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Abstract

Graphs are extremely versatile data structures used to represent pieces of data and
the connections between them in a variety of computer science fields. Specifically,
in the video game development space, graphs can be used to represent a variety of
concepts, from character relationships to waypoint-based maps to branching questlines.
Oftentimes, game developers seek to randomly generate such game content to promote
replayability, integrate content with mechanics, and lessen the manual design workload
in the development process. SAT solvers are logic programming systems that can
be used to allow video game developers to specify constraints for the content which
they wish to randomly generate. Previous game development research has utilized
SAT solvers to generate objects such as characters and settings. However, generating
relationship graphs between objects has remained an open problem. In particular,
graph connectivity and transitive closure are not expressible in first-order logic, so they



are generally difficult problems for SAT solvers, but not for ASP. Moreover, previous
algorithms for connectivity and pathfinding tend to be slower and more expensive
than current SAT algorithms. This paper discusses an extension of the embedded
C#-based SAT solver, CatSAT, for generating random graphs under certain imposed
constraints. Furthermore, we present and discuss an approach to using CatSAT to
generate graphs satisfying constraints including, but not limited to, connectivity, paths
between vertices, density, and vertex degree.
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Imposing Constraints on Randomly Generated Graphs
in CatSAT

Mercedes Sandu

1 Introduction

1.1 Background: Procedural
Content Generation

Procedural content generation (PCG) is a
method frequently used in video games and
other software projects to create random-
ized data algorithmically over a specific do-
main. Many notable examples of PCG in-
clude (but are not limited to) sidescrolling
levels, character design, terrain, story, di-
alogue, and in-game items. While the re-
liance of a video game on PCG is a spec-
trum that can be assessed a variety of ways,
there are three main factors worth noting
[1]:

1. Replayability and adaptability.

2. Relationship to game mechanics and
dynamics [2].

3. Player’s control over content.

Possibly the most common outcome of
using PCG in a video game is increased
replayability, as content that varies from
playthrough to playthrough of a game can
lead to diverse play experiences. Another
benefit of using PCG in video game devel-
opment is the automation of design pro-
cesses and bypassing technical limitations,
which is especially advantageous for devel-
opers working on small teams with limited
resources.

PCG can also be intricately and inte-
grally tied to the mechanics and dynam-
ics of a video game. In these cases, the
video game directly relies on the PCG sys-
tem such that gameplay would otherwise
not be possible. Notable examples include
games that rely on randomized items for
the player to choose from in combat and
infinite sidescrollers that generate the map
as the player traverses it. The core mechan-
ics in such games would not be possible to
implement without PCG.

Furthermore, PCG has been used to cre-
ate video games that dynamically adapt
to a player’s skill level, changing difficulty
and other facets of player experiences in
the game either at runtime or offline. The
player is hence allowed to “interact” with
the generator (albeit, in this case, indi-
rectly) for what may be a more desirable
playstyle. This kind of indirect control over
content being generated in a game is more
common than direct control. Direct con-
trol over the generator would likely involve
the player being able to interact with some
kind of tool that tweaks parameters or con-
straints passed to the generator.

1.2 Background: SAT Solving

As PCG systems rely on random choices
in a finite domain to be made under con-
straints specified by a designer or devel-
oper, constraint programming proves to be
a feasible and attractive approach for devel-
oping such systems. This is because con-
straint programming is inherently modu-
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lar and data-driven, allowing designers to
add and remove constraints to a particu-
lar generator without needing to modify
or develop the underlying algorithm that
searches for a model satisfying all specified
constraints.

Consequently, Boolean Satisfiability
(SAT) and Answer-Set Programming
(ASP) are two such algorithms used to
solve PCG satisfaction problems [3]. Both
SAT techniques and ASP have been ex-
tensively researched and optimized, and
each have their own sets of benefits and
drawbacks. ASP’s advantages include a
succinct first-order language for describ-
ing constraint-based problems, support for
pseudo-boolean constraints (for example,
“pick n from a menu”), transforming pro-
grams into SAT problems, and the use of
non-monotonic logic to support minimiza-
tion. The last item on this list is something
of a double-edged sword, as its strength
comes at the expense of simple, intuitive
syntax and an easy divide-and-conquer de-
bugging experience.

ASP is a more favorable choice for PCG
systems that rely on concepts such as reach-
ability, transitive closure, and provability.
Notable examples include game generation
[4] and level generation [5] that force par-
ticular solutions. However, these features
along with minimization are not necessar-
ily required for many other types of PCG
systems, and using a SAT solver would be
more appropriate.

A stochastic local search SAT (SLS SAT)
algorithm typically initializes the problem
with a random truth assignment and re-
peatedly “flips” the truth assignment of a
chosen variable, meaning to say variables
that are true are flipped to false, and vice
versa, until a model (solution that satis-
fies all constraints) is found [6]. The choice

of which variable is to be flipped changes
based on the particular SAT algorithm that
is being used.

GSAT is a greedy algorithm that chooses
to flip a variable that leads to the largest
decrease in the total number of unsatisfied
clauses. Local minima become a problem as
GSAT may get stuck flipping variables that
do not lead to a better solution state; this is
unfavorable when considering that Boolean
satisfiability requires finding global optima
[6].

Randomness is introduced to decrease
the likelihood of the solver encountering lo-
cal minima in the WalkSAT algorithm. This
is done via a noise parameter, which is a
value from 0 to 1 that dictates the de-
gree of greediness employed when selecting
a variable to flip. The greediness ranges
from none, indicating selecting a variable
at random (according to a uniform prob-
ability distribution), to entire, indicating
selecting a variable that leads to a maxi-
mized decrease in the amount of currently
unsatisfied clauses. The value the noise pa-
rameter takes can significantly affect per-
formance and behavior of the algorithm
throughout the solving process; however
finding an optimal noise setting is typically
difficult. Heuristics such as Novelty+ and
R-Novelty+ have been developed to opti-
mize the noise parameter while the solver
is running [7].

Other variants of SAT solvers have been
developed and studied, which will be ana-
lyzed and discussed further in Section 1.4.

1.3 Problem Description

CatSAT is a stochastic SAT solver written
by Dr. Ian Horswill as an embedded lan-
guage in C#. After converting a SAT prob-
lem into conjunctive normal form, CatSAT
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uses a variant of the WalkSAT algorithm to
generate a model that satisfies the user-
inputted constraints. Prior to starting this
project, CatSAT could only solve for mod-
els when inputted either boolean or pseudo-
boolean (float or integer) constraints. The
primary aim of this project is to expand
CatSAT to allow for constraints to be im-
posed on randomly generated graphs. This
is accomplished by creating an API with a
small variety of different graph constraints
as well as the option for the user to imple-
ment constraints of their own.

1.4 Challenges and Previous
Work

Randomized graph generation under cer-
tain imposed constraints has been previ-
ously explored, especially attempting to
solve the problem using SAT solvers. For
instance, Picat (a Prolog-like language)
has been used to model the Roadrunner,
Masyu, Shingoki, and Tapa graph synthesis
problems and solve them using SAT. Exe-
cution times for these problems of differ-
ent sizes span a range of anywhere from
half a second to almost nine seconds in-
cluding both translation and solving times
[8]. Randomized graph generation is also
a problem that has been attempted to be
solved. Although not through SAT solving,
a polynomial time algorithm with O

(
n13/2

)
has been developed to generate labeled pla-
nar graphs randomly on a uniform distribu-
tion [9].

Graph connectivity in particular has
proven to be a difficult problem for SAT
solvers because connectivity of a graph and
transitive closure are not expressible in
first-order logic. SAT solvers require propo-
sitional logic, which is even weaker than
first-order logic. A relation R is transitive

if R(x, y) and R(y, z) ⇒ R(x, z), which is
representable in first-order logic. The tran-
sitive closure R+ of a relation R is the
smallest relation that is transitive and con-
tains R. If R is thought of as a graph, then
R+ describes which nodes are connected
[10]. First-order logic is compact, mean-
ing that a set of first-order sentences has a
model if and only if every finite subset of
it has a model [11]. The class of connected
graphs, however, is not compact [12].

Note that connected graphs with n ver-
tices can be axiomatized using the Floyd-
Warshall algorithm [13]:

connected(x, y)← c(x, y, V )

c(x, y, 0)← edge(x, y)

c(x, y, k)← c(x, y, k − 1)

c(x, y, k)← c(x, k, k − 1) ∧ c(k, y, k − 1)

This, unfortunately, generates a prob-
lem of size O (n3) for the SAT solver,
which is not particularly favorable. So-
lution time for graph connectivity via the
Floyd-Warshall algorithm encoded in Cat-
SAT is approximately 40 microseconds on
average for a graph of five vertices and ap-
proximately 40 milliseconds on average for
a graph of 20 vertices, which is incredibly
long for a video game [12].

