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Abstract

In the field of Natural Language Processing (NLP), today's best models rely on the construction
of an embedding space. Upon input to a language model, tokens are translated into dense,
high-dimensional vectors. Over the process of training, tokens' embeddings are organized for
spatial-relatedness. This allows models to greatly generalize, as the meaning of a word can be
expressed in terms of neighboring embeddings.

A language model has a fixed vocabulary, whose embeddings are expressed using weight
matrices. The matrix at the input of the network translates a token to its internal representation.
As it is shown a sequence, the language model builds a representation of its prediction vector. At
the output, this vector is compared against embeddings in the output matrix to select the next
word. This is traditionally done with dot-product softmax.

Unfortunately, certain tokens have reduced potential to receive probability mass under
dot-product softmax. Embeddings which are interior to the convex hull of the output weight
matrix cannot be assigned high probability. While this effect has been previously studied in other
language models, the transformer architecture also uses dot-product softmax in another location:
the attention mechanism. In this work, we demonstrate the Stolen Attention Effect, where certain
embeddings cannot be assigned high attention weights. Further, we suggest an architectural



change that may overcome the effect. By using a variant of Euclidean distance instead of
dot-product in the attention mechanism, we yield a 14.27% improvement on OpenBookQA.
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ABSTRACT

Stolen Attention in Transformers

Kyle Williams

In the field of Natural Language Processing (NLP), today’s best models rely on the con-

struction of an embedding space. Upon input to a language model, tokens are translated

into dense, high-dimensional vectors. Over the process of training, tokens’ embeddings

are organized for spatial-relatedness. This allows models to greatly generalize, as the

meaning of a word can be expressed in terms of neighboring embeddings.

A language model has a fixed vocabulary, whose embeddings are expressed using

weight matrices. The matrix at the input of the network translates a token to its internal

representation. As it is shown a sequence, the language model builds a representation of

its prediction vector ht. Then at the output, the prediction vector is compared against

embeddings in the output matrix to select the next word. This is traditionally done with

dot-product softmax.

Unfortunately, certain tokens have reduced potential to receive probability mass under

dot-product softmax. Embeddings who are interior to the convex hull of the output weight

matrix cannot be assigned high probability. While this effect has been previously studied
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in other language models, the transformer architecture also uses dot-product softmax in

another location: the attention mechanism. In this work, we demonstrate the Stolen

Attention Effect, where certain embeddings cannot be assigned high attention weights.

Further, we suggest an architectural change that may overcome the effect. By using a

variant of Euclidean distance instead of dot-product in the attention mechanism, we yield

a 14.27% improvement on OpenBookQA.
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CHAPTER 1

Introduction

1.1. Natural Language Processing and Representation Learning

Natural Language Processing (NLP) is a long-studied field of research. NLP is an um-

brella term, which refers to any task involving human language. The motivating example

is machine translation; if algorithms could successfully translate text from different lan-

guages, transcripts could become accessible to other languages besides the one in which

it was written. Performing an NLP task starts with a language model. A language model

aims to understand and generate human language by learning patterns from large datasets

of text. Each dataset is known as a corpus, which contains sequences of tokens. A lan-

guage model has a fixed vocabulary of tokens it can recognize and use. Using sentences

from the corpus, it learns a conditional probability distribution to predict the next token

given its preceding context.

In 2003, Bengio et al. [1] changed the landscape of NLP with the advent of represen-

tation learning. Until that point, neural language models represented tokens as a one-hot

encoding. The use of large, sparse input vectors caused them to suffer from the curse of

dimensionality. Furthermore, the parameter count increased too quickly to scale models

to long sequence lengths, making them limited in practice. Finally, and most impor-

tantly, sequences not seen in the training corpus were impossible to model. To solve these

problems, they first translated tokens from their sparse, one-hot representations to dense,
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low-dimensional vectors known as embeddings. Then a multi-layer perceptron could learn

the embeddings and the conditional probability distribution simultaneously. These em-

beddings captured semantic relationships between tokens; the spatial locality of tokens

can be used to model sequences that aren’t explicitly in the training set.

While the formulation of Bengio et al. enabled modeling longer sequence lengths, its

feed-forward architecture was limited. For starters, the context length was fixed and

could never be enlarged. Furthermore, the embedding matrix was shared for all positions

of the input. Thus, any temporal dependencies had to be captured by the weights of

feed-forward layers. In 2010, Mikolov et al. [15] adapted the Recurrent Neural Network

(RNN) to language modeling. RNNs handle sequences by maintaining a hidden state that

evolves over time. Their construction ensures temporal dependencies between tokens are

built-in as an inductive bias. More importantly, the context length can be arbitrarily

large. They were eventually superseded by LSTMs [8], an improvement on RNNs with

respect to modeling long contexts.

After its proposal by Vaswani et al. [23] in 2017, the transformer architecture has be-

come dominant. A transformer is limited in that its maximum context length is bounded,

and must be chosen prior to training 1. While this is a step backward from the LSTM,

it gains the ability to be parallelized with respect to the sequence. LSTMs must crunch

a sequence one-token-at-a-time to build up its hidden state. Instead, the transformer

utilizes attention blocks to capture long-range dependencies. Attention can be indepen-

dently applied to all positions of the sequence, removing the sequential dependency. Thus,

1Some recent work [17], [21] has allowed transformers to arbitrarily extend their context lengths through
approximations.
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entire sequences can be computed in parallel, greatly increasing training speed. As hard-

ware has continued to improve, transformers have demonstrated impressive scalability.

