(er) exact lattice-based zero-knowledge proofs. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
176–202. Springer, Heidelberg, August 2019.

[21] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner. E�cient
post-quantum SNARKs for RSIS and RLWE and their applications to privacy. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, pages 247–267. Springer, Heidelberg,
2020.

[22] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE cir-
cuit privacy almost for free. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 62–89. Springer, Heidelberg,
August 2016.

[23] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composi-
tion without a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.
https://eprint.iacr.org/2019/1021.

[24] Elette Boyle, Geo↵roy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 896–912. ACM Press, October 2018.

https://eprint.iacr.org/2019/1021

171

[25] Elette Boyle, Geo↵roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. E�cient two-round OT extension and silent non-interactive se-
cure computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November
2019.

[26] Elette Boyle, Geo↵roy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homo-
morphic secret sharing: Optimizations and applications. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
2105–2122. ACM Press, October / November 2017.

[27] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 337–367. Springer, Heidelberg, April 2015.

[28] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303.
ACM Press, October 2016.

[29] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer, Heidelberg, August
2012.

[30] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012,
pages 309–325. ACM, January 2012.

[31] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 681–710,
Virtual Event, August 2021. Springer, Heidelberg.

[32] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

[33] Niklas Büscher, Andreas Holzer, Alina Weber, and Stefan Katzenbeisser. Compil-
ing low depth circuits for practical secure computation. In Ioannis G. Askoxylakis,

172

Sotiris Ioannidis, Sokratis K. Katsikas, and Catherine A. Meadows, editors, ES-
ORICS 2016, Part II, volume 9879 of LNCS, pages 80–98. Springer, Heidelberg,
September 2016.

[34] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[35] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum
zero-knowledge and signatures from symmetric-key primitives. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 1825–1842. ACM Press, October / November 2017.

[36] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping Xing.
SPD Z2k : E�cient MPC mod 2k for dishonest majority. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 769–798. Springer, Heidelberg, August 2018.

[37] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Heidelberg, August 2012.

[38] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span
programs with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550.
Springer, Heidelberg, December 2014.

[39] Sourav Das, Zhuolun Xiang, and Ling Ren. Powers of tau in asynchrony. Cryptology
ePrint Archive, Report 2022/1683, 2022. https://eprint.iacr.org/2022/1683.

[40] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast vector oblivious
linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report
2020/685, 2020. https://eprint.iacr.org/2020/685.

[41] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast vector oblivious
linear evaluation from ring learning with errors. In Proceedings of the 9th on Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography – WAHC’21,
pages 29–41. ACM, 2021.

https://eprint.iacr.org/2022/1683
https://eprint.iacr.org/2020/685

173

[42] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.
Limbo: E�cient zero-knowledge MPCitH-based arguments. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 3022–3036. ACM Press, November 2021.

[43] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point
zero knowledge: Two multiplications for the price of one. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 829–841.
ACM Press, November 2022.

[44] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point
zero knowledge: Two multiplications for the price of one. In ACM CCS 2022. ACM
Press, November 2022.

[45] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge
and its applications. Cryptology ePrint Archive, Report 2020/1446, 2020. https:
//eprint.iacr.org/2020/1446.

[46] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and
its applications. In 2nd Conference on Information-Theoretic Cryptography, 2021.

[47] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. SPARKs: Suc-
cinct parallelizable arguments of knowledge. In Anne Canteaut and Yuval Ishai, ed-
itors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 707–737. Springer,
Heidelberg, May 2020.

[48] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact
proofs from lattices: New techniques to exploit fully-splitting rings. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS,
pages 259–288. Springer, Heidelberg, December 2020.

[49] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.
iacr.org/2012/144.

[50] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free
garbled circuits with applications to e�cient zero-knowledge. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 191–219. Springer, Heidelberg, April 2015.

[51] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput se-
cure three-party computation for malicious adversaries and an honest majority.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,

https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

174

Part II, volume 10211 of LNCS, pages 225–255. Springer, Heidelberg, April / May
2017.

[52] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryp-
tology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/
953.

[53] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–
645. Springer, Heidelberg, May 2013.

[54] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[55] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-
knowledge for Boolean circuits. In Thorsten Holz and Stefan Savage, editors,
USENIX Security 2016, pages 1069–1083. USENIX Association, August 2016.

[56] Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 116–129. Springer, Heidelberg, August
1999.

[57] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, October 1986.

[58] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements
in zero-knowledge, and a methodology of cryptographic protocol design. In An-
drew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 171–185.
Springer, Heidelberg, August 1987.

[59] Shafi Goldwasser, Silvio Micali, and Charles Racko↵. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[60] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S.
Wahby. Brakedown: Linear-time and field-agnostic SNARKs for R1CS. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II, volume 14082
of LNCS, pages 193–226. Springer, Heidelberg, August 2023.

[61] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional
communication-e�cient MPC via hall’s marriage theorem. In Tal Malkin and Chris

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

175

Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 275–304,
Virtual Event, August 2021. Springer, Heidelberg.

[62] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

[63] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[64] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 554–571.
Springer, Heidelberg, August 2014.

[65] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.
TinyKeys: A new approach to e�cient multi-party computation. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS,
pages 3–33. Springer, Heidelberg, August 2018.

[66] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-
knowledge proofs. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part III, volume 12107 of LNCS, pages 569–598. Springer, Heidelberg, May 2020.

[67] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) mini-
mal time and space overhead. In Mikkel Thorup, editor, 59th FOCS, pages 124–135.
IEEE Computer Society Press, October 2018.

[68] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24.
ACM Press, May 1989.

[69] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious trans-
fers e�ciently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
145–161. Springer, Heidelberg, August 2003.