Graph connectivity is just one poten-
tial constraint which can be imposed on
a randomly generated graph. Other con-
straints could prove to be even slower
in runtime as pathfinding algorithms and
graph search algorithms are nearly always
supralinear. Letting V be the number
of vertices in a graph and E the number
of edegs, Dijkstra’s algorithm has a time
complexity of O(E + V log V ), Bellman-
Ford has a time complexity of O(V E),
Johnson’s algorithm has a time complexity
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of O (V E + V 2 log V ), and Floyd-Warshall
has a time complexity of O (V 3).

1.5 Paper Organization

Section 1 discussed the motivations behind
this project, previous related work done,
and challenges posed to the subject matter.

A more in-depth overview of SLS SAT
solving will be presented in Section 2, along
with more details regarding pseudocode
and strengths and weaknesses of SLS SAT
solvers.

Then, in Section 3, the implemented
codebase will be described, beginning with
an overview of how to use CatSAT, the
data structures present which allow for the
construction of graph constraints, and the
implementations of the graph constraints
themselves. It will also include a brief note
on interpreting solution results, as well as
numerous examples with code snippets and
figures, and conclude with runtime analy-
sis.

Next, Section 4 will introduce the vast
possibilities of applications of graph con-
straints in video games. In particular, a
video game developed in Unity, Cards for
Family Chaos, will be presented and de-
tailed with code snippets and screenshots.

Finally, in Section 5, a concluding dis-
cussion and opportunities for future work
will be given.
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2 SLS SAT Solving

An introduction to SAT solvers was pre-
sented in Section 1.2. This section will ex-
plore generic SLS solving, the WalkSAT al-
gorithm, arbitrary constraints, and the way
these concepts will intersect in the work dis-
cussed in Section 3.

A generic SLS solver is given by the fol-
lowing pseudocode:

1 While not all constraints satisfied:

2 Pick a random constraint

3 Make a greedy choice for what

variable to flip from the

constraint

4 Flip the chosen variable and update

everything

The greediest choice of the variable to
flip results in the largest decrease in the
total number of unsatisfied clauses. Some
constraint-based problems may be contra-
dictory and hence will not have a solution,
so it is very common to implement a max-
imum number of flips for the variables in
a given constraint as well as a maximum
number of attempts to solve the problem.
This would make the pseudocode look more
like this:

1 For i = 1 to MAX_TRIES:

2 Pick a random constraint

3 For j = 1 to MAX_FLIPS:

4 Make a greedy choice for what

variable to flip from the

constraint

5 Flip the chosen variable and

update everything

6 If a solution was found, return it

7 Otherwise return an exception

Basic SAT solvers typically have only
one kind of constraint, but they can be gen-
eralized to allow for arbitrary constraints as
follows:

1 While not all constraints satisfied:

2 Pick an unsatisfied constraint c

3 Let v_c = the variables in c

4 Let p_c ⊆ v_c = the variables in

the constraint that would move

c closer to being satisfied

5 Let best = minv in p c cost(c)

6 Flip best

7 Update everything

For clauses, p c is the same as v c. For
cardinality constraints, p c is the set of
false literals if the constraint is unsatisfied
due to having too few true literals, or p c

is the set of true literals if the constraint
is unsatisfied due to having too many true
literals.

Each constraint has a cost function as-
sociated with it, which returns a number
corresponding to how favorable or unfavor-
able it would be to flip a given variable
within the constraint.

As mentioned previously, the issue with
always choosing the variable to flip greedily
is the possibility of the solver reaching a lo-
cal minimum and getting stuck flipping the
same variables over and over again. This
is combated in the WalkSAT algorithm by
introducing a noise parameter which con-
trols whether the variable to flip is chosen
randomly or greedily. The WalkSAT pseu-
docode is given by:

1 While not all constraints satisfied:

2 Pick an unsatisfied constraint c,

randomly

3 Let v_c = the variables in c

4 With probability p:

5 Let rand_v = random variable in

v_c

6 Flip rand_v

7 Update everything

8 Else:

9 Let p_c ⊆ v_c = the variables

in the constraint that

would move c closer to
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being satisfied

10 Let best_v = minv in pc
cost(c)

11 Flip best_v

12 Update everything

Again, WalkSAT is often implemented
with a maximum number of solution at-
tempts and a maximum number of flips to
ensure that the solver terminates in a rea-
sonable amount of time.

The basic algorithm for making a con-
nected graph is to use a spanning forest
and greedily add edges that connect trees
within the forest, until the forest has one
overall connected component. Hence, this
algorithm can be integrated into the above
framework by making it a constraint (that
the generated graph must be connected).
The variables to be flipped are the edges in
the graph, which are added to or removed
from the graph when variables are flipped
by the solver. This is a versatile approach
to adding non-SAT greedy algorithms to
SLS SAT solvers, and implementations of
such are given in Section 3.
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3 Graph Constraint Algorithms in CatSAT

3.1 General Idea

Using CatSAT, a constraint problem is ini-
tialized using

1 Problem p = new Problem();

Then, a graph is initialized for the problem
to be solved, passing the problem p, the
number of nodes, and optionally the initial
density of the graph. For example, one may
write

1 Graph graph = new Graph(p, 20, 0);

to initialize a graph with 20 nodes that has
no edges to start. Note that the last field is
optional and by default gives the new graph
an initial density of 0.5. From here, the
user can add constraints to be imposed on
the graph via their public methods. For ex-
ample, if the user desired for the generated
graph to be connected, they would write

1 graph.AssertConnected();

If there is not a public method for a
particular graph constraint or the user
writes their own constraint, they can al-
ternatively be imposed on the constraint
problem to be solved by calling the
AddCustomConstraint function. For ex-
ample, if a user wrote a new graph
constraint called MyGraphConstraint that
takes the graph itself as input, they would
write

1 p.AddCustomConstraint(new

MyGraphConstraint(graph));

Once all desired graph constraints have
been added, all that is left to do is to call
the function that solves the problem:

1 p.Solve();

Note that CatSAT does have a maximum
number of flips it will attempt until a time-
out, which is available to the user to modify.

At the time of writing this paper, the
list of constraints that a user can readily
use are:

• GraphConnectedConstraint, called
via the public method
AssertConnected, which ensures
that the graph generated is connected

• SubsetConnectedConstraint,
called via the public method
AssertConnected, which ensures
that a subset of vertices in the graph
generated are connected

• NodesConnectedConstraint, called
via the public method
AssertNodesConnected, which en-
sures that two specified nodes in the
graph have a path between them

• Density, which is a public method
that ensures that the density of the
graph is contained between the spec-
ified lower and upper bounds

• VertexDegree, which is a public
method that ensures a specified ver-
tex has degree contained between the
specified lower and upper bounds

• AssertNBridges, which is a public
method that ensures that the number
of edges between two specified sub-
graphs is contained between the spec-
ified lower and upper bounds
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3.2 Data Structures

3.2.1 EdgeProposition

An EdgeProposition is a special type
of proposition representing an edge be-
tween a specified SourceVertex and
DestinationVertex. As a proposition is
a type of literal, an EdgeProposition has
a truth value that gets flipped by the
boolean SAT solver. An EdgeProposition

(n,m) with a truth value of true indi-
cates that the edge between vertices n and
m is present in the graph, and a truth
value of false indicates that the edge be-
tween vertices n and m is not present
in the graph. Thus, the “flipping” of
an EdgeProposition’s truth value encom-
passes adding the edge (n,m) to the graph
if the truth value flips from false to true,
and removing the edge (n,m) from the
graph if the truth value flips from true to
false.

3.2.2 Graph

A Graph is the data structure representing a
graph to be constructed within the problem
CatSAT is attempting to solve. It is con-
structed with a Problem, an integer num-
ber of vertices in the graph, and option-
ally an initial density to the graph. When
the constructor is called, an integer array
is populated with the vertices of the graph,
a spanning forest is initialized, an empty
list of Subgraphs is initialized, and two dic-
tionaries are built that map every possible
EdgeProposition (n,m) to its correspond-
ing SATVariable index, and vice versa.

As EdgePropositions are flipped while
the boolean SAT solver is running, the
Graph’s SpanningForest is maintained
and updated accordingly with functions
ConnectInSpanningForest (when adding

an edge) and Disconnect (when removing
an edge).

ConnectInSpanningForest adds the
edge (n,m) to the spanning forest by call-
ing Union:

1 public void ConnectInSpanningForest(

int n, int m)

2 {

3 bool edgeAdded = SpanningForest.

Union(n, m);

4 if (edgeAdded) Console.WriteLine($"
Connected {n} and {m} in Graph

.");

5 }

See Section 3.2.4 for more information
regarding the SpanningForest Union func-
tion.

If the edge is present in SpanningForest,
Disconnect clears the graph’s spanning
forest and rebuilds it without the edge that
was specified to be removed:

1 public void Disconnect(int n, int m)

2 {

3 ushort edgeIndex = Edges(n, m).

Index;

4 if (!SpanningForest.Contains(

edgeIndex)) return;

5

6 SpanningForest.Clear();

7 _spanningForestBuilt = false;

8 Console.WriteLine($"Disconnected {n

} and {m} in Graph.");

9 RebuildSpanningForest();

10 }

Rebuilding a spanning forest constitutes
calling ConnectInSpanningForest for ev-
ery edge proposition that has truth value
set to true in the boolean solver’s current
solution state:

1 private void RebuildSpanningForest()

2 {

3 SpanningForest.Clear();

4 IEnumerable<EdgeProposition>

trueEdges = SATVariableToEdge.

Values.Where(edge => Solver.
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Propositions[edge.Index]);

5 foreach (EdgeProposition

edgeProposition in trueEdges)

6 {

7 ConnectInSpanningForest(

edgeProposition.

SourceVertex,

edgeProposition.

DestinationVertex);

8 }

9

10 _spanningForestBuilt = true;

11 }

3.2.3 Subgraph

A Subgraph is a data structure represent-
ing a subset of a Graph. It is constructed
with a reference to its original Graph and
a list of the integer vertices present in the
subgraph. When the constructor is called,
the vertices are copied into a local integer
array and the SATVariableToEdge dictio-
nary is populated with edge propositions
in the original graph that occur exclusively
between vertices in the subgraph. Then, a
spanning forest is initialized and the sub-
graph is added to the original graph’s list
of subgraphs.

EdgePropositions in a Subgraph are
flipped in the same way that they are
flipped in a Graph, as Subgraph has its
own analogous definitions of the functions
ConnectInSpanningForest, Disconnect,
and RebuildSpanningForest.

3.2.4 SpanningForest

A SpanningForest is a modified Union-
Find data structure used by Graphs and
Subgraphs to keep track of connected com-
ponents and paths relevant to the various
constraints that may be imposed on a given
SAT problem. It is initialized either with

a Graph or a Subgraph. When the con-
structor is called, the number of connected
components is set to the number of vertices
in the Graph or Subgraph, an integer array
of representatives and ranks is initialized,
and a list of edges in the spanning forest is
initialized. Initially, each vertex is its own
representative, and its rank is 0.

The representative of a vertex is found
by recursively calling the Find function:

1 private int Find(int n)

2 {

3 int nRep = _repsAndRanks[n].

representative;

4 return nRep == n ? n : Find(nRep);

5 }

Two vertices are joined in a spanning
forest by calling the Union function, which
sets the representatives of the two vertices
to be the same, choosing the representative
by whichever vertex has higher rank. If the
vertices did not already have the same rep-
resentative, the number of connected com-
ponents is decremented and the function re-
turns true. The function is given below:

1 public bool Union(int n, int m)

2 {

3 int nRep = Find(n);

4 int mRep = Find(m);

5

6 if (nRep == mRep) return false;

7

8 ushort edge = _graph.

EdgeToSATVariable[_graph.Edges(

n, m)];

9 _edges.Add(edge);

10

11 int nRank = _repsAndRanks[nRep].

rank;

12 int mRank = _repsAndRanks[mRep].

rank;

13 if (nRank < mRank)

14 {

15 _repsAndRanks[nRep].

representative = mRep;

16 }

17 else if (nRank > mRank)
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18 {

19 _repsAndRanks[mRep].

representative = nRep;

20 }

21 else

22 {

23 _repsAndRanks[mRep].

representative = nRep;

24 _repsAndRanks[nRep].rank++;

25 }

26

27 ConnectedComponentCount--;

28 return true;

29 }

Two vertices are in the same equivalence
class if they have the same representative:

1 public bool SameClass(int n, int m) =>

Find(n) == Find(m);

SpanningForests also have functions to
determine if the addition of an edge would
result in connecting two vertices and if the
removal of an edge would result in the dis-
connecting of two vertices. The addition
of an edge results in the vertices n and m
being connected if either:

• n has the same representative as the
added edge’s source vertex, and m
has the same representative as the
added edge’s destination vertex, or

• n has the same representative as the
added edge’s destination vertex, and
m has the same representative as the
added edge’s source vertex.

1 public bool WouldConnect(int n, int m,

EdgeProposition edge)

2 {

3 int nRep = Find(n);

4 int mRep = Find(m);

5 int sourceRep = Find(edge.

SourceVertex);

6 int destRep = Find(edge.

DestinationVertex);

7 return (nRep == sourceRep && mRep

== destRep) || (nRep == destRep

&& mRep == sourceRep);

8 }

The removal of an edge may disconnect
two vertices in the same equivalence class
if the edge being removed is present in the
spanning forest:

1 public bool MightDisconnect(

EdgeProposition edge) => _edges.

Contains(edge.Index);

3.2.5 CustomConstraint

A CustomConstraint is a subclass of
Constraint in CatSAT that allows devel-
opers to create a constraint with additional
custom fields and properties.

3.3 Algorithms

In general, each algorithm utilizes a cost
function to determine whether a particu-
lar edge should be flipped (which, in this
context, means to say the edge is added
if it is not currently present or removed if
it is currently present) by the SAT solver
given the current state of the problem.
There are two particular cost functions:
AddingRisk, used to assess the favorability
of adding a particular edge to the graph,
and RemovingRisk, used to assess the fa-
vorability of removing a particular edge
from the graph. Furthermore, each algo-
rithm internally maintains a spanning for-
est which is crucial in evaluating the cost
of flipping an edge in the graph. Note that
EdgeAdditionRisk is set to -1 to indicate
a favorable choice and EdgeRemovalRisk is
set to 1 to indicate an unfavorable choice.
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3.3.1 GraphConnectedConstraint

In order for a graph to be connected, it
must have one connected component. An
edge is then considered to be flipped based
on the following logic:

1 public override int CustomFlipRisk(

ushort index, bool adding)

2 {

3 int componentCount = SpanningForest

.ConnectedComponentCount;

4 if (componentCount == 1 && adding)

return 0;

5 EdgeProposition edge = Graph.

SATVariableToEdge[index];

6 return adding ? AddingRisk(edge) :

RemovingRisk(edge);

7 }

Then, the cost associated with adding an
edge is given by the following logic:

1 private int AddingRisk(EdgeProposition

edge) => Graph.AreConnected(edge.

SourceVertex, edge.

DestinationVertex) ? 0 :

EdgeAdditionRisk;

The cost associated with removing an
edge is given by the following logic:

1 private int RemovingRisk(

EdgeProposition edge) =>

SpanningForest.Contains(edge.Index

) ? EdgeRemovalRisk : 0;

These three functions mean to evaluate
the following:

• Adding an edge is favorable if it re-
sults in the source and destination
vertices being in the same equivalence
class. Adding an edge is never unfa-
vorable.

• Removing an edge is unfavorable if it
is currently in the spanning forest be-
ing maintained for the graph. Remov-
ing an edge is never favorable.

• If there is exactly one connected com-
ponent in the graph (meaning that
the graph itself is connected), then
adding an edge is neither favorable
nor unfavorable.

The GreedyFlip function in CatSAT is
overridden in GraphConnectedConstraint

to favor flipping edges that are between ver-
tices which are not in the same equivalence
class.

The GraphConnectedConstraint is sat-
isfied when the spanning forest of the Graph
has a ConnectedComponentCount of 1.

3.3.2 SubsetConnectedConstraint

The SubsetConnectedConstraint be-
haves in a similar nature to the
GraphConnectedConstraint, except it op-
erates on a Subgraph, or a subset of the
vertices of the original Graph. A Subgraph

maintains its own spanning forest separate
from that of the original Graph, updating
both itself and the original Graph’s span-
ning forest when edges are added and re-
moved.

Note that a Subgraph is initialized with
the Graph from which it originates and an
IEnumerable of the vertices it contains.
For example:

1 Problem p = new Problem();

2 Graph g = new Graph(p, 5, 0);

3 Subgraph s = new Subgraph(g, new[] {

0, 1, 2 });

This code creates a Graph with five ver-
tices (labeled 0, 1, 2, 3, and 4) and a
Subgraph of graph containing the vertices
0, 1, and 2.

The logic for CustomFlipRisk,
AddingRisk, RemovingRisk, and
GreedyFlip are otherwise the same as for
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those in GraphConnectedConstraint.

The SubsetConnectedConstraint

is satisfied when the spanning
forest of the Subgraph has a
ConnectedComponentCount of 1.

3.3.3 NodesConnectedConstraint

Two nodes, namely SourceNode and
DestinationNode, in a graph are consid-
ered connected if there exists a path be-
tween them. This constraint in particular
has two primary modes of operation based
on whether the path between the nodes has
been constructed while a model has not yet
been found.

If the path has not yet been constructed,
an edge is considered to be flipped based on
the following logic:

1 public override int CustomFlipRisk(

ushort index, bool adding)

2 {

3 EdgeProposition edge = Graph.

SATVariableToEdge[index];

4 bool previouslyConnected = Graph.

AreConnected(edge.SourceVertex,

edge.DestinationVertex);

5 if (previouslyConnected && adding)

return 0;

6 return adding ? AddingRisk(edge) :

RemovingRisk(edge);

7 }

Then, the cost associated with adding an
edge is given by the following logic:

1 private int AddingRisk(EdgeProposition

edge)

2 {

3 if (SpanningForest.WouldConnect(

SourceNode, DestinationNode,

edge)) return EdgeAdditionRisk

* 2;

4 return Graph.AreConnected(edge.

SourceVertex, edge.

DestinationVertex) ? 0 :

EdgeAdditionRisk;

5 }

The cost associated with removing an
edge is given by the following logic:

1 private int RemovingRisk(

EdgeProposition edge) =>

SpanningForest.Contains(edge.Index

) ? EdgeRemovalRisk : 0;

These three functions mean to evaluate
the following:

• Adding an edge is extremely favor-
able if it results in SourceNode and
DestinationNode being in the same
equivalence class. Adding an edge is
favorable if the edge’s source and des-
tination vertices are not currently in
the same equivalence class. Adding
an edge is never unfavorable.

• Removing an edge is unfavorable if it
is currently in the spanning forest be-
ing maintained for the graph. Remov-
ing an edge is never favorable.

• If the edge’s source and destination
vertices were already connected (in
the same equivalence class) prior to
the flip, then adding an edge is nei-
ther favorable nor unfavorable.

Alternatively, if the path has been con-
structed and there are still constraints
which are yet to be satisfied, then the
boolean flag keeping track of this state is
set to true and a breadth-first search runs
(via the ShortestPath method) to find
the shortest path between SourceNode and
DestinationNode, storing these edges in a
list of their indices. Then, the logic that
runs for CustomFlipRisk and AddingRisk

is the same as previously stated. However,
the cost associated with removing an edge
differs, instead given by the following logic:
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1 private int RemovingRisk(

EdgeProposition edge) =>

_edgesInPath.Contains(edge.Index)

? EdgeRemovalRisk * 2 : 0;

This means to say that it is extremely
unfavorable to remove an edge that is
in the path connecting SourceNode and
DestinationNode, otherwise it is neither
favorable nor unfavorable.

The logic for GreedyFlip is the same
as that in GraphConnectedConstraint and
SubsetConnectedConstraint.

The NodesConnectedConstraint

is satisfied when SourceNode and
DestinationNode are connected via some
path and hence are in the same equivalence
class.

3.3.4 Density

A graph’s density is the ratio of edges
present in a graph to the total number of
possible edges in the graph. The Density

constraint asserts that a graph has den-
sity between a specified minimum and max-
imum (inclusive of both bounds). This
constraint utilizes CatSAT ’s Quantify con-
straint, which asserts that the number of
true literals in a specified set is bounded by
a specified minimum and maximum (also
inclusive of both bounds). The logic is
given by:

1 public void Density(float min, float

max)

2 {

3 int edgeCount = SATVariableToEdge.

Count;

4 IEnumerable<EdgeProposition> edges

= SATVariableToEdge.Values;

5 int minEdges = (int)Math.Round(min

* edgeCount);

6 int maxEdges = (int)Math.Round(max

* edgeCount);

7 Problem.Quantify(minEdges, maxEdges

, edges);

8 }

Note that both Graph and Subgraph

have a Density constraint.

3.3.5 VertexDegree

The VertexDegree constraint asserts that
a specified vertex has degree between speci-
fied minimum and maximum values (inclu-
sive of both bounds). This constraint also
utilizes Quantify, and the logic is given by:

1 public void VertexDegree(int vertex,

int min, int max)

2 {

3 IEnumerable<EdgeProposition>

incidentEdges = from v in

Vertices where v != vertex

select Edges(v, vertex);

4 Problem.Quantify(min, max,

incidentEdges);

5 }

Note that both Graph and Subgraph

have a VertexDegree constraint.

3.3.6 AssertNBridges

A bridge is an edge whose removal would
result in an increase in the number of
connected components in a graph. The
Graph class has a public constraint method
AssertNBridges that ensures that the
number of such bridge edges between two
specified Subgraphs is contained between
a minimum and maximum number (inclu-
sive). It also uses the Quantify method
to impose a constraint on the bridge edges
that could exist between two Subgraphs.
These bridges are found with the following
logic:
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1 private IEnumerable<EdgeProposition>

EdgesBetweenSubgraphs(Subgraph s1,

Subgraph s2)

2 {

3 List<EdgeProposition> edges = (from

v1 in s1.Vertices from v2 in

s2.Vertices select Edges(v1, v2

)).ToList();

4 return edges;

5 }

Then, AssertNBridges is given by:

1 public void AssertNBridges(int min,

int max, Subgraph s1, Subgraph s2)

2 {

3 IEnumerable<EdgeProposition>

bridges = EdgesBetweenSubgraphs

(s1, s2);

4 Problem.Quantify(min, max, bridges)

;

5 }

3.4 Interpreting Results

Calling the Solve function on an initialized
Problem in CatSAT will not inherently dis-
play the generated graph. However, it is
fairly simple to obtain relevant properties
of the Solution: the Graph’s vertices, all
possible EdgePropositions, and the list of
EdgePropositions which have a truth as-
signment of true in the outputted model.
Suppose we instantiate and solve the fol-
lowing problem:

1 public void InterpretingResults()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, 10);

5 g.AssertNodesConnected(0, 1);

6 g.AssertConnected();

7 Solution s = p.Solve();

8 }

Both before and after Solve() is exe-
cuted, the Graph’s vertices can be retrieved
using

1 int[] vertices = g.Vertices;

Similarly, all possible EdgePropositions
in the Graph can be obtained by writing

1 IEnumerable<EdgeProposition> allEdges

= g.SATVariableToEdge.Values;

Finally, after Solve() is executed, the
EdgePropositions set to true (equiva-
lently, the edges which are present in the
model after solving has concluded) are ac-
quired with

1 IEnumerable<EdgeProposition>

edgesInSolution = g.

SATVariableToEdge.Select(pair =>

pair.Value).Where(edge => s[edge])

;

3.5 Examples

In this section, multiple examples of code
snippets and corresponding graphs gener-
ated by CatSAT are provided for the var-
ious constraints described in Section 3.3.
Note that, in the following figures, green
edges represent those which are present
in the Graph’s SpanningForest, and red
edges represent those which are not present.

First, consider a simple example of a
GraphConnectedConstraint imposed on a
Graph with five vertices and an initial edge
probability of 0. With such an initial prob-
ability, a tree will be generated, as the al-
gorithm will keep adding edges that reduce
the number of connected components un-
til the graph reaches one connected compo-
nent.

1 public void FigureOne()

2 {

3 Problem p1 = new Problem();

4 Graph g1 = new Graph(p1, 5, 0);

5 g1.AssertConnected();
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6 p1.Solve();

7 }

0

2

1

3

4

Figure 1: Connected graph with five ver-
tices and initial edge probability of 0.

Note that, if the edge probability is not
specified, it is by default set to 0.5f, and
there may be additional edges present in
the solution graph that are not in the span-
ning forest. As such, the initial edge proba-
bility essentially functions as a soft density
constraint. In the absence of a Density

constraint, an initial edge probability of p
will likely result in a generated graph whose
density is very close to p.

1 public void FigureTwo()

2 {

3 Problem p2 = new Problem();

4 Graph g2 = new Graph(p2, 5);

5 g2.AssertConnected();

6 p2.Solve();

7 }

0 2

4 1

3

Figure 2: Connected graph with five ver-
tices and initial edge probability of 0.5f.

The GraphConnectedConstraint also
works very quickly for graphs of even larger
size.

1 public void FigureThree()

2 {

3 Problem p3 = new Problem();

4 Graph g3 = new Graph(p3, 40, 0);

5 g3.AssertConnected();

6 p3.Solve();

7 }
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Figure 3: Connected graph with 40 vertices and initial edge probability of 0.

When generating graphs with an even larger number of vertices, note that having an
initial edge probability greater than 0 aids with solution time and increases the likelihood
that CatSAT does not time out. This is exemplified when generating a graph with, say, 100
vertices.

1 public void FigureFour()

2 {

3 Problem p4 = new Problem();

4 Graph g4 = new Graph(p, 100);

5 g4.AssertConnected();

6 p4.Solve();

7 }

18



0
1

10

11

16

18

19

22

25

26

29

30

33

35

37

39

40

43

46

49

50

53

54

55

57

58 61

64
69

72

75

76

78

80

83

87

94

99

3

4

7

8

15

20

21

23

27

31

34

36

41

42

44

47

48

65

68

70

71

73

74

77 79

82

85

86

90

91

95

98

2

14

38

45

56

60

63

66

84

88

89

93

5

6

12

17

24

28

32

62

92

9

13

51

59

81

67

52

96

97

Figure 4: Connected graph with 100 vertices and initial edge probability of 0.5f.

Now consider generating a graph that
has a path between two specified vertices,
for example, nodes 0 and 1. Note that the
path is shown in Figure 5 in blue, whereas
other edges in the spanning tree are in
green.

1 public void FigureFive()

2 {

3 Problem p5 = new Problem();

4 Graph g5 = new Graph(p5, 10, 0);

5 g5.AssertNodesConnected(0, 1);

6 p5.Solve();

7 }
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75

6

Figure 5: Path generated between vertices
0 and 1 (blue).

Multiple assertions that paths between
different vertices in a graph exist, and
again, increasing the likelihood that Cat-
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SAT does not time out when finding a so-
lution is achieved by increasing the initial
edge probability. Note that, in Figure 6,
a path between vertices 0 and 1 is shown
in blue, a path between vertices 2 and 3 is
shown in violet, edges in the spanning for-
est are shown in green, and edges not in the
spanning forest are shown in red. In this
example, the graph itself is also asserted to
be connected.

1 public void FigureSix()

2 {

3 Problem p6 = new Problem();

4 Graph g6 = new Graph(p6, 20);

5 g6.AssertNodesConnected(0, 1);

6 g6.AssertNodesConnected(2, 3);

7 g6.AssertConnected();

8 g6.Solve();

9 }
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Figure 6: Connected graph with a path be-
tween vertices 0 and 1 (blue), and a path
between vertices 2 and 3 (violet).

The Density constraint can be used in
absence of the GraphConnectedConstraint
to assert that a certain proportion of edges
exist in the generated graph. In a graph
with five vertices, there are 10 possible
edges that can exist. In the following ex-
ample, it is asserted that exactly two edges
are present in the generated graph.

1 public void FigureSeven()

2 {

3 Problem p7 = new Problem();

4 Graph g7 = new Graph(p7, 5, 0);

5 g7.Density(0.2f, 0.2f);

6 p7.Solve();

7 }

0
1

3

4

2

Figure 7: Graph with five vertices and 20%
density (two edges).

For another example, nine edges can be
asserted to be present. Note that, in the
graph generated in Figure 8, all possible
edges exist in the graph except the one from
vertices 0 to 1.

1 public void FigureEight()

2 {

3 Problem p8 = new Problem();

4 Graph g8 = new Graph(p8, 5, 0);

5 g8.Density(0.9f, 0.9f);

6 p8.Solve();

7 }

0

2

3

4 1

Figure 8: Graph with five vertices and 90%
density (nine edges).
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One can also generated connected graphs of specified density, and a solution will be found
so long as the minimum specified density is at least that which is required to connect the
graph. The minimum and maximum density values can be calculated from the number of
vertices, the minimum desired degree of each vertex, and the maximum desired degree of
each vertex with:

1 public (float, float) CalculateDensity(int numVertices, int minDegree, int maxDegree)

2 {

3 int numEdges = numVertices * (numVertices - 1) / 2;

4 int minEdges = numVertices * minDegree / 2;

5 int maxEdges = numVertices * maxDegree / 2;

6 return ((float) minEdges / numEdges, (float) maxEdges / numEdges);

7 }

Hence, for example, a connected graph can be generated such that it is connected, with
each vertex having degree 1 or 2 with:

1 public void FigureNine()

2 {

3 Problem p9 = new Problem();

4 Graph g9 = new Graph(p9, 20);

5 (float, float) densityBounds = CalculateDensity(20, 1, 2);

6 g9.Density(densityBounds.Item1, densityBounds.Item2);

7 g9.AssertConnected();

8 p9.Solve();

9 }
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Figure 9: Connected graph with low density.

21



The VertexDegree constraint can
be used in combination with the
GraphConnectedConstraint to assert that
the generated graph is a cycle. In a cycle,
the graph must be connected with every
vertex having a degree of 2.

1 public void FigureTen()

2 {

3 Problem p10 = new Problem();

4 Graph g10 = new Graph(p10, 10, 0);

5 foreach (int v in g9.Vertices)

6 {

7 g9.VertexDegree(v, 2, 2);

8 }

9 g10.AssertConnected();

10 p10.Solve();

11 }

0
2

4

1
5

9
6

3

8

7

Figure 10: 10-cycle, given by a connected
graph with 10 vertices and each vertex hav-
ing degree 2.
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The VertexDegree constraint can also be used to create binary trees.

1 public void FigureEleven()

2 {

3 const int n = 21;

4 Problem p11 = new Problem();

5 Graph g11 = new Graph(p11, n);

6 for (int i = 0; i < g11.Vertices.Length; i++)

7 {

8 if (i < (n + 1) / 2)

9 {

10 g11.VertexDegree(i, 1, 1);

11 }

12 else if (i == g11.Vertices.Length - 1)

13 {

14 g11.VertexDegree(i, 2, 2);

15 }

16 else

17 {

18 g11.VertexDegree(i, 3, 3);

19 }

20 }

21 g11.AssertConnected();

22 p11.Solve();

23 }
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Figure 11: A binary tree of 21 vertices.

A graph can also be generated with sub-
graphs that are connected. For example, a
graph of 12 vertices can be split into two
connected subgraphs of equal size (six ver-
tices).

1 public void FigureTwelve()

2 {

3 Problem p12 = new Problem();

4 Graph g12 = new Graph(p12, 12, 0);

5 Subgraph s1 = new Subgraph(g12, new
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[] { 0, 1, 2, 3, 4, 5 });

6 Subgraph s2 = new Subgraph(g12, new

[] { 6, 7, 8, 9, 10, 11 });

7 s1.AssertConnected();

8 s2.AssertConnected();

9 p12.Solve();

10 }
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Figure 12: The subgraphs (0, 1, 2, 3, 4, 5)
and (6, 7, 8, 9, 10, 11) are each connected
in the graph.

The AssertNBridges constraint can be
used to generate some number of edges be-
tween two provided subgraphs in a graph.
Here, the bridges are shown in red, and the
edges in the spanning forest of each sub-
graph are shown in green.

1 public void FigureThirteen()

2 {

3 Problem p13 = new Problem();

4 Graph g13 = new Graph(p13, 12, 0);

5 Subgraph s3 = new Subgraph(g13, new

[] { 0, 1, 2 });

6 Subgraph s4 = new Subgraph(g13, new

[] { 3, 4, 5 });

7 s3.AssertConnected();

8 s4.AssertConnected();

9 g13.AssertNBridges(2, 2, s3, s4);

10 p13.Solve();

11 }

01

2

3

4

5

6789

10 11

Figure 13: Two bridges generated between
two subgraphs (red).
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As mentioned shown earlier, multiple constraints can be applied to the same problem.
For instance:

1 public void FigureFourteen()

2 {

3 Problem p14 = new Problem();

4 Graph g14 = new Graph(p14, 15);

5 Subgraph s1 = new Subgraph(g14, new[] { 1, 2, 3, 4, 5 });

6 Subgraph s2 = new Subgraph(g14, new[] { 10, 13 });

7 Subgraph s3 = new Subgraph(g14, new[] { 12 });

8 s1.AssertConnected();

9 s2.AssertConnected();

10 g14.Density(0.2f, 0.3f);

11 g14.AssertNodesConnected(0, 10);

12 g14.AssertNodesConnected(9, 14);

13 g14.VertexDegree(12, 4, 5);

14 g14.AssertConnected();

15 p14.Solve();

16 }
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Figure 14: Multiple constraints imposed on one randomly generated graph.

3.6 Evaluation

In this section, various line plots show-
ing performance of the system on several
procedurally generated graph problems are
displayed for different constraints. Tests
were run single-threaded on a 2020 laptop

with a 2.60 GHz Intel i7-10750H proces-
sor and 32GB RAM. First, the algorithms
run are presented, with the plots follow-
ing. Note that size is the current num-
ber of vertices in the graph, spanning the
list { 5, 10, 20, 30, 40, 50, 60, 70,

80, 90, 100, 250 }.
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1 public void GraphConnected()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size);

5 g.AssertConnected();

6 p.Solve();

7 }

1 public void

GraphConnectedNoInitialEdges()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size, 0);

5 g.AssertConnected();

6 p.Solve();

7 }

1 public void GraphConnectedLowDensity()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size, 0);

5 (float minDensity, float maxDensity

) = CalculateDensity(size, 1,

2);

6 g.Density(minDensity, maxDensity);

7 g.AssertConnected();

8 p.Solve();

9 }

1 public void NodesConnected()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size);

5 g.AssertNodesConnected(0, 1);

6 p.Solve();

7 }

1 public void TwoSubgraphsConnected()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size);

5 int[] s1Vertices = Enumerable.Range

(0, size / 2).ToArray();

6 int[] s2Vertices = Enumerable.Range

(size / 2, size - s1Vertices.

Length).ToArray();

7 Subgraph s1 = new Subgraph(g,

s1Vertices);

8 Subgraph s2 = new Subgraph(g,

s2Vertices);

9 s1.AssertConnected();

10 s2.AssertConnected();

11 p.Solve();

12 }

1 public void Cycle()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size);

5 foreach (int v in g.Vertices)

6 {

7 g.VertexDegree(v, 2, 2);

8 }

9 p.Solve();

10 }

1 public void Density()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size);

5 g.Density(0.5f, 0.5f);

6 p.Solve();

7 }

1 public void Bridges()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size);

5 int[] s1Vertices = Enumerable.Range

(0, size / 2).ToArray();

6 int[] s2Vertices = Enumerable.Range

(size / 2, size - s1Vertices.

Length).ToArray();

7 Subgraph s1 = new Subgraph(g,

s1Vertices);

8 Subgraph s2 = new Subgraph(g,

s2Vertices);

9 g.AssertNBridges(size / 2, size /

2, s1, s2);

10 p.Solve();

11 }

1 public void MultipleConstraints()

2 {

3 Problem p = new Problem();

4 Graph g = new Graph(p, size);

5 int[] s1Vertices = Enumerable.Range

(1, size / 3).ToArray();

6 int[] s2Vertices = Enumerable.Range

(size / 3 + 1, size == 5 ? 2 :

size / 5).ToArray();

7 int[] s3Vertices = Enumerable.Range

(size - 1, 1).ToArray();
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8 Subgraph s1 = new Subgraph(g,

s1Vertices);

9 Subgraph s2 = new Subgraph(g,

s2Vertices);

10 Subgraph s3 = new Subgraph(g,

s3Vertices);

11 s1.AssertConnected();

12 s2.AssertConnected();

13 if (size > 5) g.Density(0.2f, 0.3f)

;

14 g.AssertNodesConnected(0,

s2Vertices[0]);

15 g.VertexDegree(size - 1, 4, 5);

16 g.AssertConnected();

17 p.Solve();

18 }

In each method defined above, after the
Problem, Graph, and any additional com-
ponents needed for constraints were initial-
ized, solely the p.Solve() function was
called 100 times, and the following statis-
tics were collected, removing outliers:

• average runtime (milliseconds)

• median runtime (milliseconds)

• standard deviation in runtime (mil-
liseconds)

• minimum runtime (milliseconds)

• maximum runtime (milliseconds)

Note that the error bars in the follow-
ing plots represent one standard deviation
above and below the average.
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Figure 15: Runtime for GraphConnectedConstraint.

Figure 16: Runtime for GraphConnectedConstraint with no initial edges present.
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Figure 17: Runtime for GraphConnectedConstraint with a low Density constraint.

Figure 18: Runtime for NodesConnectedConstraint between vertices 0 and 1.
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Figure 19: Runtime for SubsetConnectedConstraint on two Subgraphs of equal size.
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Figure 20: Runtime for the VertexDegree constraint such that each vertex has degree 2,
and a GraphConnectedConstraint.
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Figure 21: Runtime for the Density constraint such that the Graph has half of all possible
edges.
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Figure 22: Runtime for the AssertNBridges constraint such that there are a number of
edges between two Subgraphs equal to half the number of vertices in the Graph.
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Figure 23: Runtime for multiple constraints.

Inverse Floyd-Warshall was also run
through CatSAT according to the follow-
ing code written by Dr. Ian Horswill:

1 public void InverseFloydWarshall()

2 {

3 Problem p = new Problem(name);

4 Func<string, string> adjacent =

Predicate<string, string>("

adjacent");

5 Func<string, string, int> floyd =

Predicate<string, string, int

>("d");

6 Proposition D(string v1, string v2,

int k) => k == 0 ? adjacent(v1

, v2) : floyd(v1, v2, k);

7 for (int k = 1; k < vertices.Length

; k++)

8 {

9 string vk = vertices[k];

10 foreach (string v1 in vertices)

11 foreach (string v2 in vertices)

12 p.Assert(

13 D(v1, v2, k) <= D(v1, v2

, k - 1),

14 D(v1, v2, k) <= (D(v1,

vk, k - 1) & D(vk,

v2, k - 1))

15 );

16 }

17 Proposition Connected(string v1

, string v2) => D(v1, v2,

vertices.Length - 1);

18 foreach (string v1 in vertices)

19 foreach (string v2 in vertices)

20 if (v1 == v2 || (v1 !=

vertices.Last() && v2 !=

vertices.Last()))

21 p.Assert(Connected(v1,

v2));

22 else

23 p.Assert(Not(Connected(

v1, v2)));

24 p.Optimize();

25 Solution s = p.Solve();

26 foreach (string v1 in vertices)

27 foreach (string v2 in vertices)

28 Assert.IsTrue(s[Connected(

v1, v2)] == (v1 == v2)

|| (v1 != vertices.Last

() && v2 != vertices.

Last()));

29 }

30 }

34



35



The table below demonstrates a comparison of line counts, and solution times (average,
median, standard deviation, minimum, and maximum; all in milliseconds) for all of the above
functions as well as Inverse Floyd-Warshall. Note that, for number of lines of code, we omit
for loops that run through iterations of different numbers of vertices and number of solutions,
as well as any comments. Also note that solutions were not found without CatSAT timing
out for Inverse Floyd-Warshall for 20 vertices and greater.

Task SAT
Problem

Solution Time (ms)

Description Code
(lines)

Vertices Average STDev Median Min Max

GraphConnected 4
5 1.45 1.20 1.17 0.05 3.41
10 1.17 1.01 0.95 0.04 3.16
100 1.37 1.39 0.75 0.01 3.92

InverseFloydWarshall 27
5 17.79 8.80 17.79 8.99 26.59
10 4.72 4.29 4.72 0.43 9.02
100 - - - - -

NodesConnected 4
5 1.29 1.41 0.83 0.05 4.80
10 1.12 1.37 0.68 0.03 4.77
100 1.00 1.03 0.75 0.01 3.37

TwoSubgraphsConnected 9
5 1.91 1.49 1.43 0.10 4.39
10 1.53 1.32 1.19 0.06 4.13
100 1.13 0.99 0.82 0.01 3.31

Cycle 7
5 1.14 0.95 1.02 0.04 3.04
10 1.02 0.90 0.95 0.01 2.85
100 1.28 1.16 1.04 0.01 3.49

Density 4
5 0.96 0.95 0.57 0.02 2.90
10 0.97 1.02 0.55 0.02 3.28
100 0.82 0.91 0.51 0.01 3.08

Bridges 8
5 0.74 0.71 0.61 0.02 2.23
10 0.70 0.74 0.44 0.01 2.45
100 0.71 0.84 0.37 0.01 2.54

Table 1: Table number of lines of code, number of vertices, and solution time statistics for
various graph constraints.
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4 Applications

4.1 Potential Uses

Graphs are incredibly useful data struc-
tures in many areas of computer science
and software development. The linking of
similar kinds of data via specific relation-
ships between this data is an abstraction
that is particularly applicable in the fields
of video game development and game AI.
We present a non-exhaustive discussion of
potential applications of graph constraint
algorithms in video games.

One very direct application is the proce-
dural generation of characters and the re-
lationships between such characters. The
nodes themselves may be characters and
the edges the various relationships between
characters. A designer could require that,
for example, the character graph is con-
nected, that a cycle exists within a sub-
graph (like a love triangle), or that two spe-
cific characters have not yet met but are
friends of friends. Constraints like these
could also be combined so long as they
are not mutually exclusive. This applica-
tion has been implemented with graph con-
straint algorithms in Section 4.2.

Another application similar to character
graphs is entity/business graphs. Individ-
ual businesses would consist of densely con-
nected subgraphs in an overall graph with a
sparse number of bridges between clusters.

In both of the above examples, further
work could be done to encode information
and impose constraints along the edges in
a graph. Type of relationship, strength of
relationship, and direction of relationship
could all become constraints and data used
for both narrative and mechanic purposes
in a video game. For more in-depth exam-
ples, see Section 4.2.

Graph constraint algorithms could also
be used for map generation by use of way-
points. For example, density of the graph
could be used as means to restrict or in-
crease the different paths to go from city to
city, islands can be represented with ver-
tices of zero degree, and paths of certain
length can be constructed to get from way-
point to waypoint.

The map waypoint generation method
could also be applied to creating branch-
ing questlines for a story-based roleplaying
games (RPGs). Note that some other tool
would need to be used to generate content
for the quests themselves, but graph con-
straint algorithms could be used to generate
a graph representing the different paths the
player of the game could take to complete
the quests themselves.

4.2 Cards for Family Chaos

Cards for Family Chaos is a video game de-
veloped using Unity 2022.3.20f1 LTS and
C#, created with the intention of showcas-
ing one possible application of graph con-
straint algorithms. It is largely inspired by
Reigns, a strategy video game developed
and published by Nerial, where the player
is tasked with ruling a kingdom by accept-
ing or rejecting propositions on cards while
balancing statistics such as military power
and money.

In Cards for Family Chaos, the player
is thrown into a feud between two families
and is required to make choices that ulti-
mately lead to the families reuniting and re-
establishing previously burnt bridges. Sim-
ilar to the core gameplay loop of Reigns,
the player is presented with a card that de-
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picts a particular scenario, such as, for ex-
ample, a character inviting you to dinner.
The player can then choose one of two op-
tions to advance the story, with each op-
tion potentially affecting both the player’s
statistics (reputation among their own fam-
ily, money, and health/sanity) and the de-
gree of compatibility between the two fam-
ilies.

In terms of technical architecture, Cards
for Family Chaos relies a variety of proce-
durally generated content. The game’s ini-
tial setup is developed such that each new
instantiation and playthrough of the game
presents a new cast of characters and fam-
ily structures. First, CatSAT is used to
generate the Graph corresponding to the
two families (each being represented by
a Subgraph) under the following imposed
graph constraints:

1. Each family Subgraph must be con-
nected (via a
SubsetConnectedConstraint).

2. Each family Subgraph’s density
must be between the specified min-
imum (minDensity) and maximum
(maxDensity) values provided by the
developer (via a Density constraint).

3. The Graph must be connected (via a
GraphConnectedConstraint).

4. The number of bridge edges be-
tween the two family Subgraphs
must be between the specified min-
imum (minBridges) and maximum
(maxBridges) values provided by the
developer (via a AssertNBridges

constraint).

The relevant part of the code for this is
shown below:

1 public CombinedFamily(int

familyOneSize, int familyTwoSize,

float minDensity, float maxDensity

, int minBridges, int maxBridges)

2 {

3 _problem = new Problem();

4 _graph = new Graph(_problem,

familyOneSize + familyTwoSize);

5 _familyOneSubgraph = new Subgraph(

_graph, Enumerable.Range(0,

familyOneSize));

6 _familyTwoSubgraph = new Subgraph(

_graph, Enumerable.Range(

familyOneSize, familyTwoSize));

7 _familyOneSubgraph.AssertConnected

();

8 _familyTwoSubgraph.AssertConnected

();

9 _familyOneSubgraph.Density(

minDensity, maxDensity);

10 _familyTwoSubgraph.Density(

minDensity, maxDensity);

11 _graph.AssertNBridges(minBridges,

maxBridges, _familyOneSubgraph,

_familyTwoSubgraph);

12 _graph.AssertConnected();

13 _solution = _problem.Solve();

14 }

Once the graph has been generated and
two surnames have been randomly chosen
(one for each family), a number of charac-
ters (equal to the total number of nodes in
the graph for the two families) must be ran-
domly generated, using Imaginarium. The
Imaginarium file used to specify the con-
straints for character generation is as fol-
lows:

1 Characters have an age between 18 and

70.

2

3 Characters are lawful good, neutral

good, chaotic good, lawful neutral

, true neutral, chaotic neutral,

lawful evil, neutral evil, or

chaotic evil.

4

5 Characters are any two of active,

adventurous, affectionate, alert,

ambitious, bold, bright, brave,

calm, cheerful, clever, confident,
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cool, ...

6

7 Characters have an occupation from

occupations.

8

9 Characters are feminine-named,

masculine-named, or neutral-named.

10 Feminine-named characters have a first

name from feminine first names.

11 Masculine-named characters have a

first name from masculine first

names.

12 Neutral-named characters have a first

name from gender neutral first

names.

13 Characters are identified as "[first

name]".

14 Do not mention being feminine-named.

15 Do not mention being masculine-named.

16 Do not mention being neutral-named.

Here, note that occupations, feminine

first names, masculine first names,
and gender neutral first names are all
text files provided to Imaginarium contain-
ing extensive lists of options. The charac-
ters are assigned to the nodes of the graph
in ascending order of node number (an in-
teger) and order of characters generated by
Imaginarium.

The game setup then goes on to in-
stantiate all possible scenario cards given
the different card templates provided in
cards.json and the characters generated
by Imaginarium.

After all setup is complete, the player
is shown an interactive menu where they
can see the graphs generated by CatSAT
and the aforementioned imposed graph con-
straints, as shown in Figure 24 in Section
4.2.1. The player is able to click on vertices
in the graph to see more information (gen-
erated by Imaginarium) about the charac-
ter corresponding to that vertex, which is
displayed in the card on the right-hand side
of the screen. The player is prompted to
choose a character to play as, and the game

begins to display cards with different sce-
narios presented as choices for the player to
make, as their selected character (see Fig-
ure 25.

As CatSAT, graph constraints, and
Imaginarium are all used to procedurally
generate characters and family structures,
each new playthrough of the game presents
new play experiences. This particular
application demonstrates the strengths of
PCG to improve replayability as well as
to significantly decrease the design work
needed to create characters, families, and
narratives in the game.
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4.2.1 Screenshots

Figure 24: The setup screen in Cards for Family Chaos.

Figure 25: The main gameplay screen in Cards for Family Chaos.
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5 Conclusion

SAT-based systems are outstanding to
utilize in the field of PCG due to their flex-
ibility, speed, and high level of expression
available to the user. However, tradition-
ally, it has been difficult to implement the
generation of random connected graphs, let
alone impose other kinds of constraints on
a randomly generated graph. By expand-
ing CatSAT with support for graph con-
straints such as connectivity, required paths
between nodes, and density, users of the
system can generate graphs as data struc-
tures for games in a timely manner by cre-
ating a problem and adding as many con-
straints as they desire. The expansion of
CatSAT in this way also allows users to cre-
ate constraints of their own, provided they
have sufficient knowledge of logic program-
ming, C# development, and graph theory.
Problems for graphs can be solved in mil-
liseconds with relatively few lines of code,
with solutions that can be applied to a wide
variety of content in video games.

5.1 Future Work

Further work can be done primarily in the
following four ways:

1. Implementing new graph constraints.

2. Optimizing current graph constraints
and improving upon the GreedyFlip

algorithm.

3. Expanding the Graph and Subgraph

implementations to incorporate fea-
tures of graphs that do not exist in
the current implementations.

4. Implement tools and GUIs for video
game designers.

A presentation of ideas for each of the
three aforementioned categories is given.

5.1.1 Implementing New Graph
Constraints

As mentioned in Section 3.1, new con-
straints to be imposed on a Graph to
be generated can be developed by creat-
ing a new C# class that is a subclass
of CustomConstraint. The general class
structure is given below:

1 public class NewGraphConstraint :

CustomConstraint

2 {

3 public NewGraphConstraint(bool

isDisjunction, ushort min,

short[] disjuncts, int

extraHash) : base (

isDisjunction, min, disjuncts,

extraHash) {}

4

5 public override int CustomFlipRisk(

ushort index, bool newValue) {}

6

7 public override void

UpdateCustomConstraint(

BooleanSolver b, ushort pIndex,

bool newValue) {}

8

9 public override bool IsSatisfied(

ushort satisfiedDisjuncts) {}

10

11 internal override bool EquivalentTo

(Constraint c) {}

12

13 internal override void Decompile(

Problem p, StringBuilder b) {}

14

15 public override int

ThreatCountDeltaIncreasing(

ushort count) {}

16

17 public override int

ThreatCountDeltaDecreasing(

ushort count) {}

18

41



19 public override void

UpdateTruePositiveAndFalse

Negative(BooleanSolver b) {}

20

21 public override void

UpdateTrueNegativeAndFalse

Positive(BooleanSolver b) {}

22

23 public override bool

MaxFalseLiterals(int

falseLiterals) {}

24

25 public override bool

MaxTrueLiterals(int

trueLiterals) {}

26 }

Any class that inherits from
CustomConstraint must override all of the
methods written in the code snippet above.

The constructor for the new graph
constraint must call the base construc-
tor with parameters bool isDisjunction,
ushort min, short[] disjuncts, and int

extraHash. If applicable, the new con-
straint’s constructor can accept additional
parameters and initialize them accordingly
in the body of the constructor.

CustomFlipRisk is a method that re-
turns an integer associated with the risk or
cost of flipping a specified SAT variable to
a new value. The index of the SAT variable
being flipped and the new boolean value of
the literal is provided. For the integer that
is returned, negative values correspond to a
favorable flip, positive values correspond to
an unfavorable flip, and zero corresponds
to neither risk nor reward. This method
is required for the GreedyFlip algorithm
to pick a favorable variable to flip (in this
case, to pick a favorable edge to add to or
remove from the graph).

UpdateCustomConstraint is a method
that updates the current solver’s list of
unsatisifed constraints when the value of
a SAT variable is flipped. The method

must be passed the current BooleanSolver
(which contains the UnsatisfiedClauses

list), the index of the SAT variable be-
ing flipped, and a boolean that is true if
the edge corresponding to the SAT vari-
able is being added to the graph, false if
it is being removed from the graph. Any
additional data relevant to the constraint
should also be updated here. Implementa-
tion should look something like this:

1 public override void

UpdateCustomConstraint(

BooleanSolver b, ushort pIndex,

bool adding)

2 {

3 EdgeProposition edge = Graph.

SATVariableToEdge[pIndex];

4 if (adding)

5 {

6 // Update the graph accordingly

7 // For example:

8 Graph.ConnectInSpanningForest(

edge.SourceVertex, edge.

DestinationVertex);

9

10 // Check if the constraint is

now satisfied and

previously was not

11 if (constraintSatisfied && b.

UnsatisfiedClauses.Contains

(Index))

12 {

13 // Remove this constraint (

which has index "Index")

from the list of

unsatisfied constraints

14 b.UnsatisfiedClauses.Remove

(Index);

15 }

16 }

17 else

18 {

19 // Update the graph accordingly

20 // For example:

21 Graph.Disconnect(edge.

SourceVertex, edge.

DestinationVertex);

22

23 // Check if the constraint is

now unsatisfied and

previously was satisfied
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24 if (constraintUnsatisfied &&

previouslySatisfied)

25 {

26 // Add this constraint to

the list of unsatisfied

constraints

27 b.UnsatisfiedClauses.Add(

Index);

28 }

29 }

30 }

IsSatisfied is a method that is called
once the problem being solved has been cre-
ated with an initial random state, assessing
whether the constraint has been satisfied
without any variables being flipped. It is
passed the number of satisfied disjuncts in
the current solution.

EquivalentTo is a method that checks
if the constraint is a copy of or is identical
to the constraint passed to it.

Decompile is a function that creates
a textual representation of the constraint,
purely for debugging purposes. In most
cases, it is useful to append the name of
the constraint to the string builder:

1 internal override void Decompile(

Problem p, StringBuilder b)

2 {

3 b.Append("NewGraphConstraint");

4 }

There are also a few functions which
need to be overridden, however they
are only relevant to pseudo-boolean con-
straints, so they will not be discussed here.

Below is a non-exhaustive list of con-
straints that could be implemented.

• GraphCompleteConstraint: The
graph generated must be complete
(every possible edge in the graph is
present).

• NConnectedComponentsConstraint:
The graph generated must have a
specified number of connected com-
ponents, n.

• StronglyConnectedComponent

Constraint: The graph generated
must contain a strongly connected
component.

• NodesNotConnectedConstraint:
The vertices n and m in a graph must
not be connected via any path.

• PathOfLengthConstraint: If possi-
ble, the path between the vertices n
and m in the graph must be of a spec-
ified length, ℓ.

• CycleConstraint: The graph gener-
ated must have a cycle.

• CycleOfLengthConstraint: The
graph generated must have a cycle
of a specified length, ℓ.

• PathThroughVertexConstraint:
The vertices n and m must be con-
nected via a path that passes through
a third specified vertex, v.

• TreeConstraint: The generated
graph must be acyclic and connected.

• ForestConstraint: The generated
graph must only consist of connected
components that are acyclic.

• GraphColoringConstraint: The
graph generated must be properly
colored with a specified number c of
colors.

• IndependentSetConstraint: The
graph generated must contain a max-
imum independent set, where no two
vertices in the set are adjacent.
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• GraphSymmetryConstraint: The
graph generated must have specified
symmetry (mirror, rotational, etc.).

• PlanarGraphConstraint: The graph
generated must be planar (edges can
be drawn such that no pair of edges
intersects except for at endpoints).

5.1.2 Optimizing Current Graph
Constraints

Many of the current graph constraints can
be optimized by means of caching rele-
vant information, making CustomFlipRisk

assessments more greedy, and improv-
ing the GreedyFlip algorithm to choose
even more favorable SAT variables to
flip. RebuildSpanningForest in the Graph
and Subgraph classes can be improved
by maintaining a list or set of edges
that were present in the spanning for-
est before clearing it to iterate over in-
stead of compiling this list from the cur-
rent solver. The GreedyFlip method
in GraphConnectedConstraint can be
modified to discourage removing edges
that are present in the graph’s current
SpanningForest. Further advancements
can be made by using more efficient and el-
egant search algorithms, at the developer’s
discretion.

5.1.3 Expanding Graph and Subgraph

CatSAT ’s graph constraints currently only
support graphs with unweighted and undi-
rected edges, at the time of writing this pa-
per.

For directed edges, consider maintain-
ing degree information for every vertex in
the graph, particularly keeping track of in-
degree, out-degree, and overall degree. For
instance, vertex degrees could prove useful

in NodesConnectedConstraint (see Sec-
tion 3.3.3) as the source vertex should have
in-degree 0 and out-degree 1, the destina-
tion vertex should have in-degree 1 and out-
degree 0, and every other vertex in the
graph should have nonzero in- and out-
degrees (else it is not in the path).

Note that the EdgeProposition class
(see Section 3.2.1) would likely need to be
modified with a field indicating whether
the edge is undirected or directed. For
edge weights, consider adding a float or
double field to the EdgeProposition class.
In either case, any pre-existing or newly
added search algorithms would need to
be modified to account for edge direction
and/or weight. In current implementations
of graph constraints, solely the breadth-
first search in the ShortestPath method of
the NodesConnectedConstraint (see Sec-
tion 3.3.3) would need to be modified.

5.1.4 Tools and GUI

Using CatSAT in a Unity project requires
at the very least a basic understanding of
programming in C#, as CatSAT is im-
ported into Unity as a DLL file, which gives
the developer access to all public methods
and variables. As a result, the user needs
to write code according to the instructions
provided in Section 3.1 in order to create
a problem and impose graph constraints on
said problem. Although this process should
be simple and straightforward for game pro-
grammers, it may prove less accessible for
someone without any coding experience or
knowledge. It would be very ideal for some-
one like a game designer to have a Unity
EditorWindow that has an intuitive graph-
ical interface letting them create graphs,
add constraints, and modify variables when
appropriate.
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5.2 Links to Repositories and
Work

The CatSAT repository can be found here,
with the branch containing graph con-
straints here. The ImaginariumCore repos-
itory can be found here, and the work-in-
progress Cards for Family Chaos repository
can be found here. An interactive website
will also be under development, to be com-
pleted by the end of the Spring 2024 Quar-
ter, found here.
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