When the number of layers and parameters increases, transformers seemingly show un-

bounded performance, a trend not observed in other architectures to the same extent.

This scalability has led to the development of very large models, such as BERT [6], GPT

[19], and T5 [20], which have set new benchmarks in various NLP tasks like translation,

question-answering, and text summarization.

1.2. Dot-Product Softmax and Stolen Probability

While many different neural architectures have been proposed for NLP, one aspect

of their design is unanimous. Recall that the goal of a neural language model is to

learn the conditional probability distribution of the next token given its context. As

such, it is crucial that the outputs of the network are non-negative and sum to 1. Due

to the paradigm of representation learning, any model’s internal vectors are less than

the dimensionality of its vocabulary. A linear weight matrix WO projects a model’s final

representation of the next token to a distribution over vocabulary words. This distribution

is transformed via softmax to be interpreted as probabilities.

Recall that input tokens are translated to embeddings using a linear weight matrixWI .

Thus, WI ∈ R|V |×d, where d is the dimensionality of the model’s embeddings and V is its

vocabulary. Similarly, to translate embeddings into a distribution over the vocabulary, it

must be thatWO ∈ Rd×|V |. The weights insideWO can also be thought of as an embedding

matrix. In fact, some transformers use tied embeddings, where the model explicitly uses

WO = W T
I . Given a final representation ht, the operation ht · WO essentially computes
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the dot-product similarity between ht and the embeddings of our vocabulary. Applying

softmax normalizes the dot-product scores into a probability distribution, and the entire

operation is known as dot-product softmax.

In 2020, Demeter et al. [5] discovered a problem with the application of dot-product

softmax at the output of LSTM language models. Again, to achieve probabilities as

outputs, the final hidden state of the LSTM (ht) is multiplied by a weight matrix WO.

Once the LSTM has completed training, WO represents output embeddings that ht will be

ranked against using dot-product softmax. Unfortunately, tokens whose embeddings have

small L2 norms have their maximum probability thresholded. Specifically, WO defines

some set of vectors in a high-dimensional space. A subset of these vectors form a convex

hull which contains all other vectors. Those who are interior to the hull cannot be assigned

high probability, no matter the context.

To make matters worse, an association between a token’s frequency in the training

corpus and its embedding norm was discovered. Language modeling corpi are known as

”long-tailed” because most tokens occur only a few times. Yet, leveraging an infrequent

word is often paramount to the logical continuation of a sequence. For example, ”America”

is not a common word, but should almost always follow ”United States of”. Because high

frequency words have larger embeddings on average, they are often vertices of the convex

hull. Thus, these high-frequency, low-information token ”steal” probability.

1.3. Stolen Attention in Transformers

In their work, Demeter et al. tested and documented Stolen Probability in LSTMs

with an embedding dimensionality as large as d = 200 [5]. However, it was theorized that
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the Stolen Probability effect becomes marginal as d increases. Intuitively, with larger

embeddings, there is more room to spread them around the embedding space. Then there

should be less potential for a given embedding to be inside the convex hull. Even if an

embedding has a small L2 norm, with sufficient dimensionality, it will likely extend far

enough in at least one dimension so as to not be contained.

Today’s transformers use very large embedding spaces. For example, common choices

in literature are d = 512, d = 768, or d = 1024. Moreover, high-performance foundation

models like Google’s PaLM-540B use excessive sizes like d = 18432 [4]. With embedding

spaces this large, the potential for stolen probability is diminishing. However, transformers

use dot-product softmax in another location besides the output: the attention mechanism.

Here, multiple attention heads divide the model’s embeddings into several subspaces. That

is, with h heads, each head operates over vectors of size d/h. So, while Stolen Probability

may not be present, Stolen Attention could be a very real threat. Despite its large overall

dimensionality, even PaLM-540B uses a head dimensionality of 256, not much larger than

was tested by Demeter et al. Smaller transformers may be even more at risk. In this

work, we wish to document the extent to which Stolen Attention is present in transformer

models.

1.4. Related Work

To our knowledge, we are the first to consider the impact of the distance metric

(namely dot-product softmax) on the distribution of attention weights in transformer

models. For the most part, work on the attention mechanism is focused on improving its

computational efficiency. This is mostly done through modifications to the mechanism as
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a whole. For example, Wang et al. [25] linearize self-attention with the assumption that

attention is low-rank. Or, Qin et al. [18] replace softmax entirely using other functions

that maintain the non-negativeness of logits. Other bodies of work limit [27] or expand

[17] the positions that can be paid attention to. These may have confounding effects on

the development of the K matrix of attention heads, so we stick to vanilla self-attention.
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CHAPTER 2

Background

2.1. The Transformer Architecture

A transformer has a fixed vocabulary V and can accept sequences up to length N .

Thus the input to a transformer is a sequence of tokens S = {t1, t2, . . . , tN}, where ti ∈

V . Each ti is represented as a one-hot encoding, so S ∈ RN×|V |. For representation

learning, tokens are translated into embeddings of size d via an embedding matrix Ein ∈

R|V |×d. After embedding the sequence, a transformer consists of L layers. Each layer

i ∈ {1, 2, . . . , L} consists of a Multi-Head Attention (MHA) mechanism Ai followed by

a feed-forward network Fi. Residual connections help propagate gradient signals, while

layer normalization is added to avoid explosions. Let the input to layer i be xi ∈ RN×d.

Then a transformer layer is a function Ti : RN×d → RN×d such that:

(2.1) Ti(xi) = Fi(Ai(xi) + xi) + Ai(xi) + xi

Above, the input to T1 would be x1 = SEin. The input to T2 would be x2 = T1(x1), the

input to T3 would be x3 = T2(x2), etc. While residual connections are shown in the formula

above, layer normalization has been omitted. There are two main schools of thought

in regards to layer normalization: Post-LN and Pre-LN. Post-LN was implemented in

the original Transformer proposal [23], but Pre-LN was found to enable the training of

deeper Transformers [24]. Nowadays, the options are relatively interchangeable. Large
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models can be trained with either strategy to comparable performance, given that the

optimizer and learning rate schedule are chosen appropriately. We refer readers to [26]

for a discussion of these strategies and their pros/cons.

The significant contribution of the transformer architecture, and the focus of this

paper, is the multi-head attention (MHA) module Ai. In its most general form, MHA

operates over three matrices Q,K, V ∈ RN×d. Q is known as the query matrix, K as

the key matrix, and V as the values matrix. Then Ai(Q,K, V ) is the output of the

mechanism. Here, we’re focused on a decoder-only architecture akin to GPT [19]. In this

setting, Q,K, V = xi. This is known as ”self-attention”, because the queries, keys, and

values are derived from the same input.

In an MHA module with k heads, each head j ∈ {1, 2, . . . , k} has three weight ma-

trices W j
Q,W

j
K ,W

j
V ∈ Rd×dh , where dh = d/k. Thus, the heads split the transformer’s

embeddings into several subspaces of smaller size. The use of multiple heads allows the

model to jointly attend to information at different positions of the sequence. Furthermore,

because each head has its own subspace, it will pay attention to different features of the

embedding that may relate words. For example, some heads may focus on semantics,

while others focus on positionality or punctuation. The output of head j in layer i is

hj : RN×d → RN×dh :

(2.2) hj(xi) = softmax[D(xiW
j
Q, xiW

j
K)] · xiW

j
V

Above, xiW
j
Q, xiW

j
K , and xiW

j
V can be viewed as head-specific query, key, and value

matrices for head j. Then D is some distance metric measuring the similarity between

the query and key embeddings of that head. Let Qj = xiW
j
Q and Kj = xiW

j
K . The
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standard function for D was introduced in the original Transformer paper [23] and has

been largely unchanged. Known as ”scaled dot-product attention”, it is defined as:

(2.3) D(Qj, Kj) =
QjK

T
j√

dh

Putting it all together, the MHA module for layer i concatenates the outputs of each

of its heads. Then it mixes their contributions using a linear weight matrix W i
O ∈ Rd×d.

As such, it is imperative that d is divisible by k; concatenation results in an output of

size RN×hdh , and we need hdh = d. Let hij be the output of head j in layer i, and [·] be

the concatenation operation. Then MHA is defined as:

(2.4) Ai(xi) = [hi1(xi), hi2(xi), . . . , hik(xi)]W
i
O

Finally, the output of the transformer is a matrix O ∈ RN×|V |. Each row n ∈

{1, 2, . . . , N} is a conditional probability distribution over the vocabulary space given the

previous n − 1 tokens of the sequence. In other words, ∀j ∈ 1, 2, . . . , |V |, Onj = P (tn =

tj | t1, t2, . . . , tn−1). This is achieved by multiplying the output of the last transformer

layer by a weight matrix Eout ∈ Rd×|V |. Similarly to the rows of the input embedding

matrix, the columns of the output matrix represent embeddings for the tokens of models’

vocabulary. For instance, Transformers with tied embeddings explicitly use Eout = ET
in.

Formally, the output is given as:

(2.5) O = softmax[TL(xL−1)Eout]
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2.2. Stolen Probability

Any trained neural language model will have some output embedding matrix Eout ∈

Rd×|V |. While we focus on transformers in this work, our hypothesis is based on [5]. Here,

Demeter et al. use an LSTM language model instead. We refer readers to the original

LSTM paper [8] for details on its operation. With respect to our analysis, the important

part of the LSTM is its output.

Again, let S = {t1, t2, . . . , tN} be some sequence of tokens. For an LSTM, N is not

bounded, and can be arbitrarily large. Then an LSTM receives tokens ti sequentially as

input. Along the way, it builds a hidden state vector representing its guess as to ti+1

given {t1, t2, . . . , ti}. Let this vector be hi ∈ R1×d. At step i, the output of the LSTM is

Oi = softmax[hiEout].

Intuitively, ∀j ∈ {1, 2, . . . , |V |}, each row ej of ET
out represents the embedding for

token tj. As such, the operation hiEout can be thought of as calculating the dot-product

similarity between the hidden state hi and each of the tokens’ embeddings ej. These

outputs (prior to softmax) are known as logits zj = ⟨hi, ej⟩, where ⟨·⟩ denotes inner-

product. By performing softmax over this output, we assign probability such that tokens

whose embeddings are most similar to our hidden state receive the highest probability.

Using the formula for dot-product, these logits can be re-written as:

(2.6) zj = ||ej|| ||hi|| cos(θj)

Above, || · || denotes L2 norm, and θj is the angle between the vectors ej, hi. Here,

hi is fixed for all logits, and is known as the query point. For LSTMs, empirical evidence

(not presented) shows that while embeddings ej have a wide distribution of L2 norms,
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they are organized in a narrow cone relative to some reference point. As such, there is

little variation in θj, and ||ej|| dominates the calculation of logits. Dubbed the Stolen

Probability Effect, this is a consequence of the way neural language models organize their

embedding spaces.

To formalize, the convex hull is the unique minimal convex set containing a set of

vectors X. The vectors in the set are the vertices of the convex hull; they encompass the

remaining interior vectors. In this case, we’re interested in C, the convex hull of ET
out.

Here, Demeter et al. [5] prove that if the embedding ej for token tj is interior to C, the

maximum probability that can be assigned to tj using dot-product softmax is bounded by

the probability of at least one tk (k ̸= i) whose embedding ek is a vertex of C. Because the

embedding matrix is fixed after training, some tokens may never receive high probability

simply due to their placement within the embedding space.

In general, smaller embedding spaces suffer more drastically from Stolen Probability.

The lower a model’s embedding dimensionality d, the smaller the percentage of tokens

whose embeddings are vertices of the convex hull of ET
out. This means more tokens are

interior, and have their maximum probability assignments bounded. Language models are

commonly evaluated using a perplexity, a measure that essentially captures the confusion

of a model (lower is better). In terms of this metric, the Stolen Probability Effect may

not always be noticeable. Especially for larger d, fewer embeddings are interior to the

hull, and the embedding space is fully expressive. Still, for certain sentences, there can

be severely sub-optimal placements of probability mass.



22

CHAPTER 3

Stolen Attention

Transformers also use dot-product softmax at the output of the network, and presum-

ably suffer from Stolen Probability. There, a hidden state vector h is compared against

the embeddings in the weight matrix ET
out. Then softmax is applied over the result to

create a probability distribution over the vocabulary words. But Transformers also use

dot-product softmax in the calculation of self-attention. In self-attention, each row i of

D(Q,K) (2.3) represents a dot-product similarity comparison between the query vector

qi at position i of the sequence and all key vectors in K. Then softmax is applied over

the scores to assign attention weights.

The vectors in Q,K come from a smaller embedding space that is unique to each

head. These spaces are formed by down-projecting the models’ full-length, contextualized

embeddings using the WQ,WK matrices in each head. When dot-product softmax is

applied to them in the calculation of self-attention, heads may be subject to a new effect:

Stolen Attention. Here, relative to a reference point qi, tokens whose key vectors kj

lie inside the convex hull of the K matrix will have their maximum attention weight

bounded. Each head may individually experience this effect depending on how it arranges

its embedding space. Furthermore, each sequence incurs a different K matrix, making

Stolen Attention highly nuanced. For example, certain tokens’ key vectors may become

vertices of the convex hull depending on their position in the sequence and the surrounding

context.
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The most important part of confirming the presence of Stolen Attention is the calcula-

tion of the convex hull. In self-attention, every head of every layer projects its input to an

internal set of query, key, and value matrices. The queries and keys are compared using

dot-product, then softmax is applied column-wise to assign separate attention weights to

the keys for every query. This means we must calculate the convex hull of the embeddings

of the K matrix for each head of each layer. With this information, we can see if the

maximum attention weight assigned to a key vector is bounded when it is a vertex of the

convex hull.

Because we focus on Decoder-only transformers, the size of the sequence is important

in our consideration of the convex hull. Here, an auto-regressive mask ensures attention

cannot be paid to tokens beyond the current position of the sequence. Thus, we can only

consider the convex hull (and corresponding attention weights) formed over embeddings

that are not eliminated by the mask. For example, let a sequence be S = t1, t2, . . . , tN . In

the prediction of t2, our only reference token is t1. Thus, every attention head will place all

of its attention on t1. As we increase the sequence length to predict ti given t1, t2, . . . , ti−1,

there is more potential to vary attention weights. Simply put, longer sequences require

us to rank our query vector qi against more keys k1, k2, . . . , ki.

Think of the process of adding keys incrementally as the sequence length increases.

To a certain extent, the keys we add represent entirely new directions in our embedding

space. Thus, they must become vertices of the convex hull or they would not be contained

by it. Beyond that point, new keys introduce no new variation in the embedding space,

and will only become a vertex if they have a sufficiently large norm. We hypothesize



24

that larger context lengths will worsen the Stolen Attention Effect as more embeddings

become interior to the hull of the K matrix.

To that end, we want to analyze the Stolen Attention Effect upon fine-tuning a model

in this work. Other studies have shown that pre-training perplexity is not necessarily

indicative of downstream performance [16]. One potential explanation for this is that

pre-training biases attention weights. Intuitively, the identity of the next token is most

impacted by the few tokens that immediately precede it. As such, the length of the input

sequence is not very important. With some minor exceptions, attention will always be

paid to a select few tokens at the end of the context. Ideally, to demonstrate Stolen

Attention, we need a task that has long context lengths and may require attention to be

placed anywhere in the sequence.
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CHAPTER 4

Experimental Setting

4.1. Architecture and Hyper-parameters

In this work, we focus on the potential for Stolen Attention in Transformers utilizing

self-attention. Specifically, all models we study will be Decoder-only transformers. While

encoder-only transformers like BERT [6] also use self-attention, their inability to generate

text make them less universal. After pre-training, a BERT model must be augmented

with a fine-tuned classification layer to solve downstream tasks. On the other hand, large

generative models can solve a variety of downstream tasks without modifications. This is

done through scaling, careful pre-training, and by following instructions [19], [2].

Unfortunately, we are in a somewhat resource-constrained environment. Thus, we

make a number of architectural decisions to ensure training stability and good convergence

without the need for hyperparameter tuning. For both pre-training and fine-tuning, we

use RAdam [11] with (β1, β2) = (0.9, 0.99) and ϵ = 1 × 10−6. This variant of Adam

[9] was invented to reduce the variance of adaptive learning rates without the need for

warmup. Moreover, we use Pre-LayerNorm for two reasons. First, it has been shown

to achieve good performance without warmup, giving us an additional reason to remove

it [26]. Second, Post-LayerNorm Transformers are more sensitive to hyper-parameter

choices [12]. For increased training stability, weights are initialized using the Scaled

Embed setting suggested by Takase et al. [22]. The input and output embedding layers
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have no bias terms. Other layers’ biases are initialized to 0. We use sinusoidal positional

encodings [23].

We hypothesize that the Stolen Attention Effect will vary with a models’ head di-

mensionality dh. To change dh for experimentation, we can either change the overall

embedding dimensionality d, or the number of attention heads h. Between the two, we

choose to vary h; this allows us to keep a constant parameter count between models. The

table below summarizes the hyper-parameters of the four models we investigate in this

work. To simplify the communication of results, each model is named with respect to the

number of attention heads it has.

Name d h dh f p L N |V | # Params
8-heads 512 8 64 2048 0.1 12 512 16000 54.2M
32-heads 512 32 16 2048 0.1 12 512 16000 54.2M
64-heads 512 64 8 2048 0.1 12 512 16000 54.2M
128-heads 512 128 4 2048 0.1 12 512 16000 54.2M

Table 4.1. Hyper-parameters of trained models. d is model dimensionality,
h is the number of heads, dh is the dimensionality of a head, f is the feed-
forward dimensionality, p is the dropout proportion, L is the number of
layers, |V | is the vocab size, and N is the maximum sequence length.

4.2. Datasets and Training Details

For reproducibility, all parts of the pre-training and fine-tuning processes are seeded

identically. This ensures runs are repeatable, and that models receive the same batches of

data at each step. Seeding is performed via L.seed everything(seed, workers=True),

where seed=7 for pre-training and seed=10 for fine-tuning. For more details on this func-

tion, check out the PyTorch Lightning documentation. Our hardware was of a cluster of 3

NVIDIA Quadro RTX 8000 GPUs running PyTorch 1.12.1, PyTorch Lightning 2.1.0, and

https://lightning.ai/docs/pytorch/stable/common/trainer.html#reproducibility
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CUDA 11.4. Computations were performed using automatic mixed precision. Gradients

are clipped to a norm of 1.0.

To pre-train models, we utilize the wikitext-103 corpus [13]. This dataset consists

of full articles from the set of Good and Featured articles on Wikipedia. It has desig-

nated training, validation, and test sets; we pre-train on the training set and disregard

the test set. Our models use a vocabulary of size |V | = 16000, which come from a Uni-

gram tokenizer [10] that was trained on the raw text from the training set. We use the

sentencepiece implementation of the unigram algorithm. To present data to the model,

we simply tokenize the raw text, then pack tokens into sequences of length 512. We do

not use [SEP] tokens, and our packing does not attempt to preserve full sentences. All

models are trained for 100K steps using a batch size of 40, consuming a total of 2.05B

tokens. We use an initial learning rate of 1× 10−4, which is decayed to 0 over time by a

Reflected Exponential Schedule [3]. This schedule is empirically performant and has no

hyper-parameters.

After pre-training, models are fine-tuned for the OpenBookQA [14] task. This dataset

consists of 4957 train, 500 validation, and 500 test questions. We do not use the test set.

Each multiple-choice question is based on one of 1326 elementary level science facts. The

validation and test questions are considerably higher-quality (and hence more difficult).

To achieve good performance on this task, a model must leverage background knowledge

and multi-hop reasoning learned through pre-training. For each example, we present the

model with the science fact on which the question is based, followed by the question itself,

and then the answer choices. An example encoding can be found in Appendix A. The

model must generate the token representing the correct answer choice (A, B, C, or D).

https://github.com/google/sentencepiece
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The token assigned the highest probability is considered the model’s answer. Here, we

omit the learning rate schedule and opt for a constant learning rate of 1× 10−5. Models

are fine-tuned for 20 epochs with a batch size of 32.

4.3. Loss and Accuracy Curves

Below is the evolution of training and validation loss of the four models as they are

trained on the wikitext-103 corpus. Training loss is averaged over all positions of the

sequence, then averaged over the batches in the epoch. Validation loss is reported in

a sliding window setting; it is averaged over the last position of all sequences in the

validation set. The models are trained for 100K steps, and evaluated after every epoch

they complete. The 100K-step threshold doesn’t complete the 15th epoch, so the terminal

validation loss of each model is not depicted in the plot. The models are ranked in order

of number of heads, suggesting that having fewer heads is better for pre-training on

wikitext-103.

(a) Training Loss (b) Validation Loss

Figure 4.1. Training and Validation Loss during Pre-Training
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Next is the evolution of training and validation accuracy of the four models as they

are fine-tuned on the OpenBookQA dataset. Each model is fine-tuned from its final

checkpoint at the completion of pre-training. The models are trained for 20 epochs, and

evaluated after every epoch they complete. Performance is correlated with pre-training

loss. That is, the better a model does on wikitext-103, the better it does on OpenBookQA.

As such, having fewer heads seems to be advantageous for fine-tuning, too.

(a) Training Accuracy (b) Validation Accuracy

Figure 4.2. Training and Validation Accuracy during Fine-Tuning

Future analysis involving OpenBookQA will be performed with the checkpoint that

achieved the best validation accuracy, even if training accuracy continued to improve.

Our attention statistics are collected within heads when decoding the token for the correct

answer choice (A, B, C, or D). Due to the causal mask in a decoder-only transformer, this

is the only place in the sequence where attention is spread along the entire context. This

allows us to compare our query embedding (which is always for the token [ANS]) against

the full K matrix. Here are the final training and validation performances of the model

checkpoints on the respective datasets:
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Wikitext-103 Perplexity OpenBookQA Accuracy (%)
Name Train Valid Train Valid
8-heads 15.067 15.386 99.072 42.000
32-heads 15.430 15.805 89.974 40.800
64-heads 15.819 16.199 63.506 35.200
128-heads 16.448 17.185 63.204 28.400

Table 4.2. Training and Validation Performances of all Models
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CHAPTER 5

Observations and Analysis

To analyze the extent to which Stolen Attention exists in Transformers, we take the

four model checkpoints (one for each of h = 8, 32, 64, 128) that had the best validation

accuracy on OpenbookQA. Then we run questions from the validation set through each

model. For each head of every layer, we capture a number of statistics. Specifically,

for each token in the question, we note its position in the sequence, the norm of its

key embedding inside each attention head, and the attention weight assigned. For h =

64, 128, we also calculate the convex hull and take note of whether a token was a vertex

of it. Unfortunately, this cannot be done for all models; QuickHull is computationally

intractable beyond dh = 8.

5.1. Convex Hull Observations

We start by analyzing the 64-heads and 128-heads models since we can calculate their

convex hulls. For the sake of brevity, we will show visualizations from the same randomly-

chosen attention head in the last layer of each transformer. After manually inspecting

every head of every layer, the plots and statistics here are very representative. First, we

wish to know the proportion of vertices that makes up the convex hull of each model.

This will bring insight as to how many tokens may have their attention weights bounded.

Figure 5.1 depicts the proportion of keys which are vertices of the convex hull for each

question of the validation set. Our tokenizer encodes the questions such that their lengths
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(a) 128-heads (dh = 4) (b) 64-heads (dh = 8)

Figure 5.1. The proportion of key embeddings on the convex hulls of
randomly-sampled attention heads. Each data point represents a question
from the validation set.

vary from 35 to 141 tokens. The average question length is 62 tokens. We see two facets

of the Stolen Attention Effect being demonstrated here. First, with lower dh, the Stolen

Attention Effect is more prominent. Stolen Attention can only take place if embeddings

are interior to the convex hull. Looking at the plot, there are numerous questions for which

all keys can be placed on the hull of the 64-head model. On the other hand, the 128-head

model lacks expressiveness; there are always some number of embeddings interior to its

hull. Furthermore, the lowest vertex proportion in the 64-head model is larger than the

highest proportion seen in the 128-head model. Second, Stolen Attention worsens as the

context length increases. The 128-head model shows a clear downward trend between

question length and proportion of vertices, meaning more keys are interior to the hull and

have bounded attention. The 64-head model also displays this to an extent, although the

vertex proportions follow a strange banded pattern.
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(a) 128-heads (dh = 4) (b) 64-heads (dh = 8)

Figure 5.2. The number of key embeddings on the convex hulls of randomly-
sampled attention heads. Each data point represents a question from the
validation set. The line y = x (representing a vertex proportion of 1) is
plotted for reference.

To further analyze the behavior seen in 5.1, we plot the number of key embeddings

inside the same heads from both models. It was hypothesized that as the sequence length

expands, a model would reach some maximum number of vertices on its convex hull.

After that point, the sequence is too long, and some keys must become interior to the

hull because the embedding space has run out of directions of variation. Figure 5.2 does

not seem to confirm this hypothesis. Both models display a linearly increasing trend

in the number of vertices on the convex hulls of their K matrices. However, the slope

of the trend is much greater in the 64-head model; it sticks much closer to the y = x

reference line. This illustrates the trend in proportions seen in Figure 5.1. The 128-head

model has more vertices as the context length increases, but the number of vertices grows

more slowly than the question length. Meanwhile, the 64-head model is very close to

accommodating all embeddings as vertices. Perhaps some threshold number of vertices

would be realized with context lengths longer than what we tested with OpenBookQA.
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(a) 128-heads (dh = 4) (b) 64-heads (dh = 8)

Figure 5.3. The maximum attention weight assigned to tokens’ key vectors
when they are a vertex of the convex hull versus when they are interior.
Each data point represents a token used at least once in the validation
set of OBQA. The line y = x (representing the same maximum weight) is
plotted for reference.

The previous plots have confirmed that models with small dh place some key vectors

interior to the convex hull. Those key vectors will have their maximum attention weights

bounded by some other key that is a vertex of the hull. To show the extent to which

weights are bounded, Figure 5.3 displays the maximum attention weight assigned to tokens

when they are a vertex versus when they are interior to the hull. Tokens that are never

interior to the hull have been omitted from the plots. Both models display a tendency to

award higher weights to the token when it appears as a vertex, shown by the prevalence of

points above the y = x reference line. Counterintuitively, the 64-heads model displays a

larger bias toward vertices than the 128-heads model. We will give a potential explanation

for this in Section 5.3.
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5.2. Extrapolating to Larger Models

Without the ability to calculate the convex hulls of models with higher dh, it is diffi-

cult to extend analysis to the 8-heads and 32-heads models. That being said, the main

motivation for the occurrence of Stolen Attention is the arrangement of vectors. In Stolen

Probability, empirical evidence showed that relative to a reference point, LSTMs arrange

embeddings in a wide distribution of norms and a narrow range of angles [5]. Then by

Equation 2.6, the norms dominate the dot-product comparison. Similarly, if Stolen At-

tention is occurring inside models’ attention heads, then the norms of key vectors should

be more widely distributed than the angles between the keys and the query vector.

Figure 5.4. The variance of angles between the query embedding and key
embeddings vs. the variance of key embedding norms. Each data point
represents a question from the OBQA Validation set. Heads were randomly
sampled from the last layer of each model.
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Figure 5.4 displays the variances of those statistics in a representative attention head

from each model. Specifically, for each question in the validation set, we collect the

variance of angles between the query vector and key embeddings. We also plot the variance

of key embedding norms. Unfortunately, this plot seems to show the reverse behavior

of what we’d expect. In the 128-heads model, where Stolen Attention should be most

prominent, we see the greatest variations in angles. As we decrease the number of heads,

we observe less variance in the angles and more variance in the embedding norms. This

shows the importance of calculating the convex hull in the detection of Stolen Attention.

By these statistics alone, we might conclude that the 8-heads model is the most susceptible

to Stolen Attention. Yet, we know that increasing dh from 4 to 8 drastically reduced the

proportion of keys on the convex hull. Thus, the 8-heads model should be the least

susceptible to Stolen Attention.

5.3. Ablating Dot-Product Attention

Ultimately, the Stolen Attention Effect is a consequence of the use of dot-product

(Equation 2.3) as the distance metric in a transformer’s attention head. When dot-product

is used, certain embeddings have their maximum attention weights bounded. Ideally, a

transformer’s potential to assign weights should be free of constraints. That way, we can

pay the most attention to the true keys most relevant to the query. In this section, we

wish to replace Equation 2.3 with a different distance metric. If another metric improves

the assignment of weights to interior points, it may be a solution to Stolen Attention.
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Here, we will use a variant of Euclidean distance to measure similarity. In a normal

transformer, we compare embeddings of Q,K ∈ RN×dh using QKT . Dot-product similar-

ity is theoretically unbounded; large, positive scores represent similar vectors, while neg-

ative scores indicate dissimilarity. Then softmax normalizes the scores into weights such

that large positive scores are the highest. When comparing embeddings using Euclidean

distance, all distances are positive, with ones closest to zero being the most similar. Thus,

we use negative Euclidean distance to maintain the semantics of softmax (most positive

implies most related). Furthermore, we use squared Euclidean distance to avoid taking

the square root of the distances, which is an expensive operation for GPUs. The code for

our implementation can be found in Appendix B. Let Z ∈ RN×N be the output of the

distance metric D(Q,K). Formally, we compare a query qi with keys kj using:

(5.1) Zij = −(||qi − kj||2)2

We train a variant of our 64-heads architecture that uses this new metric for its

self-attention calculation. Besides the new metric, all details of the training process are

identical to the original 64-heads model. Because of our seeding process, the weights of

both models were initialized equally, and models receive the same batches of data at every

step. Thus, the distance metric is the only source of variation. A comparison of the loss

plots is shown in Figures 5.5 and 5.6.
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Figure 5.5. Evolution of 64-heads model variants’ training on wikitext-103.

Figure 5.6. Evolution of 64-heads model variants’ training on OBQA.

The use of Euclidean distance does not improve the model’s pre-training loss (and

therefore perplexity). However, during fine-tuning, the new metric has great improvement

over standard dot-product. Specifically, it beats the dot-product model by 14.27% on

OpenBookQA, achieving a validation accuracy of 40.4%. This serves as further evidence

for the importance of comparing models on downstream tasks, as pre-training performance

suggested the models were very similar.
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(a) Base (Eq. 2.3) (b) Euclidean (Eq. 5.1)

Figure 5.7. Comparison of the same head from the last layer of the 64-heads
variants. Maximum attention weight assigned to tokens’ key vectors when
they are a vertex of the convex hull is shown against the maximum weight
assigned when they are interior. Each data point represents a token. The
line y = x is plotted for reference.

Figure 5.7 demonstrates the effect of this intervention on weights assigned to tokens

in OpenBookQA. Clearly, the heads of a model utilizing Euclidean distance are capable

of assigning higher attention weights to tokens whose keys are interior to the convex

hull. Thus, the improvement in performance may be partially attributed to the avoidance

of the Stolen Attention Effect. Yet, for the majority of tokens, the discrepancy between

maximum weights assigned is still large. Although the Euclidean distance model can place

unbounded attention on interior points, it still chooses to pay more attention when they

are vertices. This suggests that language models learn to place important embeddings on

the convex hull irrespective of the distance metric. We leave this analysis to future work.
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CHAPTER 6

Conclusion and Future Work

We present theoretical and qualitative analyses showing that the use of dot-product

softmax inside of transformers’ attention mechanisms limits their ability to spread atten-

tion. Specifically, key vectors who are interior to the convex hull have their attention

weights relative to a query embedding bounded. We document the potential for Stolen

Attention by showing how many vectors are on the convex hull of the K matrices of

attention heads. We also show the discrepancy in maximum attention weight assigned

when a token is interior to the hull. Finally, we ablate to replace scaled dot-product

attention with negative squared Euclidean attention, which achieves higher performance

on OpenBookQA.

This work was limited in part by computational resources. Unfortunately, the Quick-

Hull algorithm is computationally intractable for embedding spaces beyond eight dimen-

sions. To truly analyze the effects of Stolen Attention in larger models, we must resort

to approximate detection algorithms. We leave this as an item of future work. Yet,

the analysis presented here may be evidence that the Stolen Attention Effect does not

impact models at scale. Even with spaces as small as dh = 8, a high proportion of em-

beddings (85% or more, see 5.1b) can be placed on the convex hull. Although a model

augmented with Euclidean Distance achieved higher accuracy, it also placed significantly

higher weights on tokens when they were vertices. Thus, its performance boost may be
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simply because Euclidean distance better differentiates vectors at this scale. To test this

modification and the source of its power is outside the scope of this research.

Future work should begin with a task that requires larger context lengths. Ultimately,

our tokenization of OpenBookQA left much to be desired. With an average question length

of 62 tokens, we were only able to saturate the embedding space of our smallest model

(128-heads, dh = 4). It’s possible we did not pick a hard enough task to exemplify Stolen

Attention. It would be interesting to see at which sequence lengths larger embedding

sizes begin to struggle. Furthermore, a major component lacking from our analysis is the

connection between Stolen Attention and evaluation metrics like perplexity or accuracy.

While the Stolen Attention effect may be individually experienced per attention head,

our qualitative analysis did not show much variation between attention heads. In fact,

the plots presented are even representative of attention heads from different layers. Yet,

work from Hao et al. [7] shows that certain attention heads are much more impactful

than others in the predictions of a transformer. Perhaps there is a connection between

the extent to which Stolen Attention is present and the importance of a given head.
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APPENDIX A

OpenBookQA Encoding

Our encoding of the questions followed the template below. All items in brackets are

filled in with question-specific details.

Fact:[FACT] Question:[STEM] A:[A] B:[B] C:[C] D:[D] Answer:

Above, the [FACT] is the gold science fact used to create the question [STEM]. Then the

answer choices, e.g. [A], are filled with the text representing that answer choice. Note

that the actual answer choice is not provided in the prompt, it must be generated by

the model. Of course, the token representing the correct answer choice is used in the

calculation of loss to encourage the model to generate it. To visualize, below shows how a

randomly-sampled question from the training set would be encoded. The correct answer

choice is B, which corresponds to token 151 of the model’s vocabulary.

Fact: hawks eat lizards Question: In the desert, a hawk may enjoy an

occasional A: coyote B: reptile C: bat D: scorpion Answer:
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APPENDIX B

Negative Squared Euclidean Distance Calculation

Our codebase utilized an abstract AttentionMechanism class, where each module

must implement the get logits function that returns the comparison of Q,K matrices

over which to apply softmax. Our dot-product models implement Equation 2.3 for this.

Below is the implementation of this function for Negative Squared Euclidean Distance.

Unfortunately, the extra matrix multiplication and aggregation operations cause it to be

slower to compute than dot-product attention. Models trained with this variant took

twice the amount of wall-clock time to complete. We believe the majority of this differ-

ence could be overcome with a fused kernel that computes the entire metric in a single call.

def get logits(self, q, k):

# q, k have size [bsz, n heads, seq len, d h]

Q sq = torch.sum(torch.square(q), axis=3).unsqueeze(3)

K sq = torch.sum(torch.square(k), axis=3).unsqueeze(2)

QK dot = torch.matmul(q, k.mT)

neg sq logits = -(Q sq - 2*QK dot + K sq)

return neg sq logits