[70] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In David S. Johnson and Uriel Feige, editors,
39th ACM STOC, pages 21–30. ACM Press, June 2007.

[71] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 575–594. Springer,
Heidelberg, February 2007.

176

[72] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements e�ciently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966.
ACM Press, November 2013.

[73] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive
zero knowledge with applications to post-quantum signatures. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 525–537. ACM Press, October 2018.

[74] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–741. Springer, Heidelberg,
August 2015.

[75] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 830–842. ACM Press, October 2016.

[76] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great
again. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 158–189. Springer, Heidelberg, April / May
2018.

[77] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal machine ex-
ecutions without universal circuits. Cryptology ePrint Archive, Report 2022/1758,
2022. https://eprint.iacr.org/2022/1758.

[78] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments for cus-
tomizable constraint systems. Cryptology ePrint Archive, Paper 2023/573, 2023.
https://eprint.iacr.org/2023/573.

[79] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 359–388.
Springer, Heidelberg, August 2022.

[80] Alex Krizhevsky, Vinod Nair, and Geo↵rey Hinton. Cifar-10 (canadian institute for
advanced research).

https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/573

177

[81] Xiling Li, Chenkai Weng, Yongxin Xu, Xiao Wang, and Jennie Rogers. Zksql: Veri-
fiable and efiicient query evaluation with zero-knowledge proofs. Proceedings of the
VLDB Endowment, 16(8):1804–1816, 2023.

[82] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

[83] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 681–700. Springer, Heidelberg, August 2012.

[84] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. Powers-of-tau
to the people: Decentralizing setup ceremonies. Cryptology ePrint Archive, Report
2022/1592, 2022. https://eprint.iacr.org/2022/1592.

[85] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Privacy,
pages 238–252. IEEE Computer Society Press, May 2013.

[86] Peter Rindal. libOTe: an e�cient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe.

[87] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In Lorenzo Cav-
allaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 1055–1072. ACM Press, November 2019.

[88] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, March 2022.
Microsoft Research, Redmond, WA.

[89] Srinath Setty. Spartan: E�cient and general-purpose zkSNARKs without trusted
setup. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 704–737. Springer, Heidelberg, August 2020.

[90] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems
for succinct arguments. Cryptology ePrint Archive, Paper 2023/552, 2023. https:
//eprint.iacr.org/2023/552.

[91] Alan Szepieniec. Polynomial IOPs for linear algebra relations. Cryptology ePrint
Archive, Report 2020/1022, 2020. https://eprint.iacr.org/2020/1022.

https://eprint.iacr.org/2022/1592
https://github.com/osu-crypto/libOTe
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2020/1022

178

[92] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
71–89. Springer, Heidelberg, August 2013.

[93] Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ristenpart, and abhi shelat.
Blind certificate authorities. In 2019 IEEE Symposium on Security and Privacy,
pages 1015–1032. IEEE Computer Society Press, May 2019.

[94] Xiao Wang, Alex J. Malozemo↵, and Jonathan Katz. EMP-toolkit: E�cient Mul-
tiParty computation toolkit. https://github.com/emp-toolkit, 2016.

[95] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scal-
able, and communication-e�cient zero-knowledge proofs for boolean and arithmetic
circuits. Cryptology ePrint Archive, Report 2020/925, 2020. https://eprint.

iacr.org/2020/925.

[96] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scal-
able, and communication-e�cient zero-knowledge proofs for boolean and arithmetic
circuits. In 2021 IEEE Symposium on Security and Privacy, pages 1074–1091. IEEE
Computer Society Press, May 2021.

[97] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
E�cient conversions for zero-knowledge proofs with applications to machine learn-
ing. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021,
pages 501–518. USENIX Association, August 2021.

[98] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan:
Interactive zero-knowledge proofs with sublinear communication. In Heng Yin, An-
gelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2901–
2914. ACM Press, November 2022.

[99] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof
with linear prover time. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 299–328. Springer, Hei-
delberg, August 2022.

[100] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: E�cient
and a↵ordable zero-knowledge proofs for circuits and polynomials over any field. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM
Press, November 2021.

[101] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: E�cient
and a↵ordable zero-knowledge proofs for circuits and polynomials over any field.

https://github.com/emp-toolkit
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925

179

Cryptology ePrint Archive, Report 2021/076, 2021. https://eprint.iacr.org/
2021/076.

[102] Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs to multiple ver-
ifiers. Cryptology ePrint Archive, Report 2022/063, 2022. https://eprint.iacr.
org/2022/063.

[103] Kang Yang, Xiao Wang, and Jiang Zhang. More e�cient MPC from improved triple
generation and authenticated garbling. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1627–1646. ACM Press, No-
vember 2020.

[104] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–
1626. ACM Press, November 2020.

[105] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. Tota: Fully
homomorphic encryption with smaller parameters and stronger security. Cryptology
ePrint Archive, Paper 2021/1347, 2021. https://eprint.iacr.org/2021/1347.

[106] Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig,
Jonathan Katz, Xiao Wang, and Vladmir Kolesnikov. Picnic. Techni-
cal report, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-2-submissions.

[107] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.
DECO: Liberating web data using decentralized oracles for TLS. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages
1919–1938. ACM Press, November 2020.

[108] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent poly-
nomial delegation and its applications to zero knowledge proof. In 2020 IEEE Sym-
posium on Security and Privacy, pages 859–876. IEEE Computer Society Press,
May 2020.

https://eprint.iacr.org/2021/076
https://eprint.iacr.org/2021/076
https://eprint.iacr.org/2022/063
https://eprint.iacr.org/2022/063
https://eprint.iacr.org/2021/1347
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions

