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ABSTRACT

Event-Driven Processing and Learning with Spiking Neural Networks

Peng Kang

The drive to engineer technology replicating human capabilities has recently led to

the development of event-driven sensors, which emulate the energy-efficient neural mech-

anisms of biological systems such as the retina and cochlea. Like biological sensors that

generate spikes to the changing environment, these bio-inspired event-driven sensors build

circuits that dynamically produce the binary events to the changing environmental stimuli.

In general, such event-based sensors can achieve higher energy efficiency, better scalabil-

ity, and lower latency. However, due to the high sparsity and complexity of event-driven

data, processing and learning with these sensors remain in their infancy.

In this dissertation, we propose to utilize Spiking Neural Networks (SNNs) to tackle

event-driven processing and learning. Unlike traditional Artificial Neural Networks (ANNs),

SNNs draw inspiration from the brain, processing information in a binary spiking fashion

that mirrors natural neural activity. Given the common spiking mechanism between event-

driven data and SNNs, it naturally follows that SNNs are well-suited for processing and

learning from event-driven data. In this thesis, our exploration focuses on three pivotal
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areas: 1) Developing SNNs for event-driven classification tasks, including tactile object

recognition and slip detection, showcasing their superior performance, energy efficiency,

and broad impact. 2) Advancing SNNs for complex event-driven regression challenges like

surface normal estimation, demonstrating comparable state-of-the-art accuracy with less

energy consumption. 3) Innovating spiking neural architectures by integrating insights

from neuroscience, resulting in two models that excel in object recognition with additional

robustness and interpretability, respectively.

By pushing the boundaries of SNN capabilities and exploring their applications in

event-driven processing and learning, this work not only highlights the potential of bio-

inspired technologies but also sets the stage for future research in the field.
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CHAPTER 1

Introduction

Throughout history, the promise of developing technology that emulates human or

animal capabilities has fueled innovation. For instance, in the quest to replicate the

visual image-capturing ability of the retina, innovators have developed various frame-

based cameras. While these cameras do emulate certain features of the retina and have

become ubiquitous in everyday use, their performance can suffer in demanding situations,

such as those requiring high speed or high dynamic range. To some extent, this shortfall

is attributed to the fundamental differences in the low-level circuit architectures between

frame-based cameras and the biological structure of the retina. To replicate the intricate

low-level neural architectures and functionalities of biological sensors such as the retina

and cochlea, research on event-driven perception has started to gain momentum and

several asynchronous event-based sensors have been proposed, including event cameras [1]

and event-driven tactile sensors [2].

Like biological sensors that generate spikes to the changing environment, these bio-

inspired event-driven sensors build circuits to dynamically produce the binary events to

the changing environmental stimuli. For example, instead of capturing images at a fixed

rate like the conventional frame-based cameras, event cameras asynchronously measure

per-pixel brightness changes in the environment and output a stream of events that encode

the location, time, and sign. In contrast to standard synchronous sensors, such event-

based sensors can achieve higher energy efficiency, better scalability, and lower latency.
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Figure 1.1. Event-driven sensors: (a) event camera [1]; (b) event tactile
sensor compared to a human finger [2]; (c) dynamic audio sensor [3].

However, due to the high sparsity and complexity of event-driven data, learning with

these sensors is still in their infancy [6].

1.1. Event Sensors and Event Data

Figure 1.1 illustrates three kinds of event-driven sensors, including event cameras,

event tactile sensors, and dynamic audio sensors.

Inspired by the function of biological visual pathways [7, 8], researchers innovated

event cameras. Unlike conventional cameras that capture entire images at a fixed frame

rate determined by an external clock (e.g., 30 fps), event cameras, such as the Dynamic

Vision Sensor (DVS) [9, 10, 11, 12], operate on a different principle. They detect changes

in brightness asynchronously across each pixel, responding individually to changes in the

scene’s light intensity. As a result, event cameras produce a stream of digital “events” or

“spikes” at a variable data rate. Each event signifies a predefined change in brightness
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Figure 1.2. (a) Standard video frames from a conventional camera vs. a
stream of events from an event camera. Red and blue dots represent pos-
itive and negative events, respectively [4]. (b) Changes in brightness (log
intensity) over time at a specific pixel location. Red and blue arrows rep-
resent positive and negative events, respectively.

(log intensity) at a specific pixel and time, offering a distinct approach to visual data

capture. Figure 1.2 (a) presents different working mechanisms between standard cameras

and event cameras. Figure 1.2 (b) demonstrates the event generation at a specific location.

Specifically, each pixel records its log intensity value every time it generates an event

and persistently watches for a sufficient deviation from this remembered value. Upon

detecting a change that surpasses a predefined threshold, the camera generates a new

event. This event encodes the pixel’s location (x, y), the time of the change t, and its

polarity p ∈ (−1,+1), indicating whether the brightness has increased (”positive events”)

or decreased (”negative events”).

In the event-driven tactile sensing, event tactile sensors are proposed to emulate the

functionalities of fingertips. Figure 1.3 presents an event tactile sensor called NeuTouch [2].

Specifically, each NeuTouch is composed of many taxels, which are elliptically-shaped to
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Figure 1.3. (a) Event tactile sensors – NeuTouch attached on Robotic
grippers that hold the object; Spatial distribution of the 39 taxels on
NeuTouch. [2]. (b) The event tactile sensor – NeuTouch generates streams
of events that encode the location, time, and sign information. Red and
blue arrows represent positive and negative events, respectively.

resemble the human fingertips fast-adapting (FA) mechanoreceptors [13]. These taxels

can asynchronously measure pressure changes in the environment and output a stream of

events that encode the location, time, and sign, as shown in Fig. 1.3 (b). Each event is

generated when the change in pressure surpasses a certain threshold. The positive sign

indicates the increase in pressure, while the negative sign represents the pressure decrease.

Similar to event cameras and event tactile sensors emulating visual pathways and

fingertips respectively, the dynamic audio sensor is an asynchronous event-based silicon

cochlea. Specifically, the device takes stereo audio inputs and asynchronously outputs a

stream of address-events representing activity in different frequency ranges [3].

We can source event data not only directly from event sensors but also from frame-

based data, which enables the extension of event-based processing benefits, such as energy
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Figure 1.4. The rate coding method transforms an MNIST image into a
spike train, where areas with greater intensity exhibit higher firing frequen-
cies. Positions with strokes, marked by red dots, display higher firing rates.
In contrast, areas without strokes, such as the image’s corners, exhibit lower
firing frequencies.

efficiency, into traditional application areas. For example, we can encode static frame-

based data into events through rate coding [14, 15]. This approach represents the frame-

based input by producing a spike train across T timesteps, with the aggregated spike

count correlating with the input values’ magnitude. The spike generation follows a Poisson

distribution. Figure 1.4 illustrates this rate coding mechanism that converts an MNIST

image to spiking trains. From the figure, we can see that this method ensures positions

that have larger values have higher firing frequency.

1.2. Artificial Neural Networks

In the realm of Artificial Intelligence, Artificial Neural Networks (ANNs) invariably

capture our attention. The advancement of optimization methods and training platforms

has led to the development of increasingly larger and more effective models. The evolu-

tion from AlexNet [16] to VGG [17], and from ResNet [18] to DenseNet [19], reflects two
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Figure 1.5. General structure of Artificial Neural Networks (ANNs).

predominant trends in artificial neural network design: denser connections and a more

hierarchical organization of neurons and layers. These trends are evident at a high level on

the right part of Fig. 1.5. Beyond these characteristics, a closer examination of artificial

neural networks, as shown on the left part, reveals their reliance on real-valued compu-

tations for information transfer. This means that both pre-neurons and post-neurons

engage in the exchange of real-valued data, with a significant amount of matrix-vector

multiplications occurring during the propagation of information.

With the prevalence of ANNs, research on event-driven processing and learning with

ANNs has begun to soar, including event-driven classification tasks, such as image clas-

sification [20], tactile object recognition [21, 22, 23], slip detection [24], and texture

recognition [25, 26], and event-driven regression tasks, such as image reconstruction [27,

28, 29, 30], depth estimation [31, 32, 33], and optical flow estimation [34, 35]. Although

ANNs demonstrate promising performance on these tasks, they have several limitations
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that hinder their potential in the event-driven processing and learning and neuromorphic

engineering. First, ANNs operate in a synchronous and dense way, which is incompatible

with the asynchronous and sparse nature of events. Most state-of-the-art ANN pipelines

require expensive transformations from asynchronous discrete events to synchronous real-

valued frames and utilize a stateless feedforward architecture to process the frames. Sec-

ond, ANNs employ artificial neurons and conduct real-valued computations, which are

usually power-hungry compared to human brains that require far less energy to perform

the same tasks robustly [36].

1.3. Spiking Neural Networks

With the development of ANNs, computers today have demonstrated extraordinary

abilities in many cognition tasks, such as computer vision, natural language processing,

and recommender systems [37, 38, 39]. Although the performance is truly impressive, a

key question remains: what is the computing cost involved in such activities? The human

brain performs impressive tasks with a power budget of nearly 20W. However, a general

computer needs around 250W to perform only recognition among 1000 different kinds

of objects [36]. What makes such a big energy gap between the general computers and

human brains?

To answer this question, we can find some clues from our brains. Although the brain

remains vastly unexplored, its remarkable capability may be attributed to three founda-

tional observations from neuroscience: the first one is vast connectivity, each neuron in

the brain is connected on average to the other 10,000 neurons [36]. The second one is

the structural and functional hierarchy. For example, the perceptive abilities are based
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Figure 1.6. General structure of Spiking Neural Networks (SNNs).

on the structural hierarchy in the visual cortex. And the third one is time-dependent

neuronal functionality. This means neurons are the computational primitive elements of

the brain. And the neurons and synapses are utilized to transfer information through

discrete time-dependent spikes. Such spike-based temporal processing allows sparse and

efficient information transfer in the brain. Based on these three characteristics, we can

find that ANNs majorly imitate brain structures in two ways including vast connectivity

and structural hierarchy. But the brain has more information processing mechanisms

like the time-dependent neuronal functionality. This explains why ANNs and our human

brains have a such energy gap. To integrate such brain-like characteristics, researchers

propose Spiking Neural Networks (SNNs).

Figure 1.6 presents the general structure of an SNN. From the right part of the figure,

we can see that different from ANNs majorly imitating the vast connectivity and structural

hierarchy of the brain structure, SNNs also involve spike-based temporal processing. Red
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vertical lines in the figure represent spikes, whose values are 1. If there is no spike,

the value is 0. Each blue neuron is a spiking neuron. Each round arrow represents the

recurrent temporal processing mechanism involved in the spiking neurons. We can take a

closer examination of SNNs on the left part of Fig. 1.6. Different from ANNs using real-

valued computations, SNNs use spikes to process information. These spikes are essentially

binary events whose values can be 0 or 1. Each neuron in the SNNs keeps recurrently

updating its membrane potential at each discrete time step. The neuron generates a spike

if the membrane potential value exceeds some threshold at some specific time. Thus, a

neuron in the SNN can only be active when it receives or generates spikes. Otherwise, the

neuron can remain idle. The process is event-driven and contributes to energy efficiency

over a given period. This is quite different from ANNs, where all neurons are always

active since they always receive or generate real values. Moreover, since the inputs in the

SNNs are either 1 or 0, this reduces the dot-product operations on the synapses to less

computationally intensive addition operations. All of these explain why there is such a

big energy gap between ANNs and human brains and make us embrace the SNNs.

Inspired by human brains, several recent works utilized Spiking Neural Networks

(SNNs) to tackle event-driven tasks, including event-driven classification tasks, such as

image classification [40, 41, 14], tactile object recognition [2, 5], slip detection [2], and

texture recognition [42], and event-driven regression tasks, such as image reconstruc-

tion [43] and optical flow estimation [44]. Unlike ANNs, which require expensive trans-

formations from asynchronous discrete events to synchronous real-valued frames, SNNs

can directly process sparse event-based sensor data. Moreover, unlike ANNs that employ

artificial neurons [45, 46, 47] and conduct real-valued computations, SNNs adopt spiking
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neurons [48, 49, 50] and utilize binary 0-1 spikes to process information. This differ-

ence reduces the mathematical dot-product operations in ANNs to less computationally

expensive summation operations in SNNs. Due to the advantages of SNNs, these works

are always energy-efficient and suitable for power-constrained devices. However, due to

the limited capabilities of existing SNN models and high spatio-temporal complexity in

the event-based data, it is still challenging to build effective and efficient SNN models to

conduct event-driven processing and learning.

1.4. Organization of the Thesis

In this dissertation, we propose to build effective and efficient SNNs for event-driven

processing and learning. Our exploration focuses on three pivotal areas: 1) How can we

build effective and efficient SNNs to solve event-driven classification problems? Specif-

cially, we focus on event-driven tactile learning with SNNs. We propose several fully SNN

models and demonstrate the significant improvements of our models over other works on

event-driven classification problems, such as event-driven tactile object recognition and

event-driven tactile slip detection. In addition, we show the superior energy efficiency of

our models, which may unlock their potential on neuromorphic hardware. Furthermore,

we discuss the potential impact of our work on broad event-driven classification tasks. 2)

How can we build effective and efficient SNNs to solve event-driven regression problems?

Specifically, we tackle event-based shape from polarization with SNNs. We introduce the

Single-Timestep and Multi-Timestep Spiking UNets for effective and efficient surface nor-

mal estimation. Extensive evaluations on synthetic and real-world datasets demonstrate

that our models match the performance of state-of-the-art ANNs in estimating surface
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normals, with the added advantage of superior energy efficiency. Our work not only con-

tributes to the advancement of SNNs in event-based shape from polarization but also

sets the stage for future explorations in optimizing SNN architectures for event-driven

regression tasks. 3) Can we bring the lessons from other fields into the novel spiking

architecture design? Specifically, inspired by the evidence in neuroscience that the visual

processing in human vision is performed hierarchically in the combination of analog and

digital processing, we proposed the ANN-SNN models and demonstrated their robustness

on object recognition. In addition, inspired by the GLOM model, a hypothetical model in

the neuroscience that can imitate the human ability to parse visual scenes and represent

the scene’s part-whole hierarchies, we proposed energy-efficient and interpretable Spiking

GLOM models by incorporating spiking neurons.

The rest of this dissertation is structured as follows. Chapter 2 details the event-driven

tactile learning with spiking neural networks. Chapter 3 presents the event-based shape

from polarization with spiking neural networks. Chapter 4 introduces the bio-inspired

novel spiking architectures. And Chapter 5 provides a summary of my contributions,

discusses directions for future work, and concludes this dissertation.

1.5. Bibliographic Notes

The content of this dissertation is mainly based on these five research papers: [51, 52,

53, 54, 55].
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CHAPTER 2

Event-Driven Tactile Learning with Spiking Neural Networks

This chapter is based on papers [52, 53]. The paper [52] © 2022 IEEE. Reprinted,

with permission, from Peng Kang, Srutarshi Banerjee, Henry Chopp, Aggelos Katsaggelos,

and Oliver Cossairt, “Event-driven tactile learning with location spiking neurons,” in 2022

International Joint Conference on Neural Networks (IJCNN). IEEE, 2022, pp. 1-9.

2.1. Introduction

With the prevalence of artificial intelligence, computers today have demonstrated ex-

traordinary abilities in visual and auditory perceptions. Although these perceptions are

essential sensory modalities, they may fail to complete tasks in certain situations where

tactile perception can help. For example, the visual sensory modality can fail to distin-

guish objects with similar visual features in less-favorable environments, such as dim-lit or

in the presence of occlusions. In such cases, tactile sensing can provide meaningful infor-

mation like texture, pressure, roughness, or friction and maintain performance. Overall,

tactile perception is a vital sensing modality that enables humans to gain perceptual

judgment on the surrounding environment and conduct stable movements [42].

With the recent advances in material science and Artificial Neural Networks (ANNs),

research on tactile perception has begun to soar, including tactile object recognition [21,

22, 23], slip detection [24], and texture recognition [25, 26]. Unfortunately, although

ANNs demonstrate promising performance on the tactile learning tasks, they are usually
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power-hungry compared to human brains that require far less energy to perform the tactile

perception robustly [56, 57].

Inspired by biological systems, research on event-driven perception has started to gain

momentum, and several asynchronous event-based sensors have been proposed, including

event cameras [1] and event-based tactile sensors [2]. In contrast to standard synchronous

sensors, such event-based sensors can achieve higher energy efficiency, better scalability,

and lower latency. However, due to the high sparsity and complexity of event-driven data,

learning with these sensors is still in its infancy [6]. Recently, several works [2, 5, 42]

utilized Spiking Neural Networks (SNNs) [41, 6, 58] to tackle event-driven tactile learn-

ing. Unlike ANNs, which require expensive transformations from asynchronous discrete

events to synchronous real-valued frames, SNNs can process event-based sensor data di-

rectly. Moreover, unlike ANNs that employ artificial neurons [45, 46, 47] and conduct

real-valued computations, SNNs adopt spiking neurons [48, 49, 50] and utilize binary 0-1

spikes to process information. This difference reduces the mathematical dot-product op-

erations in ANNs to less computationally expensive summation operations in SNNs [36].

Due to the advantages of SNNs, these works are always energy-efficient and suitable for

power-constrained devices. However, due to the limited representative abilities of existing

spiking neuron models and high spatio-temporal complexity in the event-based tactile

data [2], these works still cannot sufficiently capture spatio-temporal dependencies and

thus hinder the performance of event-driven tactile learning.

In this work, to address the problems mentioned above, we make several contributions

that boost event-driven tactile learning, including event-driven tactile object recognition
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and event-driven slip detection. We summarize a list of acronyms and notations in Ta-

ble A.1. Please refer to it during the reading.

First, to enable richer representative abilities of existing spiking neurons,

we propose a novel neuron model called “location spiking neuron”. Unlike

existing spiking neuron models that update their membrane potentials based on time

steps [36], location spiking neurons update their membrane potentials based on loca-

tions. Specifically, based on the Time Spike Response Model (TSRM) [48], we develop

the “Location Spike Response Model (LSRM)”. Moreover, to make the location spik-

ing neurons more applicable to a wide range of applications, we develop the “Location

Leaky Integrate-and-Fire (LLIF)” model based on the most commonly-used Time Leaky

Integrate-and-Fire (TLIF) model [49]. Please note that TSRM and TLIF are the classical

Spike Response Model (SRM) and Leaky Integrate-and-Fire (LIF) in the literature. We

add the character “T (Time)” to highlight their differences from LSRM and LLIF. These

location spiking neurons enable the extraction of feature representations of event-based

data in a novel way. Previously, SNNs adopted temporal recurrent neuronal dynamics

to extract features from the event-based data. With location spiking neurons, we can

build SNNs that employ spatial recurrent neuronal dynamics to extract features from the

event-based data. We believe location spiking neuron models can have a broad impact

on the SNN community and spur the research on spike-based learning from event sensors

like NeuTouch [2], Dynamic Audio Sensors [3], or Dynamic Vision Sensors [1].

Next, we investigate the representation effectiveness of location spiking

neurons and propose two models for event-driven tactile learning. Specifi-

cally, to capture the complex spatio-temporal dependencies in the event-driven tactile
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data, the first model combines a fully-connected (FC) SNN with TSRM neurons and

a fully-connected (FC) SNN with LSRM neurons, henceforth referred to as the Hy-

brid SRM FC. To capture more spatio-temporal topology knowledge in the event-driven

tactile data, the second model fuses the spatial spiking graph neural network (GNN)

with TLIF neurons and temporal spiking graph neural network (GNN) with LLIF neu-

rons, henceforth referred to as the Hybrid LIF GNN. To be more specific, the Hy-

brid LIF GNN first constructs tactile spatial graphs and tactile temporal graphs based

on taxel locations and event time sequences, respectively. Then, it utilizes the spatial

spiking graph neural network with TLIF neurons and the temporal spiking graph neural

network with LLIF neurons to extract features of these graphs. Finally, it fuses the spiking

tactile features from the two networks and provides the final tactile learning prediction.

Besides the novel model construction, we also specify the location orders to enable the

spatial recurrent neuronal dynamics of location spiking neurons in event-driven tactile

learning. In addition, we explore the robustness of location orders on event-driven tactile

learning. Moreover, we design new loss functions involved with locations and utilize the

backpropagation methods to optimize the proposed models. Furthermore, we develop the

timestep-wise inference algorithms for the two models to show their applicability to the

spike-based temporal data.

Lastly, we conduct experiments on three challenging event-driven tactile

learning classification tasks. Specifically, the first task requires models to determine

the type of objects being handled. The second task requires models to determine the type

of containers being handled and the amount of liquid held within, which is more challeng-

ing than the first task. And the third task asks models to accurately detect the rotational
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slip (“stable” or “rotate”) within 0.15s. Extensive experimental results demonstrate the

significant improvements of our models over the state-of-the-art methods on event-driven

tactile learning. Moreover, the experiments show that existing spiking neurons are better

at capturing spatial dependencies, while location spiking neurons are better at modeling

mid-and-long temporal dependencies. Furthermore, compared to the counterpart ANNs,

our models are 10× to 100× energy-efficient, which shows the superior energy efficiency

of our models and may bring new opportunities to neuromorphic engineering.

We summarize the contributions in this work below.

• We proposed location spiking neurons and demonstrated the dynamics of LSRM

neurons and LLIF neurons.

• By exploiting the location spiking neurons, we developed two fully spiking models

Hybrid SRM FC and Hybrid LIF GNN for event-driven tactile learning.

• Experimental results on benchmark datasets demonstrated the extraordinary per-

formance and high energy efficiency of the proposed models and neurons.

• We thoroughly discuss the advantages and limitations of existing spiking neurons

and location spiking neurons. Moreover, we provide preliminary results on event-

driven audio learning and discuss the broad applicability and potential impact of

this work on other spike-based learning applications.

• The source code is available at https://github.com/pkang2017/TactileLSN.

The rest of the chapter is organized as follows. In Section 2.2, we provide an overview

of related work on SNNs and event-driven tactile sensing and learning. In Section 2.3,

we start by introducing notations for existing spiking neurons and extend them to the

specific location spiking neurons. Then, in Section 2.4, we propose various models with

https://github.com/pkang2017/TactileLSN
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location spiking neurons for event-driven tactile learning. Last, in Section 2.5, we provide

implementation details and algorithms related to the proposed models. In Section 2.6, we

demonstrate the effectiveness and energy efficiency of our models on benchmark datasets.

Finally, we discuss and conclude in Section 2.7.

2.2. Related Work

In the following, we provide a brief overview of related work on SNNs and event-driven

tactile sensing and learning.

2.2.1. Spiking Neural Networks (SNNs)

With the prevalence of Artificial Neural Networks (ANNs), computers today have demon-

strated extraordinary abilities in many cognition tasks. However, ANNs only imitate

brain structures in several ways, including vast connectivity and structural and func-

tional organizational hierarchy [36]. The brain has more information processing mecha-

nisms like the neuronal and synaptic functionality [59, 60]. Moreover, ANNs are much

more energy-consuming than human brains. To integrate more brain-like characteristics

and make artificial intelligence models more energy-efficient, researchers propose Spiking

Neural Networks (SNNs), which can be executed on power-efficient neuromorphic pro-

cessors like TrueNorth [61] and Loihi [62]. Similar to ANNs, SNNs can adopt general

network topologies like convolutional layers and fully-connected layers, but use different

neuron models [50], such as the Time Leaky Integrate-and-Fire (TLIF) model [49] and

the Time Spike Response Model (TSRM) [48]. Due to the non-differentiability of these

spiking neuron models, it still remains challenging to train SNNs. Nevertheless, several
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solutions have been proposed, such as converting the trained ANNs to SNNs [63, 64] and

approximating the derivative of the spike function [40, 65]. In this work, we propose

location spiking neurons to enhance the representative abilities of existing spiking neu-

rons. These location spiking neurons maintain the spiking characteristic but employ the

spatial recurrent neuronal dynamics, which enable us to build energy-efficient SNNs and

extract features of event-based data in a novel way. Moreover, based on the optimization

methods for SNNs with existing spiking neurons, we design new loss functions for SNNs

with location spiking neurons and utilize the backpropagation methods with surrogate

gradients to optimize the proposed models.

2.2.2. Event-Driven Tactile Sensing and Learning

Inspired by human brains, several recent works utilized Spiking Neural Networks (SNNs)

to tackle event-driven classification tasks. However, most of these works are limited to

problems of limited temporal complexity like image classification [40, 41, 14, 63, 64, 65]

due to the lack of novel event-driven sensors and datasets.

With the prevalence of material science and robotics, several tactile sensors have been

developed, including non-event-based tactile sensors like the iCub RoboSkin [66] and

the SynTouch BioTac[67] and event-driven tactile sensors like the NeuTouch [2] and the

NUSkin [68]. In this work, we focus on event-driven tactile learning with SNNs. Since the

development of event-driven tactile sensors is still in its infancy [5], little prior work exists

on learning event-based tactile data with SNNs. The work [42] employed a neural coding

scheme to convert raw tactile data from non-event-based tactile sensors into event-based

spike trains. It then utilized an SNN to process the spike trains and classify textures.
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A recent work [2] released the first publicly-available event-driven visual-tactile dataset

collected by NeuTouch and proposed an SNN based on SLAYER [41] to solve the event-

driven tactile learning. Moreover, to naturally capture the spatial topological relations

and structural knowledge in the event-based tactile data, a very recent work [5] utilized

the spiking graph neural network [58] to process the event-based tactile data and conduct

the tactile object recognition. In this work, different from previous works building SNNs

with spiking neurons that employ the temporal recurrent neuronal dynamics, we construct

SNNs with location spiking neurons to capture the complex spatio-temporal dependencies

in the event-based tactile data and improve event-driven tactile learning.

2.3. Existing Spiking Neuron Models vs. Location Spiking Neuron Models

Spiking neuron models are mathematical descriptions of specific cells in the nervous

system. They are the basic building blocks of SNNs. In this section, we first introduce

the mechanisms of existing spiking neuron models – the TSRM [48] and the TLIF [49].

To enrich their representative abilities, we transform them into location spiking neuron

models – the LSRM and the LLIF.

In the TSRM, the temporal recurrent neuronal dynamics of neuron i are described

by its membrane potential ui(t). When ui(t) exceeds a predefined threshold uth at the

firing time t
(f)
i , the neuron i will generate a spike. The set of all firing times of neuron i

is denoted by

(2.1) Fi = {t(f)
i ; 1 ≤ f ≤ n} = {t|ui(t) = uth},

where t
(n)
i is the most recent spike time t

(f)
i < t. The value of ui(t) is governed by two
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Figure 2.1. Recurrent neuronal dynamic mechanisms for the ex-
isting spiking neurons of ν = t and location spiking neurons of
ν = l. Unlike existing spiking neuron models that update their
membrane potentials based on time steps ν = t, location spik-
ing neurons update their membrane potentials based on locations
ν = l. (a) The refractory dynamics of a TSRM neuron i or an LSRM neu-

ron i. Immediately after firing an output spike at ν
(f)
i , the value of ui(ν)

is lowered or reset by adding a negative contribution ηi(·). The kernel ηi(·)
vanishes for ν < ν

(f)
i and decays to zero for ν → ∞. (b) The incoming

spike dynamics of a TSRM neuron i or an LSRM neuron i. A presynap-

tic spike at ν
(f)
j increases the value of ui(ν) for ν ≥ ν

(f)
j by an amount of

wijxj(ν
(f)
j )εij(ν − ν

(f)
j ). The kernel εij(·) vanishes for ν < ν

(f)
j . “<” and

“≥” indicate the location order when ν = l. (c) The recurrent neuronal
dynamics of a TLIF neuron i or an LLIF neuron i. The neuron i takes
as input binary spikes and outputs binary spikes. xj represents the input
signal to the neuron i from neuron j, ui is the neuron’s membrane poten-
tial, and oi is the neuron’s output. An output spike will be emitted from
the neuron when its membrane potential surpasses the firing threshold uth,
after which the membrane potential will be reset to ureset.

different spike response processes:

(2.2) ui(t) =
∑

t
(f)
i ∈Fi

ηi(t− t(f)
i ) +

∑
j∈Γi

∑
t
(f)
j ∈Fj

wijxj(t
(f)
j )εij(t− t(f)

j ),

where Γi is the set of presynaptic neurons of neuron i and xj(t
(f)
j ) = 1 is the presynaptic

spike at time t
(f)
j . ηi(t) is the refractory kernel, which describes the response of neuron
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i to its own spikes at time t. εij(t) is the incoming spike response kernel, which models

the neuron i’s response to the presynaptic spikes from neuron j at time t. wij accounts

for the connection strength between neuron i and neuron j and scales the incoming spike

response. Figure 2.1(a) of ν = t visualizes the refractory dynamics of the TSRM neuron

i and Figure 2.1(b) of ν = t visualizes the incoming spike dynamics of the TSRM neuron

i.

Without loss of generality, such temporal recurrent neuronal dynamics also apply to

other spiking neuron models, such as the TLIF, which is a special case of the TSRM [69].

Since the TLIF model is computationally tractable and maintains biological fidelity to a

certain degree, it becomes the most commonly-used spiking neuron model and there are

many popular SNN frameworks powered with it [40]. The dynamics of the TLIF neuron

i are governed by

(2.3) τ
dui(t)

dt
= −ui(t) + I(t),

where ui(t) represents the internal membrane potential of the neuron i at time t, τ is a

time constant, and I(t) signifies the presynaptic input obtained by the combined action

of synaptic weights and pre-neuronal activities. To better understand the membrane

potential update of TLIF neurons, the Euler method is used to transform the first-order

differential equation of Eq. (2.3) into a recursive expression:

(2.4) ui(t) = (1− dt

τ
)ui(t− 1) +

dt

τ

∑
j

wijxj(t),
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Figure 2.2. The words of Su Shi offer a timeless lesson on perspective: our
understanding is deeply influenced by where we stand. His poem encourages
us to change our viewpoint, to see the broader context or a different facet
of the same situation. This approach doesn’t just enrich our appreciation
of art or nature, it also applies to analyzing event data.

where
∑

j wijxj(t) is the weighted summation of the inputs from pre-neurons at the current

time step.

Equation (2.4) can be further simplified as:

(2.5) ui(t) = αui(t− 1) +
∑
j

w′ijxj(t),

where α = 1− dt
τ

can be considered a decay factor, and w′ij is the weight incorporating the

scaling effect of dt
τ

. When ui(t) exceeds a certain threshold uth, the neuron emits a spike,

resets its membrane potential to ureset, and then accumulates ui(t) again in subsequent

time steps. Figure 2.1(c) of ν = t visualizes the temporal dynamics of a TLIF neuron i.
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Figure 2.3. Explore event data from a location-driven viewpoint by transposing.

From the above descriptions, we find that existing spiking neuron models have explicit

temporal recurrence but do not possess explicit spatial recurrence, which, to some

extent, limits their representative abilities.

Traditionally, our analysis of event data focuses on the temporal dimension, observing

how events unfolded over time T with existing spiking neurons. However, drawing from

the insight of Su Shi’s poem in Fig. 2.2, we are prompted to consider a spatial perspective

as well. As shown in Fig. 2.3, by transposing the time-oriented event data, we shift to

examining the sequence of events based on their location N . This reorientation from

time to space allows us to uncover patterns and relationships that may not be apparent

when viewed solely through the lens of time. It’s a transformative shift that enables us

to analyze event data from a location-driven viewpoint.

To analyze event data from this location-driven viewpoint and enrich the representa-

tive abilities of existing spiking neuron models, we propose the location spiking neurons,
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which adopt the spatial recurrent neuronal dynamics and update their membrane poten-

tials based on locations1. These neurons exploit explicit spatial recurrence. Specifi-

cally, the spatial recurrent neuronal dynamics of the LSRM neuron i are described by its

location membrane potential ui(l). When ui(l) exceeds a predefined threshold uth at the

firing location l
(f)
i , the neuron i will generate a spike. The set of all firing locations of

neuron i is denoted by

(2.6) Gi = {l(f)
i ; 1 ≤ f ≤ n} = {l|ui(l) = uth},

where l
(n)
i is the nearest firing location l

(f)
i < l. “<” indicates the location order, which is

manually set and will be discussed in Section 2.5. The value of ui(l) is governed by two

different spike response processes:

(2.7) ui(l) =
∑
l
(f)
i ∈Gi

ηi(l − l(f)
i ) +

∑
j∈Γi

∑
l
(f)
j ∈Gj

wijxj(l
(f)
j )εij(l − l(f)

j ),

where Γi is the set of presynaptic neurons of neuron i and xj(l
(f)
j ) = 1 is the presynaptic

spike at location l
(f)
j . ηi(l) is the refractory kernel, which describes the response of neuron

i to its own spikes at location l. εij(l) is the incoming spike response kernel, which models

the neuron i’s response to the presynaptic spikes from neuron j at location l. Figure 2.1(a)

of ν = l visualizes the refractory dynamics of the LSRM neuron i and Figure 2.1(b) of

ν = l visualizes the incoming spike dynamics of the LSRM neuron i. The threshold uth

of LSRM neurons can be different from that of TSRM neurons, while we set the same

1locations could refer to pixel or patch locations for images or taxel locations for tactile sensors.
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for simplicity. In Section 2.4.1, we will apply the LSRM neurons to event-driven tactile

learning and show how the proposed neurons enable feature extraction in a novel way.

To make the location spiking neurons user-friendly and compatible with various spike-

based learning frameworks, we expand the idea of location spiking neurons to the most

commonly-used TLIF neurons and propose the LLIF neurons. Different from the temporal

dynamics shown in Eq. (2.3), the LLIF neuron i employs the spatial dynamics:

(2.8) τ ′
dui(l)

dl
= −ui(l) + I(l),

where ui(l) represents the internal membrane potential of an LLIF neuron i at location

l, τ ′ is a location constant, and I(l) represents the presynaptic input. We use the Euler

method again to transform the first-order differential equation of Eq. (2.8) into a recursive

expression:

(2.9) ui(l) = (1− dl

τ ′
)ui(lprev) +

dl

τ ′

∑
j

wijxj(l),

where
∑

j wijxj(l) is the weighted summation of the inputs from pre-neurons at the current

location. Equation (2.9) can be further simplified as:

(2.10) ui(l) = βui(lprev) +
∑
j

w′ijxj(l),

where β = 1 − dl
τ ′

can be considered a location decay factor, and w′ij is the weight incor-

porating the scaling effect of dl
τ ′

. When ui(l) exceeds a certain threshold uth, the neuron

emits a spike, resets its membrane potential to ureset, and then accumulates ui(l) again

at subsequent locations. uth and ureset of LLIF neurons can be different from those of
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TLIF neurons, while we set the same for simplicity. Figure 2.1(c) of ν = l visualizes

the spatial recurrent neuronal dynamics of an LLIF neuron i. To enable the dynamics

of LLIF neurons, we still need to specify the location order like the LSRM neurons. In

Section 2.4.2, we will demonstrate how the LLIF neurons can be incorporated into the

popular spike-based learning framework and further boost the performance of event-driven

tactile learning.

2.4. Event-Driven Tactile Learning with Location Spiking Neurons

To investigate the representation effectiveness of location spiking neurons and boost

the event-driven tactile learning performance, we propose two models with location spik-

ing neurons, which capture complex spatio-temporal dependencies in the event-based

tactile data. In this work, we focus on processing the data collected by NeuTouch [2], a

biologically-inspired event-driven fingertip tactile sensor with 39 taxels arranged spatially

in a radial fashion (see Fig. 2.4).

2.4.1. Event-Driven Tactile Learning with the LSRM Neurons

In this section, we introduce event-driven tactile learning with the LSRM neurons. Specif-

ically, we propose the Hybrid SRM FC to capture the complex spatio-temporal depen-

dencies in the event-driven tactile data.

Figure 2.4 presents the network structure of the Hybrid SRM FC. From the figure,

we can see that the model has two components, including the fully-connected SNN with

TSRM neurons and the fully-connected SNN with LSRM neurons. Specifically, the fully-

connected SNN with TSRM neurons employs the temporal recurrent neuronal dynamics
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Figure 2.4. The network structure of the Hybrid SRM FC. The Upper
Panel: The SNN with TSRM neurons processes the input spikes Xin and
adopts the temporal recurrent neuronal dynamics (shown with red dashed
arrows) of TSRM neurons to extract features from the data, where SFc is
the spiking fully-connected layer with TSRM neurons. The Lower Panel:
The SNN with LSRM neurons processes the transposed input spikesX ′in and
employs the spatial recurrent neuronal dynamics (shown with purple dashed
arrows) of LSRM neurons to extract features from the data, where SFc-
location is the spiking fully-connected layer with LSRM neurons. Finally,
the spiking representations from two networks are concatenated to yield the
final predicted label. (32) and (20) represent the sizes of fully-connected
layers, where we assume the number of classes (K) is 20.

to extract spiking feature representations from the event-based tactile data Xin ∈ RN×T ,

where N is the total number of taxels and T is the total time length of event sequences.

The fully-connected SNN with LSRM neurons utilizes the spatial recurrent neuronal

dynamics to extract spiking feature representations from the event-based tactile data

X ′in ∈ RT×N , where X ′in is transposed from Xin. The spiking representations from two

networks are then concatenated to yield the final task-specific output.

To be more specific, the top part of Fig. 2.4 shows the network structure of fully-

connected SNN with TSRM neurons. It employs two spiking fully-connected layers with
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TSRM neurons to process Xin and generate the spiking representations O1 ∈ RK×T , where

K is the output dimension determined by the task. The membrane potential ui(t), the

output spiking state oi(t), and the set of all firing times Fi of TSRM neuron i in these

layers are decided by:

ui(t) =
∑

t
(f)
i ∈Fi

η(t− t(f)
i ) +

∑
j∈Γi

∑
t
(f)
j ∈Fj

wijoj(t
(f)
j )ε(t− t(f)

j )

︸ ︷︷ ︸
capture spatial dependencies

,

oi(t) =


1 if ui(t) ≥ uth;

0 otherwise,

Fi =


Fi ∪ t if oi(t) = 1;

Fi otherwise,

(2.11)

where wij are the trainable parameters, η(t) and ε(t) model the temporal recurrent neu-

ronal dynamics of TSRM neurons, Γi is the set of presynaptic TSRM neurons

spanning over the spatial domain, which is utilized to capture the spatial

dependencies in the event-based tactile data.

Moreover, the bottom part of Fig. 2.4 shows the network structure of fully-connected

SNN with LSRM neurons. It employs two spiking fully-connected layers with LSRM

neurons to process X ′in and generate the spiking representations O2 ∈ RK×N , where K

is the output dimension decided by the task. The membrane potential ui(l), the output

spiking state oi(l), and the set of all firing locations Gi of LSRM neuron i in these layers

are decided by:
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ui(l) =
∑
l
(f)
i ∈Gi

η(l − l(f)
i ) +

∑
j∈Γ′

i

∑
l
(f)
j ∈Gj

wijoj(l
(f)
j )ε(l − l(f)

j )

︸ ︷︷ ︸
model temporal dependencies

,

oi(l) =


1 if ui(l) ≥ uth;

0 otherwise,

Gi =


Gi ∪ l if oi(l) = 1;

Gi otherwise,

(2.12)

where wij are the trainable connection weights, η(l) and ε(l) determine the spatial re-

current neuronal dynamics of LSRM neurons, Γ′i is the set of presynaptic LSRM

neurons spanning over the temporal domain, which is utilized to model the

temporal dependencies in the event-based tactile data. The location spiking neu-

rons tap the representative potential and enable us to capture features in this novel way.

Lastly, we concatenate the spiking representations of O1 and O2 along the last di-

mension and obtain the final output spike train O ∈ RK×(T+N). The predicted label is

associated with the neuron k ∈ K with the largest number of spikes in the domain of

T +N .

2.4.2. Event-Driven Tactile Learning with the LLIF Neurons

In this section, to demonstrate the usability of location spiking neurons and further boost

the event-driven tactile learning performance, we utilize the LLIF neurons to propose the
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Figure 2.5. (a) The tactile spatial graph Gs at time step t generated by
the Minimum Spanning Tree (MST) algorithm [5]. Each circle represents a
taxel of NeuTouch. (b) Based on event sequences, we propose two different
tactile temporal graphs Gt for a specific taxel n = 1: the above one is
the sparse tactile temporal graph, while the below one is the dense tactile
temporal graph.

Hybrid LIF GNN, which fuses spatial and temporal spiking graph neural networks and

captures complex spatio-temporal dependencies in the event-based tactile data.

2.4.2.1. Tactile Graph Construction. Given event-based tactile inputs Xin ∈ RN×T ,

we construct tactile spatial graphs and tactile temporal graphs as illustrated in Fig. 2.5.

The tactile spatial graph Gs(t) = (V t, Et) at time step t explicitly captures the

spatial structural information in the data, while the tactile temporal graph Gt(n) =

(Vn, En) for a specific taxel n explicitly models the temporal dependency in the

data. V t = {vtn|n = 1, ..., N} and Vn = {vtn|t = 1, ..., T} represent nodes of Gs(t) and

Gt(n), respectively, and the attribute of vtn is the event feature of the n-th taxel at time

step t. Et = {eti,j|i, j = 1, ..., N} represents the edges of Gs(t), where eti,j ∈ {0, 1} indicates

whether the nodes vti , v
t
j are connected (denoted as 1) or disconnected (denoted as 0). Et
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is formed by the Minimum Spanning Tree (MST) algorithm, where the Euclidean distance

between taxels d(vti , v
t
j) = ‖(x, y)vti − (x, y)vtj‖2 is used to determine whether the edges

are in the MST. Since the 2D coordinates (x, y) of taxels do not change with time, Et

remains the same throughout time. Moreover, the adjacency matrix of Et is symmetric

(i.e., the edges are indirect) as we assume the mutual spatial dependency in the data.

En = {ep,qn |p, q = 1, ..., T} represents the edges of Gt(n), where ep,qn ∈ {0, 1} and each edge

is direct. Based on different temporal dependency assumptions, we propose two kinds of

tactile temporal graphs shown in Fig. 2.5(b). One is sparse since we assume the current

state only directly impacts the nearest future state. While the other is dense since we

assume the current state has a broad impact on the future states. En remains the same

for all N taxels.

2.4.2.2. Hybrid LIF GNN. To process the data from tactile graphs and capture the

complex spatio-temporal dependencies in the event-based tactile data, we propose the

Hybrid LIF GNN (see Fig. 2.6), which fuses spatial and temporal spiking graph neural

networks. Specifically, we adopt the spatial spiking graph neural network with TLIF

neurons [5], which is a spike-based tactile learning framework powered by STBP [40]. It

uses temporal recurrent neuronal dynamics to capture the spatial structure information

from the tactile spatial graphs. Inspired by this model, we develop the temporal spiking

graph neural network with LLIF neurons, which is also powered by STBP. Our temporal

spiking graph neural network utilizes spatial recurrent neuronal dynamics to extract the

temporal dependencies in the tactile temporal graphs. Finally, we fuse the spiking features

from two networks and obtain the final prediction.
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Figure 2.6. The structure of the Hybrid LIF GNN, where “SSG” is the spa-
tial spiking graph layer, “SSFC” is the spatial spiking fully-connected layer,
“TSG” is the temporal spiking graph layer, and “TSFC” is the temporal
spiking fully-connected layer. The spatial spiking graph neural network
processes the T tactile spatial graphs and adopts the temporal recurrent
neuronal dynamics (shown with red arrows) of TLIF neurons to extract
features. The temporal spiking graph neural network processes the N tac-
tile temporal graphs and employs the spatial recurrent neuronal dynamics
(shown with purple arrows) of LLIF neurons to extract features. Finally,
the model fuses the predictions from two networks and obtains the final
predicted label. (3, 64) represents the hop size and the filter size of spiking
graph layers. (128), (256), and (10) represent the sizes of fully-connected
layers, where we assume the number of classes (K) is 10.

To be more specific, the spatial spiking graph neural network takes as input tac-

tile spatial graphs, and it has one spatial spiking graph layer and three spatial spiking

fully-connected layers, where TLIF neurons that employ the temporal recurrent neuronal

dynamics are the basic building blocks. On the other hand, the temporal spiking graph

neural network takes as input tactile temporal graphs, and it has one temporal spiking

graph layer and three temporal spiking fully-connected layers, where LLIF neurons that

possess the spatial recurrent neuronal dynamics are the basic building blocks.
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Based on Eq. (2.5), the membrane potential ui(t) and output spiking state oi(t) of

TLIF neuron i in the spatial spiking graph layer are decided by:

ui(t) = αui(t− 1)(1− oi(t− 1)) + I(t),

oi(t) =


1 if ui(t) ≥ uth;

0 otherwise,

(2.13)

where I(t) = GNN(Gs(t)) is to capture the spatial structural information. The

membrane potential ui(t) and output spiking state oi(t) of TLIF neuron i in spatial spiking

fully-connected layers are also decided by Eq. (2.13), where I(t) = FC(Pre(t)) and Pre(t)

is the previous layer’s output at time step t.

Based on Eq. (2.10), the membrane potential ui(l) and output spiking state oi(l) of

LLIF neuron i in the temporal spiking graph layer are decided by:

ui(l) = βui(lprev)(1− oi(lprev)) + I(l),

oi(l) =


1 if ui(l) ≥ uth;

0 otherwise,

(2.14)

where I(l) = GNN(Gt(l)) is to model the temporal dependencies in the data.

The membrane potential ui(l) and output spiking state oi(l) of LLIF neuron i in temporal

spiking fully-connected layers are also decided by Eq. (2.14), where I(l) = FC(Pre(l))

and Pre(l) is the previous layer’s output at location l. l is the taxel n ∈ N in event-driven

tactile learning. To fairly compare with other baselines, we use TAGConv [70] as GNN

in this work.
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The spatial spiking graph neural network finally outputs the spiking feature O1 ∈

RK×T and predicts the label vector O′1 ∈ RK by averaging O1 over the time window T ,

(2.15) O′1 =
1

T

T∑
t

O1(t),

where O1(t) ∈ RK . The temporal spiking graph neural network finally outputs the spiking

features O2 ∈ RK×N and predicts the label vector O′2 ∈ RK by averaging O2 over the

spatial domain N ,

(2.16) O′2 =
1

N

N∑
l

O2(l),

where O2(l) ∈ RK . To fuse the predictions from these two networks, we take the mean

or element-wise max of these two label vectors O′1 and O′2 and obtain the final predicted

label vector O′ ∈ RK . The predicted label is associated with the neuron with the largest

value.

Figure 2.7. Location orders. (a) Arch-like location order. (b) Whorl-like
location order. (c) Loop-like location order. (d) Random location order.
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2.5. Implementations

In this section, we first introduce the location orders to enable the spatial recurrent

neuronal dynamics of location spiking neurons. Then, we present the implementation

details and timestep-wise inference algorithms for the proposed models.

2.5.1. Location Orders

To enable the spatial recurrent neuronal dynamics of location spiking neurons, we need

to manually set the location orders of location spiking neurons. Specifically, we propose

four kinds of location orders for event-driven tactile learning and explore their robustness

on the event-driven tactile tasks. As shown in Fig. 2.7, three location orders are designed

based on the major fingerprint patterns of humans – arch, whorl, and loop. And one

location order randomly traverses all the taxels. Four concrete examples are shown below.

Each number in the brackets represents the taxel index.

• An example for the arch-like location order: [11, 25, 35, 4, 18, 30, 7, 2, 20, 37,

29, 12, 9, 33, 23, 16, 1, 6, 15, 21, 27, 34, 39, 24, 17, 10, 31, 38, 28, 14, 3, 22, 32,

8, 19, 36, 5, 13, 26]

• An example for the whorl-like location order: [21, 15, 16, 23, 27, 24, 17, 6, 9, 12,

20, 29, 33, 34, 31, 28, 22, 14, 10, 1, 2, 7, 18, 30, 37, 39, 38, 32, 19, 8, 3, 4, 11, 25,

35, 36, 26, 13, 5]

• An example for the loop-like location order: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39]
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• An example for the random location order: [4, 7, 12, 9, 2, 1, 6, 15, 10, 3, 5, 8,

14, 17, 21, 22, 13, 26, 19, 24, 27, 28, 32, 36, 38, 31, 34, 39, 37, 33, 23, 29, 30, 35,

25, 11, 18, 20, 16]

2.5.2. Hybrid SRM FC

Similar to the spike-count loss of prior works [41, 2], we propose a location spike-count

loss to optimize the SNN with LSRM neurons:

(2.17) LLSRM =
1

2

K∑
k=0

(
N∑
l=0

ok(l)−
N∑
l=0

ôk(l)

)2

,

which captures the difference between the observed output spike count
∑N

l=0 ok(l) and

the desired spike count
∑N

l=0 ôk(l) across the K neurons. Moreover, to optimize the

Hybrid SRM FC, we develop a weighted spike-count loss:

(2.18) L1 =
1

2

K∑
k=0

((
T∑
t=0

ok(t) + λ
N∑
l=0

ok(l)

)
−

T+N∑
c=0

ôk(c)

)2

,

which first balances the contributions from two SNNs and then captures the difference

between the observed balanced output spike count
∑T

t=0 ok(t) + λ
∑N

l=0 ok(l) and the

desired spike count
∑T+N

c=0 ôk(c) across the K output neurons. For both LLSRM and L1,

the desired spike counts have to be specified for the correct and incorrect classes and are

task-dependent hyperparameters. We set these hyperparameters as in [2]. To overcome

the non-differentiability of spikes and apply the backpropagation algorithm, we use the

approximate gradient proposed in SLAYER [41]. Moreover, based on the SLAYER’s

weight update in the temporal domain, we can derive the weight update for the SNNs



57

with LSRM neurons in the spatial domain. Please check more details in our Github

repository.

To demonstrate the applicability of our model to the spike-based temporal data, we

propose the timestep-wise inference algorithm of the Hybrid SRM FC, which is shown

in Algorithm 1. The corresponding timestep-wise training algorithm can be derived by

incorporating the weighted spike-count loss.

Algorithm 1 Timestep-wise inference algorithm of the Hybrid SRM FC, adopted
from [52]

Require: event-based tactile inputs Xin ∈ RN×T , N taxels, and the total time length T .
Ensure: timestep-wise predictions of O1, O2, and O.
1: for t← 1 to T do
2: obtain X ∈ RN×t

3: obtain X̄ ′ = concatenate(X ′,0) ∈ RT×N , where X ′ ∈ Rt×N , and 0 ∈ R(T−t)×N

4: O1(t) = 0 ∈ RK×t, O2(t) = 0 ∈ RK×N

5: O(t) = 0 ∈ RK×(t+N)

6: O1(t) = SNN TSRM(X) . SNN TSRM for the fully-connected SNN with TSRM
neurons

7: O2(t) = SNN LSRM(X̄ ′) . SNN LSRM for the fully-connected SNN with LSRM
neurons

8: O(t) = concatenate(O1(t), O2(t))
9: end for

2.5.3. Hybrid LIF GNN

To train the Hybrid LIF GNN, we define the loss function that captures the mean squared

error between the ground truth label vector y and the final predicted label vector O′.

(2.19) L2 = ‖y −O′‖2.

We utilize the spatio-temporal backpropagation [40] to derive the weight update for the

SNNs with LLIF neurons. Moreover, to overcome the non-differentiability of spikes, we
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use the rectangular function [40] to approximate the derivative of the spike function

(Heaviside function) in Eqs. (2.13) and (2.14). Please check more implementation details

in our Github repository. Algorithm 2 presents the timestep-wise inference algorithm of

the Hybrid LIF GNN.

Algorithm 2 Timestep-wise inference algorithm of the Hybrid LIF GNN

Require: event-based tactile inputs Xin ∈ RN×T , N taxels, and the total time length T
Ensure: timestep-wise label vectors of O′1, O′2, and O′

1: for t← 1 to T do
2: form t tactile spatial graphs Gs with X ∈ RN×t

3: obtain X̄ ′ = concatenate(X ′,0) ∈ RT×N , where X ′ ∈ Rt×N , and 0 ∈ R(T−t)×N

4: form N tactile temporal graphs Gt with X̄ ′

5: O′1(t), O′2(t), O′(t) = 0 ∈ RK

6: for i← 1 to t do
7: O′1(t) += SSGNN(Gs(i)) . SSGNN for the spatial spiking graph neural

network
8: end for
9: O′1(t) /= t
10: for j ← 1 to N do
11: O′2(t) += TSGNN(Gt(j)) . TSGNN for the temporal spiking graph neural

network
12: end for
13: O′2(t) /= N
14: O′(t) = mean(O′1(t), O′2(t)) . max can be used
15: end for

2.6. Experiments

We extensively evaluate our proposed models and demonstrate their effectiveness and

efficiency on event-driven tactile learning, including event-driven tactile object recogni-

tion and event-driven slip detection. Specifically, we first conduct experiments on the

Hybrid SRM FC to show that location spiking neurons can improve event-driven tactile
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learning. Then, we utilize the experiments on the Hybrid LIF GNN to show that loca-

tion spiking neurons are user-friendly and can be incorporated into more powerful spike-

based learning frameworks to further boost event-driven tactile learning. The source code

and experimental configuration details are available at https://github.com/pkang2017/

TactileLSN.

2.6.1. Hybrid SRM FC

In this section, we first introduce the datasets and models for the experiments. Next, to

show the effectiveness of the Hybrid SRM FC, we extensively evaluate it on the benchmark

datasets and compare it with state-of-the-art models. Finally, we demonstrate the superior

energy efficiency of the Hybrid SRM FC over the counterpart ANNs and show the high-

efficiency benefit of LSRM neurons. We implement our models using slayerPytorch2 and

employ RMSProp with the l2 regularization to optimize them.

2.6.1.1. Datasets. We use the datasets collected by NeuTouch [2], including “Objects-

v1” and “Containers-v1” for event-driven tactile object recognition and “Slip Detection”

for event-driven slip detection. Unlike “Objects-v1” which only requires models to de-

termine the type of objects being handled, “Containers-v1” asks models about the type

of containers being handled and the amount of liquid (0%, 25%, 50%, 75%, 100%) held

within. Thus, “Containers-v1” is more challenging for event-driven tactile object recogni-

tion. Moreover, the task of event-driven slip detection is also challenging since it requires

models to detect the rotational slip within a short time, like 0.15s for “Slip Detection”.

We provide more details about the datasets in the Supplementary Material. Following

2https://github.com/bamsumit/slayerPytorch

https://github.com/pkang2017/TactileLSN
https://github.com/pkang2017/TactileLSN
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Table 2.1. Accuracies on benchmark datasets for the Hybrid SRM FC

Method Type Objects-v1 Containers-v1 Slip Detection
Tactile-SNN [2] SNN 0.75 0.57* 0.82*
TactileSGNet [5] SNN 0.79 0.58 0.97
GRU-MLP [2] ANN 0.72 0.46* 0.87*
CNN-3D [2] ANN 0.90 0.67* 0.44*
Hybrid SRM FC SNN 0.91 0.86 1.0

*These values come from [2]. The best performance is in bold.

the experimental setting of [2], we split the data into a training set (80%) and a testing

set (20%), repeat each experiment for five rounds, and report the average accuracy.

2.6.1.2. Comparing Models. We compare our model with the state-of-the-art SNN

methods for event-driven tactile learning, including Tactile-SNN [2] and TactileSGNet [5].

Tactile-SNN employs TSRM neurons as the building blocks, and the network struc-

ture of Tactile-SNN is the same as the fully-connected SNN with TSRM neurons in the

Hybrid SRM FC. TactileSGNet utilizes TLIF neurons as the building blocks and the

network structure of TactileSGNet is the same as the spatial spiking graph neural network

in the Hybrid LIF GNN. As in [2], we also compare our model against conventional deep

learning, specifically Gated Recurrent Units (GRUs) [71] with Multi-layer Perceptrons

(MLPs) and 3D convolutional neural networks (3D CNN) [72]. The network structure of

GRU-MLP is Input-GRU-MLP, where MLP is only utilized at the final time step. And

the network structure of CNN-3D is Input-3D CNN1-3D CNN2-FC, where FC is for the

fully-connected layer.

2.6.1.3. Basic Performance. Table 2.1 presents the test accuracies on the three datasets.

We observe that the Hybrid SRM FC significantly outperforms the state-of-the-art SNNs.

The reason why our model is superior to other SNNs could be two-fold: (1) different from
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state-of-the-art SNNs that only extract features with existing spiking neurons, our model

employs an SNN with location spiking neurons that enhance the representative ability

and enable the model to extract features in a novel way; (2) our model fuses the SNN

with TSRM neurons and the SNN with LSRM neurons to better capture complex spatio-

temporal dependencies in the data. We also compare our model with ANNs, which provide

fair comparison baselines for fully ANN architectures since they employ similar lightsome

network architectures as ours. From Table 2.1, we find out that our model outperforms

the counterpart ANNs on the three tasks, which might be because our model is more

compatible with event-based tactile data and better maintains the sparsity to prevent

overfitting.

2.6.1.4. Ablation Studies. To examine the effectiveness of each component in the pro-

posed model and validate the representation ability of location spiking neurons on event-

driven tactile learning, we separately train the SNN with TSRM neurons (which is

exactly Tactile-SNN) and the SNN with LSRM neurons (which is referred to as Loca-

tion Tactile-SNN). From Table 2.2, we surprisingly find out that Location Tactile-SNN

significantly surpasses Tactile-SNN on the datasets for event-driven tactile object recog-

nition and provides comparable performance on event-driven slip detection. The reason

for this could be two-fold: (1) the time durations of event-driven tactile object recogni-

tion datasets are longer than that of “Slip Detection”, and Location Tactile-SNN with

LSRM neurons is good at capturing the mid-and-long term dependencies in these object

recognition datasets; (2) like Tactile-SNN, Location Tactile-SNN with LSRM neurons can

still capture the spatial dependencies in the event-driven tactile data (“Slip Detection”)

due to the spatial recurrent neuronal dynamics of location spiking neurons. Moreover,
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Table 2.2. Ablation studies on the Hybrid SRM FC

Method Type Objects-v1 Containers-v1 Slip Detection
Tactile-SNN [2] SNN 0.75 0.57 0.82
Location Tactile-SNN SNN 0.89 0.88 0.82
Hybrid SRM FC λ = 1 SNN 0.91 0.86 1.0
Hybrid SRM FC λ = 0.5 SNN 0.92 0.89 0.98
Hybrid SRM FC-loop SNN 0.91 0.86 1.0
Hybrid SRM FC-arch SNN 0.91 0.86 0.99
Hybrid SRM FC-whorl SNN 0.92 0.86 0.98
Hybrid SRM FC-random SNN 0.91 0.86 0.99

Figure 2.8. The confusion matrix of Tactile-SNN on “Containers”.

we examine the sensitivity of λ in Eq.(2.18) and the robustness of location orders. From

Table 2.2, we notice the results of related models are close, proving that the λ tuning and

location orders do not significantly impact task performance.
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Figure 2.9. The confusion matrix of Hybrid SRM FC on “Containers”.

2.6.1.5. Confusion Matrices. We calculate the confusion matrices of Tactile-SNN

(Fig. 2.8) and Hybrid SRM FC (Fig. 2.9) on “Containers” since it is a more challeng-

ing event-driven tactile object recognition dataset. From the two figures, we can see that

our hybrid model can perfectly distinguish the different containers. Each red box in the

figures represents a type of container, and each blue box in the figures represents the con-

tainer misclassification. Moreover, compared to Tactile-SNN, we observe that our model

can recognize the container fullness with a higher accuracy since the misclassification

number in each red box is fewer for our model.

2.6.1.6. Timestep-wise Inference. We evaluate the timestep-wise inference perfor-

mance of the Hybrid SRM FC and validate the contributions of the two components in

it. Moreover, we propose a time-weighted Hybrid SRM FC to better balance the two
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Figure 2.10. The timestep-wise inference (Alg. 1) for the SNN with TSRM
neurons (SNN TSRM), the SNN with LSRM neurons (SNN LSRM), the
Hybrid SRM FC, and the time-weighted Hybrid SRM FC on (a) “Objects-
v1”, (b) “Slip Detection”, (c) “Containers-v1”. Please note that we use
the same event sequences as [2] and the first spike occurs at around 2.0s for
“Objects-v1” and “Containers-v1”.

components’ contributions and achieve better overall performance. Figure 2.10 shows

the timestep-wise inference accuracies of the SNN with TSRM neurons, the SNN with

LSRM neurons, the Hybrid SRM FC, and the time-weighted Hybrid SRM FC on the

three datasets. Specifically, the output of the time-weighted Hybrid SRM FC at time t is

Otw(t) = concatenate((1− ω) ∗O1(t), ω ∗O2(t)),

ω =
1

1 + e−ψ∗(
t
T
−1)

,

(2.20)

where the hyperparameter ψ balances the contributions of the two components in the

hybrid model and T is the total time length. From the figures, we can see that the SNN

with TSRM neurons has good “early” accuracies on the three tasks since it well captures

the spatial dependencies with the help of Eq. (2.11). However, its accuracies do not

improve too much at the later stage since it does not sufficiently capture the temporal

dependencies. In contrast, the SNN with LSRM neurons has fair “early” accuracies, while
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its accuracies jump a lot at the later stage since it models the temporal dependencies in

Eq. (2.12). The Hybrid SRM FC adopts the advantages of these two components and

extracts spatio-temporal features from various views, which enables it to have a better

overall performance. Furthermore, after employing the time-weighted output and shifting

more weights to the SNN with TSRM neurons at the early stage, the time-weighted

Hybrid SRM FC can have a good “early” accuracy as well as an excellent “final” accuracy.

2.6.1.7. Energy Efficiency. To further analyze the benefits of the proposed model and

location spiking neurons, we estimate the gain in computational costs compared to fully

ANN architectures. Typically, the number of synaptic operations is used as a metric for

benchmarking the computational energy of SNN models [58, 73]. In addition, we can

estimate the total energy consumption of a model based on CMOS technology [74].

Different from ANNs that always conduct real-valued matrix-vector multiplication

operations without considering the sparsity of inputs, SNNs carry out event-based com-

putations only at the arrival of input spikes. Hence, we first measure the mean spiking

rate of layer l in our proposed model. Specifically, the mean spiking rate of the layer l in

the SNN with existing spiking neurons is given by:

(2.21) F
(l)
1 =

1

T

∑
t∈T

#spikes of layer l at time t

#neurons of layer l
,

where T is the total time length. And the mean spiking rate of the layer l in the SNN

with location spiking neurons is given by:

(2.22) F
(l)
2 =

1

N

∑
n∈N

#spikes of layer l at location n

#neurons of layer l
,
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where N is the total number of locations. We show the mean spiking rates of Hy-

brid SRM FC layers in the Supplementary Material. With the mean spiking rates, we

can estimate the number of synaptic operations in the SNNs. Given M is the number

of neurons, C is the number of synaptic connections per neuron, and F indicates the

mean spiking rate, the number of synaptic operations at each time or location in layer l

is calculated as M (l) × C(l) × F (l), where F (l) is F
(l)
1 or F

(l)
2 . Thus, the total number of

synaptic operations in our hybrid model is calculated by:

(2.23) OPHybrid =
∑
l

M (l) × C(l) × F (l)
1 × T +

∑
l′

M (l′) × C(l′) × F (l′)
2 ×N,

where l is the spiking layer with existing spiking neurons and l′ is the spiking layer with

location spiking neurons. Generally, the total number of synaptic operations in the ANNs

is
∑

lM
(l) × C(l). Based on these, we estimate the number of synaptic operations in the

Hybrid SRM FC and ANNs like the GRU-MLP and CNN-3D. As shown in Table 2.3, all

the SNNs achieve far fewer operations than ANNs on the three datasets.

Moreover, due to the binary nature of spikes, SNNs perform only accumulation (AC)

per synaptic operation, while ANNs perform the multiply-accumulate (MAC) computa-

tions since the operations are real-valued. In general, AC computation is considered to be

significantly more energy-efficient than MAC. For example, an AC is reported to be 5.1×

more energy-efficient than a MAC in the case of 32-bit floating-point numbers (45nm

CMOS process) [74]. Based on this principle, we obtain the computational energy bene-

fits of SNNs over ANNs in Table 2.3. From the table, we can see that the SNN models are

10× to 100× more energy-efficient than ANNs and the location spiking neurons (LSRM
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neurons) have the similar energy efficiency compared to existing spiking neurons (TSRM

neurons).

These results are consistent with the fact that the sparse spike communication and

event-driven computation underlie the efficiency advantage of SNNs and demonstrate the

potential of our model and location spiking neurons on neuromorphic hardware.

Table 2.3. The number of synaptic operations (#op, ×106) and the
compute-energy benefit (the compute-energy of ANNs / the compute-energy
of SNNs, 45nm) on benchmark datasets for the Hybrid SRM FC

Method Type Objects-v1 Containers-v1 Slip Detection
#op GRU-MLP ANN 5.89 5.89 2.72
#op CNN-3D ANN 4.17 4.07 1.75

#op SNN with TSRM neurons SNN 0.31 0.42 0.022
Compute-energy Benefit 68.60∼96.90× 49.42∼71.52× 405.68∼630.55×
#op SNN with LSRM neurons SNN 0.29 0.41 0.023
Compute-energy Benefit 73.33∼103.58× 50.63∼73.27× 388.04∼603.13×
#op Hybrid SRM FC SNN 0.60 0.83 0.045
Compute-energy Benefit 35.45∼50.07× 25.01∼36.19× 198.33∼308.27×

2.6.2. Hybrid LIF GNN

In this section, to show the usability of location spiking neurons and further boost event-

driven tactile learning, we conduct a series of experiments with the Hybrid LIF GNN,

which is powered by the popular spike-based learning framework – STBP [40]. Specif-

ically, we first compare our model with the state-of-the-art models with TLIF neurons

and GNN structures. Then, we conduct several ablation studies to examine the effec-

tiveness of some designs in the Hybrid LIF GNN. Next, we demonstrate the superior

energy efficiency of our model over the counterpart Graph Neural Networks (GNNs) and

show the high-efficiency benefits of location spiking neurons. Finally, we compare with
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the Hybrid SRM FC on the same benchmark datasets to validate the superiority of the

Hybrid LIF GNN.3

2.6.2.1. Datasets. To fairly compare with other published models with TLIF neu-

rons [5], we evaluate the Hybrid LIF GNN on “Objects-v0” and “Containers-v0”. These

two datasets are the initial versions of “Objects-v1” and “Containers-v1”. We demon-

strate their differences in the Supplementary Material. To show the superiority of the Hy-

brid LIF GNN on event-driven tactile learning, we compare it with the Hybrid SRM FC

on “Objects-v1”, “Containers-v1”, and “Slip Detection”. During the experiments, we split

the data into a training set (80%) and a testing set (20%) with an equal class distribution.

We repeat each experiment for five rounds and report the average accuracy.

2.6.2.2. Comparing Models. We compare the Hybrid LIF GNN with the state-of-

the-art methods with TLIF neurons and GNN structures [5] on event-based tactile ob-

ject recognition. Specifically, we compare the TactileSGNet series. The general network

structure is the same as the spatial spiking graph neural network, which is Input-Spiking

TAGConv-Spiking FC1-Spiking FC2-Spiking FC3. The other models in the series are

obtained by substituting the Spiking TAGConv layer:

• TactileSGNet-MLP, which uses the Spiking FC layer with TLIF neurons to pro-

cess the input. The network structure is Input-Spiking FC0-Spiking FC1-Spiking

FC2-Spiking FC3.

• TactileSGNet-CNN, which takes the network structure of Input-Spiking CNN-

Spiking FC1-Spiking FC2-Spiking FC3. The tactile input is organized in a grid

3In this section, to be consistent with [5], we use accuracies (%).
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structure according to the spatial distribution of taxels, and the Spiking CNN

with TLIF neurons is utilized to extract features from this grid.

• TactileSGNet-GCN, where the graph convolutional network (GCN) is used as

the GNN in Eq. (2.13). The network structure is Input-Spiking GCN-Spiking

FC1-Spiking FC2-Spiking FC3.

Moreover, we also compare the Hybrid LIF GNN against fully GNNs. Specifically, the

GNNs have the same network structures as the Hybrid LIF GNN, including one

recurrent TAGConv-FC1-FC2-FC3 for T tactile spatial graphs, one recurrent TAGConv-

FC1-FC2-FC3 forN tactile temporal graphs, and one fusion module to fuse the predictions

from two branches. The major difference between our model and GNNs is that GNNs

employ artificial neurons and adopt different activation functions in Eqs. (2.13) and (2.14)

while our model utilizes the spiking neurons and takes the Heaviside function as the

activation function.

2.6.2.3. Basic Performance. We report the test accuracies on the two event-driven

tactile object recognition datasets in Table 2.4. From this table, we can see that the

Hybrid LIF GNN significantly outperforms the TactileSGNet series [5]. The reason why

our model can achieve the better performance could be two-fold: (1) different from the

TactileSGNet models that only utilize TLIF neurons to extract features from the tactile

spatial graphs, our model also employs the temporal spiking graph neural network with

LLIF neurons to extract features from the tactile temporal graphs; (2) our model fuses the

spatial and temporal spiking graph neural networks to capture complex spatio-temporal

dependencies in the data. We also compare our model with fully GNNs by replacing the

spike functions in Eqs. (2.13) and (2.14) with activation functions, such as linear, elu, or
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Table 2.4. Accuracies (%) on datasets for the Hybrid LIF GNN

Method Type Objects-v0 Containers-v0
TactileSGNet-MLP [5] SNN 85.97* 58.83*
TactileSGNet-CNN [5] SNN 88.40* 60.17*
TactileSGNet-GCN [5] SNN 85.14* 58.83*
TactileSGNet-TAGConv [5] SNN 89.44* 64.17*
Recurrent GNN-linear GNN 92.36 70.67
Recurrent GNN-elu GNN 91.11 74.67
Recurrent GNN-LeakyRelu GNN 89.31 73.00

Hybrid LIF GNN-sparse-mean SNN 93.33 79.33
Hybrid LIF GNN-dense-mean SNN 92.50 78.67
Hybrid LIF GNN-sparse-max SNN 85.56 77.00
Hybrid LIF GNN-dense-max SNN 85.14 76.00

*These values come from [5]. All the Hybrid LIF GNN models use the loop-like
location order. “sparse” is for “sparse tactile temporal graph”, “dense” is for “dense
tactile temporal graph”, “mean” is for “mean fusion”, and “max” is for “max fu-
sion”. The best performance is in bold.

LeakyRelu. These models provide fair comparison baselines for fully GNN architectures

since they employ the same network architecture as ours. From Table 2.4, we observe

that the Hybrid LIF GNN outperforms the counterpart GNNs on the two datasets, which

might be because our model is more compatible with event-based tactile data and better

maintains the sparsity to prevent overfitting.

2.6.2.4. Ablation Studies. We further provide ablation studies for exploring the opti-

mal design choices. From Table 2.4, we find out that the combination of “sparse tactile

temporal graph” and “mean fusion” performs better than other combinations. The rea-

son for this could be two-fold: (1) the dense tactile temporal graph involves too many

insignificant temporal dependencies and does not differentiate the importance of each

dependency; (2) the max fusion results in information loss.
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Figure 2.11. The timestep-wise inference (Alg. 2) accuracies (%) for the
spatial spiking graph neural network (SSGNN), the temporal spiking graph
neural network (TSGNN), the Hybrid LIF GNN, and the time-weighted
Hybrid LIF GNN on (a) “Objects-v0” and (b) “Containers-v0”.

2.6.2.5. Timestep-wise Inference. Figure 2.11 shows the timestep-wise inference ac-

curacies (%) for the spatial spiking graph neural network, the temporal spiking graph

neural network, the Hybrid LIF GNN, and the time-weighted Hybrid LIF GNN on the

two datasets. Specifically, the output of time-weighted Hybrid LIF GNN at time t is

(2.24) O′tw(t) = O′1(t)(1− t

ζT
) +O′2(t)

t

ζT
,

where ζ balances the contributions of the two components in the hybrid model and T is

the total time length. From the figure, we can see that the spatial spiking graph neural

network has a good “early” accuracy with the help of tactile spatial graphs, while its

accuracy does not improve too much at the later stage since it cannot well capture the

temporal dependencies. In contrast, the temporal spiking graph neural network has a fair

“early” accuracy, while its accuracy jumps a lot at the later stage since it models the

temporal dependencies explicitly. The Hybrid LIF GNN adopts the advantages of these
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two models and extracts spatio-temporal features from multiple views, which enables

it to have a better overall performance. Furthermore, after employing the time-weighted

output and setting ζ = 2 to shift more weights to the spatial spiking graph neural network

at the early stage, the time-weighted model can have a good “early” accuracy as well as

an excellent “final” accuracy, see red lines in Fig. 2.11.

2.6.2.6. Energy Efficiency. Following the estimation methods in Section 2.6.1.7, we

estimate the computational costs of the Hybrid LIF GNN and its counterpart GNNs on

the benchmark datasets.

We show the mean spiking rates of Hybrid LIF GNN layers in the Supplementary

Material. Table 2.5 provides the number of synaptic operations conducted in the Hy-

brid LIF GNN and the counterpart GNNs with the same network structure. From the

table, we can see that the SNNs achieve far fewer operations than GNNs on the bench-

mark datasets. Moreover, following the 45nm CMOS technology energy principle in Sec-

tion 2.6.1.7, we obtain the computational energy benefits of SNNs over GNNs in Table 2.5.

From the table, we can see that the SNN models are 10× to 100× energy-efficient than

GNNs. Furthermore, by comparing the number of synaptic operations in the spatial spik-

ing graph neural network with that in the temporal spiking graph neural network, we

find that the temporal spiking graph neural network has the higher energy efficiency. The

reason for this could be that we employ the sparse tactile temporal graphs in the

temporal spiking graph neural network and such graphs require fewer operations.

These results are consistent with what we show in Section 2.6.1.7 and demonstrate the

potential of our models and location spiking neurons (LLIF neurons) on neuromorphic

hardware.
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Table 2.5. The number of synaptic operations (#op, ×108) and the
compute-energy benefit (the compute-energy of GNNs / the compute-
energy of SNNs, 45nm) on benchmark datasets for the Hybrid LIF GNN

Method Type Objects-v0 Containers-v0
#op Recurrent GNNs in Table 2.4 GNN 1.7188 2.2146

#op Spatial spiking graph neural network SNN 0.1132 0.1023
Compute-energy Benefit 77.44× 110.41×
#op Temporal spiking graph neural network SNN 0.0297 0.0313
Compute-energy Benefit 295.15× 360.85×
#op Hybrid LIF GNN SNN 0.1429 0.1336
Compute-energy Benefit 61.34× 84.54×

2.6.2.7. Performance Comparison with the Hybrid SRM FC. To fairly compare

with the Hybrid SRM FC (Fig.2.4), we further test the Hybrid LIF GNN (Fig.2.6) on

“Objects-v1”, “Containers-v1”, and “Slip Detection”. From Table 2.6, we can see that the

Hybrid LIF GNN outperforms the Hybrid SRM FC on “Objects-v1” and “Containers-

v1” and they both achieve the perfect slip detection. The reason for this is that the

Hybrid LIF GNN adopts graph topologies and has a more complicated structure than the

Hybrid SRM FC. Such comparison results are consistent with the comparison between the

Tactile-SNN and TactileSGNet in Table 2.1 and demonstrate the benefit of spiking graph

neural networks and complex structures on event-driven tactile learning. Through this

experiment, we show that the location spiking neurons can be incorporated into complex

spike-based learning frameworks and further boost the performance of event-driven tactile

learning.

2.7. Discussion and Conclusion

In this section, we discuss the advantages and limitations of conventional spiking

neurons and location spiking neurons. Moreover, we provide preliminary results of the
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Table 2.6. Performance comparison between the Hybrid SRM FC with
LSRM neurons and the Hybrid LIF GNN with LLIF neurons

Method Type Objects-v1 Containers-v1 Slip Detection
Hybrid SRM FC SNN 0.91 0.86 1.0
Hybrid LIF GNN‡ SNN 0.96 0.90 1.0

‡ represents Hybrid LIF GNN-sparse-mean-loop. The best performance is in bold.

location spiking neurons on event-driven audio learning and discuss the potential impact

of this work on broad spike-based learning applications. Finally, we conclude the chapter.

2.7.1. Advantages and Limitations of Conventional and Location Spiking Neu-

rons

This work proposes location spiking neurons. Based on the neuronal dynamic equa-

tions of conventional spiking neurons and location spiking neurons, we can

see that both of them can extract spatio-temporal dependencies from the

data. Specifically, the conventional spiking neurons employ the temporal recurrent neu-

ral dynamics to update their membrane potentials and capture spatial dependencies by

aggregating the information from presynaptic neurons, see Eqs. (2.2), (2.5), (2.11), and

(2.13). However, location spiking neurons use spatial recurrent neural dynamics to up-

date their potentials and model temporal dependencies by aggregating the information

from presynaptic neurons, see Eqs. (2.7), (2.10), (2.12), and (2.14).

Moreover, based on experimental results, we can see that conventional spiking neurons

are better at capturing spatial dependencies which benefit the “early” accuracy, while

location spiking neurons are better at modeling mid-and-long temporal dependencies

which benefit the “late” accuracy. Networks built only with conventional spiking neurons
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or networks built only with location spiking neurons cannot sufficiently capture spatio-

temporal dependencies in the event-based data. Thus, we always concatenate or fuse

the networks to sufficiently capture spatio-temporal dependencies in the data.

By introducing LSRM neurons and LLIF neurons, we verify that the idea of loca-

tion spiking neurons can be applied to various existing spiking neuron models like TSRM

neurons and TLIF neurons and strengthen their feature representation abilities. More-

over, we extensively evaluate the models built with these novel neurons and demonstrate

their superior performance and energy efficiency. Furthermore, by comparing the Hy-

brid LIF GNN with the Hybrid SRM FC, we show that the location spiking neurons can

be utilized to build more complicated models to further improve task performance.

2.7.2. Potential Impact on Broad Spike-Based Learning Applications

In this work, we focus on boosting event-driven tactile learning with location spiking

neurons. And extensive experimental results validate the effectiveness and efficiency of

our models on the tasks. Besides event-driven tactile learning, we can also apply the

models with location spiking neurons to other spike-based learning applications.

2.7.2.1. Event-Driven Audio Learning. To show the potential impact of our work,

we apply the Hybrid SRM FC (see Fig. 2.4) to event-driven audio learning and provide

preliminary results. Please note that the objective of this experiment is not necessarily

to obtain state-of-the-art results on event-driven audio learning, but to demonstrate that

location spiking neurons can bring benefits to the model built with conventional spiking

neurons on other spike-based learning applications.
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Figure 2.12. The Hybrid SRM FC processes a spike audio sequence and
predict its label. The network structure of this model is the same as what
we show in Fig. 2.4.

In the experiment, we use the N-TIDIGITS18 dataset [3], which is collected by play-

ing the audio files from the TIDIGITS dataset [75] to the dynamic audio sensor – the

CochleaAMS1b sensor [76]. The dataset includes both single digits and connected digit

sequences. We use the single-digit part of the dataset, which consists of 11 categories,

including ’oh’, ’zero’, and digits ’1’ to ’9’. A spike audio sequence of digit ’2’ is shown

in Fig. 2.12, where the x-axis indicates the event time, and the y-axis indicates the 64

frequency channels of the CochleaAMS1b sensor. Each blue dot in the sequence repre-

sents an event that occurs at time te and frequency fe. In this application, we regard

“frequency channels” as “locations” and apply the Hybrid SRM FC to process the spike

audio inputs, see Fig. 2.12. Through the experiments, the fully-connected SNN with

TSRM neurons achieves the test accuracy of 0.563. However, with the help of LSRM neu-

rons, the Hybrid SRM FC obtains the test accuracy of 0.586 and correctly classifies

the additional 57 spike audio sequences. Moreover, we show the training and testing
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profiles of the fully-connected SNN with TSRM neurons and the Hybrid SRM FC in the

Supplementary Material. From those figures, we can see that our hybrid model converges

faster and attains a lower loss and a higher accuracy compared to the fully-connected

SNN with TSRM neurons.

From this experiment, we can see that location spiking neurons can be applied to

other spike-based learning applications. Moreover, the location spiking neurons can bring

benefits to the models built with conventional spiking neurons and improve their task

performance. We believe there will be further improvements on event-driven audio learn-

ing if we can incorporate the location spiking neurons into state-of-the-art event-driven

audio learning frameworks.

2.7.2.2. Visual Processing. Besides event-driven audio learning, a contemporary work

[77] also validates the effectiveness of spatial recurrent neuronal dynamics on conventional

image classification. This work incorporates the spatial recurrent neuronal dynamics into

the full-precision Multilayer Perceptron (MLP) and achieves the state-of-the-art top-1

accuracy on the ImageNet dataset. Since the model is full-precision and real-valued, it may

lose the energy efficiency benefits of binary spikes. Our location spiking neurons employ

the spatial recurrent neuronal dynamics but also keep the binary nature of spikes. Based

on these, we think our proposed neurons could bring more potential to computer vision

(e.g., event-based vision) when they are incorporated into MLP [78] or Transformer [79]

frameworks.

2.7.2.3. Conclusion. In this work, we propose a novel neuron model – “location spiking

neuron”. Specifically, we introduce two concrete location spiking neurons – the LSRM

neurons and LLIF neurons. We demonstrate the spatial recurrent neuronal dynamics
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of these neurons and compare them with the conventional spiking neurons – the TSRM

neurons and TLIF neurons. By exploiting these location spiking neurons, we develop two

hybrid models for event-driven tactile learning to sufficiently capture the complex spatio-

temporal dependencies in the event-based tactile data. The extensive experimental results

on the event-driven tactile datasets demonstrate the extraordinary performance and high

energy efficiency of our models and location spiking neurons. This could further unlock

their potential on neuromorphic hardware. Overall, this work sheds new light on SNN

representation learning and event-driven learning.
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CHAPTER 3

Event-based Shape from Polarization with Spiking Neural

Networks

This chapter is based on the paper [55].

3.1. Introduction

Precise surface normal estimation can provide valuable information about a scene’s

geometry and is useful for many computer vision tasks, including 3D Reconstruction [80],

Augmented Reality (AR) and Virtual Reality (VR) [81, 82], Material Classification [83],

and Robotics Navigation [84]. Depending upon the requirements of the application, sur-

face normal estimation can be carried out using a variety of methods [85, 86, 87, 88, 89,

90]. In this work, we are interested in estimating surface normal from polarization images

– shape from polarization [91, 92, 93, 94, 95, 96]. In particular, shape from polarization

leverages the polarization state of light to infer the shape of objects. When light reflects

off surfaces, it becomes partially polarized. This method uses this property to estimate the

surface normals of objects, which are then used to reconstruct their 3D shape. Compared

to other 3D sensing methods, shape from polarization has many advantages [92, 97],

such as its suitability for capturing fine details on a variety of surface materials, including

reflective and transparent ones, and its reliance on passive sensing, which eliminates the

need for external light sources or emitters. Additionally, shape from polarization can
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provide high-precision data with relatively low-cost and low-energy equipment, making it

an efficient and versatile option for 3D imaging in various applications.

Typically, a polarizing filter is used in conjunction with a camera to capture the

polarization images and infer the polarization information. Generally, there are two ways

to capture the polarization images and estimate the surface normals from them, one

is Division of Time (DoT) [92, 98, 99] and the other one is Division of Focal Plane

(DoFP) [95, 96, 100]. The DoT approaches add a rotatable linear polarizer in front of

the lens of an ordinary camera. The filter is rotated to different orientations, and full-

resolution polarization images are captured for each orientation at different times. By

analyzing the changes in the polarization state of light across these images, the surface

normals of objects can be estimated. The DoT methods use the full resolution of the

sensor but trade-off against acquisition time. On the other hand, the DoFP methods

place an array of micro-polarizers in front of the camera [100]. This allows the camera

to capture polarization information at different orientations in a single shot. Despite the

reduced latency, this system is limited by the low resolution of polarization images, as

each pixel only captures polarization at a specific orientation. This can result in lower

accuracy compared to the DoT methods.

To bridge the accuracy of DoT with the speed of DoFP, researchers propose event-

based shape from polarization following the DoT design scheme [101]. Specifically, a

polarizer is rotating in front of an event camera [1] and this creates sinusoidal changes in

brightness intensity. Unlike traditional DoT methods utilize standard cameras to capture

full-resolution polarization images at fixed rates, event-based shape from polarization

employs event cameras to asynchronously measure changes in brightness intensity for each
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pixel within the full-resolution scene and trigger the events with microsecond resolution if

the difference in brightness exceeds a threshold. The proposed event-based method uses

the continuous event stream to reconstruct relative intensities at multiple polarizer angles.

These reconstructed polarized images are then utilized to estimate surface normals using

physics-based and learning-based methods [101]. Due to the DoT-driven characteristic

and low latency event cameras provide, the event-based shape from polarization mitigates

the accuracy-speed trade-off in the traditional shape from polarization field.

Although the event-based shape from polarization brings many advantages, we still

need to carefully choose models that process the data from event cameras. With the preva-

lence of Artificial Neural Networks (ANNs), one recent method [101] employs ANNs to

process event data and demonstrates the better surface normal estimation performance

compared to physics-based methods. However, ANNs are not compatible with the working

mechanism of event cameras and incur the high energy consumption. To be more com-

patible with event cameras and maintain the high energy efficiency, research on Spiking

Neural Networks (SNNs) [36] has started to gain momentum. Similar to event cameras

that mimic the human retina’s way of responding to changes in light intensity, SNNs are

also bio-inspired and designed to emulate the neural dynamics of human brains. Unlike

ANNs employing artificial neurons [45, 46, 47] and conducting real-valued computation,

SNNs adopt spiking neurons [48, 49, 50] and utilize binary 0-1 spikes to process informa-

tion. This difference reduces the mathematical dot-product operations in ANNs to less

computational summation operations in SNNs [36]. Due to such the advantage, SNNs

are always energy-efficient and suitable for power-constrained devices. Although SNNs

demonstrate the higher energy efficiency and much dedication has been devoted to SNN
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research, ANNs still present the better performance and dominate in a wide range of

learning applications [102].

Recently, more research efforts have been invested to shrink the performance gap be-

tween ANNs and SNNs. And SNNs have achieved comparable performance in various

tasks, including image classification [103], object detection [104], graph prediction [105],

natural language processing [106], etc. Nevertheless, we have not yet witnessed the estab-

lishment of SNN in the accurate surface normal estimation with an advanced performance.

To this end, this naturally raises an issue: could bio-inspired Spiking Neural Networks es-

timate surface normals from event-based polarization data with an advanced quality at low

energy consumption?

In this work, we investigate the event-based shape from polarization with a spiking ap-

proach to answer the above question. Specifically, inspired by the feed-forward UNet [107]

for event-based shape from polarization [101], we propose the Single-Timestep Spiking

UNet, which treats the event-based shape from polarization as a non-temporal task. This

model processes event-based inputs in a feed-forward manner, where each spiking neuron

in the model updates its membrane potential only once. Although this approach may

not maximize the temporal processing capabilities of SNNs, it significantly reduces the

computational and energy requirements. To further exploit the rich temporal information

from event-based data and enhance model performance in the task of event-based shape

from polarization, we propose the Multi-Timestep Spiking UNet. This model processes

inputs in a sequential, timestep-by-timestep fashion, allowing each spiking neuron to uti-

lize its temporal recurrent neuronal dynamics to more effectively extract information from

event data. We extensively evaluate the proposed models on the synthetic and real-world
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datasets for event-based shape from polarization. The results of these experiments, both

quantitatively and qualitatively, indicate that our models are capable of estimating dense

surface normals from polarization events with performance comparable to current state-

of-the-art ANN models. Additionally, we perform ablation studies to assess the impact

of various design components within our models, further validating their effectiveness.

Furthermore, our models exhibit superior energy efficiency compared to their ANN coun-

terpart, which highlights their potential for application on neuromorphic hardware and

energy-constrained edge devices.

The remainder of this chapter is structured as follows: Section 3.2 provides a compre-

hensive review of existing literature on shape from polarization and SNNs. Section 3.3 de-

scribes the input event representation and Section 3.4 presents the spiking neuron models

involved in this work. In Section 3.5, we detail our proposed SNN models for event-based

shape from polarization, including their structures, training protocols, and implementa-

tion details. Section 3.6 showcases the effectiveness and energy efficiency of our proposed

models on different benchmark datasets. The chapter concludes with Section 3.7, where

we summarize our findings and outline potential avenues for future research.

3.2. Related Work

In the following, we will first give an overview of the related work on shape from

polarization, including the traditional shape from polarization and event-based shape from

polarization. Then, we will give a comprehensive review of SNNs and their applications

in 3D scenes.
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3.2.1. Shape from Polarization

Shurcliff proposed the method of shape recovery by polarization information in 1962 [108].

Essentially, when unpolarized light reflects off a surface point, it becomes partially po-

larized. And the observed scene radiance varies with changing the polarizer angle, which

encodes some relationship with surface normals. Therefore, by analyzing such relationship

at each surface point through Fresnel equations [109], shape from polarization methods

can measure the azimuthal and zenithal angles at each pixel and recover the per-pixel

surface normal with high resolution. Generally, two schemes are utilized to collect polar-

ization images. One is Division of Time (DoT) [92, 98, 99] that provides full-resolution

polarization images but increases the acquisition time significantly, while the other one is

Division of Focal Plane (DoFP) [95, 96, 100] that trade-offs spatial resolution for low

latency. After collecting the polarization images, various physical-based or learning-based

methods [110] can be utilized to estimate the surface normals. However, since a linear

polarizer cannot distinguish between polarized light that is rotated by π radians, this

results in two confounding estimates for the azimuth angle at each pixel [95, 111]. To

solve such ambiguity, we have to carefully design the estimation methods by exploring

additional constraints from various aspects, such as geometric cues [112, 113, 114], spec-

tral cues [93, 115, 116], photometric cues [94, 117, 118], or priors learned from deep

learning techniques [95, 96].

Recently, with the prevalence of bio-inspired neuromorphic engineering, researchers

have begun to shift their focus to high-speed energy-efficient event cameras and propose

solutions that combine polarization information with event cameras. Specifically, inspired

by the polarization vision in the mantis shrimp eye [119], [120] proposed the PDAVIS
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polarization event camera. The researchers employed the DoFP scheme to design such the

camera, which involved fabricating an array of pixelated polarization filters and strategi-

cally positioning them atop the sensor of an event camera. While this camera is adept

at capturing high dynamic range polarization scenes with high speeds, it still faces chal-

lenges with low spatial resolution, a common issue inherent in the DoFP methods. To

bridge the high resolution of DoT with the low latency of DoFP, [101] adopted the DoT

scheme and collected polarization events by placing a rotating polarizing filter in front of

an event camera. Due to the high resolution of DoT and the low latency of event cameras,

this method facilitates shape from polarization at both high speeds and with high spatial

resolution. Typically, the captured polarization events are transformed into frame-like

event representations [35], which are then processed using ANN models [101] to estimate

surface normals. While these learning-based methods demonstrate superior performance

over traditional physics-based methods, they significantly increase the energy consump-

tion of the overall system, primarily due to the lower energy efficiency of ANNs. Through

processing event polarization data collected by the promising DoT scheme, this work aims

to address this challenge by conducting event-based shape from polarization using SNNs,

presenting a more energy-efficient alternative in this domain.

3.2.2. Spiking Neural Networks

With the development of ANNs, artificial intelligence models today have demonstrated ex-

traordinary abilities in many tasks, such as computer vision, natural language processing,

and robotics. Nevertheless, ANNs only mimic the brain’s architecture in a few aspects,

including vast connectivity and structural and functional organizational hierarchy [36].
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The brain has more information processing mechanisms like the neuronal and synaptic

functionality [59, 60]. Moreover, ANNs are much more energy-consuming compared to

human brains.

To integrate more brain-like characteristics and make artificial intelligence models

more energy-efficient, researchers propose SNNs, which can be executed on power-efficient

neuromorphic processors like TrueNorth [61] and Loihi [62]. Like ANNs, SNNs are ca-

pable of implementing common network architectures, such as convolutional and fully-

connected layers, yet they distinguish themselves by utilizing spiking neuron models [50],

such as the Leaky Integrate-and-Fire (LIF) model [49] and the Spike Response Model

(SRM) [48]. Due to the non-differentiability of these spiking neuron models, training

SNNs can be challenging. However, progress has been made through innovative ap-

proaches such as converting pre-trained ANNs to SNNs [63, 64] and developing methods

to approximate the derivative of the spike function [40, 65]. Thanks to the developement

of these optimization techniques, many learning-based fully SNNs have been proposed

recently. Nevertheless, most of the learning-based fully SNN work has so far focused

on event-driven classification problems, little prior work exists on event-driven regression

problems. Specifically, [121] presented the first learning-based fully SNN on a simple

regression problem. It utilized a convolutional spiking encoder with SRM neurons to pre-

dict angular velocities from event data. [44] presented the first fully-deep SNN model on

large-scale event-driven optical flow estimation. And [43] built the first fully-deep SNN

model on large-scale event-driven image reconstruction.

In this work, we focus on tackling the complex regression tasks in 3D scenes. No-

tably, StereoSpike [122] and MSS-DepthNet [123] have pioneered the development of
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deep SNNs for depth estimation, achieving performance on par with the state-of-the-art

ANN models. Additionally, SpikingNeRF [124] has successfully adapted SNNs for radi-

ance field reconstruction, yielding synthesis quality comparable to ANN baselines while

maintaining high energy efficiency. In this work, our emphasis is on employing SNNs to

tackle event-based shape from polarization, aiming to establish a method that is not only

effective but also more efficient for event-based surface normal estimation.

3.3. Input Event Representation

In this work, we focus on building SNNs to estimate surface normals through the use

of a polarizer paired with an event camera. In this setup, the polarizer is mounted in front

of the event camera and rotates at a constant high speed driven by a motor. This rotation

changes the illumination of the incoming light. Event cameras generate an asynchronous

event ei = (xi, yi, ti, pi) when the illumination variation at a given pixel reaches a given

contrast threshold C:

(3.1) L(xi, yi, ti)− L(xi, yi, ti −∆ti) = piC,

where L
.
= log(I) is the log photocurrent (”brightness”), pi ∈ {−1,+1} is the sign of the

brightness change, and ∆ti is the time since the last event at the pixel (xi, yi).

The surface normal vector can be represented by its azimuth angle α and zenith angle

θ in a spherical coordinate system. And the proposed models predict the surface normal

N as a 3-channel tensor N = (sin θ cosα, sin θ sinα, cos θ) through the event steam.
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To ensure a fair comparison between our proposed methods and those utilizing ANNs

for event-based shape from polarization, we transform the sparse event stream into frame-

like event representations, which serve as the input for our methods. Specifically, similar

to [101], we take the CVGR-I representation due to its superior performance. The CVGR-

I representation combines the Cumulative Voxel Grid Representation (CVGR) with a

single polarization image (I) taken at a polarizer angle of 0 degrees. The CVGR is a

variation of the voxel grid [35]. Similar to previous works on learning with events [28,

125], the CVGR first encodes the events in a spatio-temporal voxel grid V . Specifically,

the time domain of the event stream is equally discretized into B temporal bins indexed

by integers in the range of [0, B − 1]. Each event ei = (xi, yi, ti, pi) distributes its sign

value pi to the two closest spatio-temporal voxels as follows:

(3.2) V (x, y, t) =
∑

xi=x,yi=y

pi max(0, 1− |t− t∗i |), t∗i =
B − 1

∆T
(ti − t0),

where (x, y, t) is a specific location of the spatio-temporal voxel grid V , ∆T is the time

domain of the event stream, and t0 is the timestep of the initial event in the event stream.

Then, the CVGR calculates the cumulative sum across the bins and multiplies this total

by the contrast threshold:

(3.3) E(x, y, b) = C

b∑
i=0

V (x, y, i), b = {0, 1, 2, 3, ..., B − 1},

Finally, to enhance surface normal estimation in areas with insufficient event information,

a single polarization image of 0 polarizer degree is incorporated, resulting in E = I[0]+E,

thereby providing additional context. This resulting event representation E will serve as
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Figure 3.1. The CVGR-I input representation comprises CVGR frames
spanning B temporal bins, along with a single polarization image captured
at a polarizer angle of 0 degrees. In this example, we set B = 8.

the input of our models. Its dimensions are B ×H ×W , where H and W represent the

height and width of the event camera, respectively. We present a concrete input example

of “cup” in Fig. 3.1.

3.4. Spiking Neuron Models

Spiking neuron models are mathematical descriptions of specific cells in the nervous

system. They are the basic building blocks of SNNs. In this work, we primarily concen-

trate on using the Integrate-and-Fire (IF) model [49] to develop our proposed SNNs. The

IF model is one of the earliest and simplest spiking neuron models. The dynamics of IF

neuron i is defined as:

(3.4) ui(t) = ui(t− 1) +
∑
j

wijxj(t),
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where ui(t) represents the internal membrane potential of neuron i at time t, ui(t − 1)

is the membrane potential of neuron i at the previous timestep t − 1, and
∑

j wijxj(t)

is the weighted summation of the inputs from pre-neurons at the current time step t.

When ui(t) exceeds a certain threshold uth, the neuron emits a spike, resets its membrane

potential to ureset, and then accumulates ui(t) again in subsequent time steps.

In addition to the IF model, we also build our proposed models with the Leaky

Integrate-and-Fire (LIF) model [49]. Compared to the IF model, LIF model contains

a leaky term to mimic the diffusion of ions through the membrane. The dynamics of LIF

neuron i can be expressed as:

(3.5) ui(t) = αui(t− 1) +
∑
j

wijxj(t),

where α is a leaky factor that decays the membrane potential over time. Drawing inspi-

ration from previous work [126], we also construct models using the Parametric Leaky

Integrate-and-Fire (PLIF) model, which enables automatic learning of the leaky factor.

In our experiments, we demonstrate that the IF model can offer better performance as

it retains more information by not incorporating the leaky factor, thus striking a balance

between high performance and biological plausibility.

3.5. SNNs for Event-based Shape from Polarization

In this section, we propose two SNNs that take the CVGR-I event representation as

the input and estimate the surface normals N. Both of them can process the information

through the spiking neuron models mentioned above. Due to the potential of IF neurons
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Figure 3.2. The network structure of Single-Timestep Spiking UNet: The
network is designed in a fully convolutional manner according to the UNet
architecture. Specifically, it consists of an event encoding module (gray),
an encoder (orange and blue), a decoder (yellow and green), and a final
prediction layer (purple). The size of the CVGR-I input representation
is (8 × 512 × 512). Conv2D(a, b)-IF represents the spiking convolutional
layer with a input channels and b output channels. Each max pooling layer
downsamples the feature map by a factor of 2. And the spatial resolution
is doubled after each upsampling layer.
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Figure 3.3. The network structure of Multi-Timestep Spiking UNet: The
network is designed according to the UNet architecture in a fully convolu-
tional manner. Specifically, it consists of an event encoding module (gray),
an encoder (orange and blue), a decoder (yellow and green), and a final
prediction layer (purple). Unlike the Single-Timestep Spiking UNet pro-
cessing the CVGR-I representation as a whole and updating the membrane
potential of its spiking neurons only once, the Multi-Timestep Spiking UNet
processes the B×H×W CVGR-I representation along its temporal dimen-
sion B. The settings for Conv2D(a, b)-IF layers, max pooling layers, and
upsampling layers are the same as those for the Single-Timestep Spiking
UNet.
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in event-based shape from polarization, we will present the proposed models based on the

dynamics of IF neurons.

3.5.1. Single-Timestep Spiking UNet

In this work, we have chosen a UNet [107], a commonly utilized architecture in semantic

segmentation, as the backbone for surface normal estimation. Specifically, we propose the

Single-Timestep Spiking UNet as shown in Fig. 3.2. This model is composed of several

key components: an event encoding module, an encoder, a decoder, and a final layer

dedicated to making surface normal predictions. As a Single-Timestep feed-forward SNN,

this model processes the entire B×H×W CVGR-I representation as its input and updates

the membrane potential of its spiking neurons once per data sample. The event encoding

module utilizes two spiking convolutional layers to transform the real-valued B ×H ×W

CVGR-I representation to the binary spiking representation with the size of Nc×H×W .

Based on Eq. 3.4, the membrane potential ui and output spiking state oi of IF neuron i

in the spiking convolutional layer are decided by:

ui = Conv(X),

oi =


1 if ui ≥ uth;

0 otherwise,

(3.6)

where Conv(X) is the weighted convolutional summation of the inputs from previous

layers and t in Eq. 3.4 is ignored since the model only updates once. After spiking feature

extraction, there areNe encoder blocks to encode the spiking representation. Each encoder

employs a max pooling layer and multiple spiking convolutional layers to capture surface
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normal features. The neuronal dynamics of IF neurons in these layers are still controlled

by Eq. 3.6. The encoded features are subsequently decoded using Nd decoder blocks,

where Nd = Ne. Since transposed convolutions are often associated with the creation

of checkerboard artifacts [127], each decoder consists of an upsampling layer followed

by multiple spiking convolutional layers, where the IF neurons are governed by Eq. 3.6.

For the upsampling operations, we have two options: nearest neighbor upsampling and

bilinear upsampling. Through our experiments, we will show that nearest neighbor upsam-

pling can achieve performance comparable to bilinear upsampling in event-based surface

normal estimation while preserving the fully spiking nature of our proposed model. As

suggested in the UNet architecture, to address the challenge of information loss during

down-sampling and up-sampling, skip connections are utilized between corresponding en-

coder and decoder blocks at the same hierarchical levels. To preserve the spiking nature

and avoid introducing non-binary values, the proposed model utilizes concatenations as

skip connections. Lastly, the final prediction layer employs the potential-assisted IF neu-

rons [128, 129] to estimate the surface normals. Unlike traditional IF neurons generate

spikes based on Eq. 3.6, the potential-assisted IF neurons are non-spiking neurons which

output membrane potential driven by:

ui = Conv(X),

oi = ui,

(3.7)

where oi denotes the real-valued output of neuron i. These potential-assisted dynamics

can be extended to both LIF and PLIF neurons, facilitating the construction of a Single-

Timestep Spiking UNet using these types of neurons. By producing real-valued membrane
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potential outputs, potential-assisted neurons retain rich information that enhances surface

normal estimation and boosts the expressivity of SNNs, especially for large-scale regression

tasks.

3.5.2. Multi-Timestep Spiking UNet

To take advantage of temporal neuronal dynamics of spiking neurons and extract rich tem-

poral information from event-based data, we propose the Multi-Timestep Spiking UNet

for event-based shape from polarization. Figure 3.3 shows the network structure of the

Multi-Timestep Spiking UNet. Similar to the Single-Timestep Spiking UNet, the Multi-

Timestep Spiking UNet also consists of an event encoding module, an encoder, a decoder,

and a final surface normal prediction layer. However, unlike the Single-Timestep Spik-

ing UNet processing the CVGR-I representation as a whole and updating the membrane

potential of its spiking neurons only once per data sample, the Multi-Timestep Spiking

UNet processes the B × H ×W CVGR-I representation for each data sample along its

temporal dimension B. At each time step, a 1 × H ×W CVGR-I representation is fed

in to the event encoding module and transformed as the size of Nc × H ×W , followed

by Ne encoder blocks, Nd decoder blocks, and a final prediction layer. Based on Eq. 3.4,

the membrane potential ui(t) and output spiking state oi(t) of IF neuron i in the spiking

convolutional layers of the Multi-Timestep Spiking UNet are decided by:

ui(t) = ui(t− 1)(1− oi(t− 1)) + Conv(X(t)),

oi(t) =


1 if ui(t) ≥ uth;

0 otherwise,

(3.8)
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where Conv(X(t)) is the weighted convolutional summation of the inputs from previous

layers at the time step t. The final prediction layer continues to use potential-assisted IF

neurons, but with temporal dynamics as outlined below:

ui(t) = ui(t− 1) + Conv(X(t)),

oi(t) = ui(t),

(3.9)

where the potential-assisted IF neuron i accumulates its membrane potential to maintain

the rich temporal information, oi(t) is the output of neuron i at time step t, and we use

the outputs at the last time step as the final surface normal predictions.

3.5.3. Training and Implementation Details

We normalize outputs from spiking neurons into unit-length surface normal vectors N̂

and then apply the cosine similarity loss function:

(3.10) L =
1

H ×W

H∑
i

W∑
j

(1−
〈
N̂i,j,Ni,j

〉
),

where 〈·, ·〉 indicates the dot product, N̂i,j refers to the estimated surface normal at the

pixel location (i, j), while Ni,j denotes the ground truth surface normal at the same

location. The objective is to minimize this loss, which is achieved when the orientations

of N̂i,j and Ni,j align perfectly.

To optimize the Single-Timestep Spiking UNet, we utilize the backpropagation method

[130] to calculate the weight updates:

(3.11) ∆wl =
∂L
∂wl

=
∂L
∂ol

∂ol

∂ul
∂ul

∂wl
,
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where wl is the weight for layer l, ol is the output of spiking neurons in layer l, and ul is

the membrane potential of spiking neurons in layer l. Similarly, to optimize the Multi-

Timestep Spiking UNet, we utilize the BackPropagation Through Time (BPTT) [131] to

calculate the weight updates. In BPTT, the model is unrolled for all discrete time steps,

and the weight update is computed as the sum of gradients from each time step as follows:

(3.12) ∆wl =
B−1∑
t=0

∂L
∂olt

∂olt
∂ult

∂ult
∂wl

,

where wl is the weight for layer l, olt is the output of spiking neurons in layer l at the

time step t, and ult is the membrane potential of spiking neurons in layer l at the time

step t. Based on the Heaviside step functions in Eq. 3.6 and Eq. 3.8, we can see that

both ∂ol

∂ul
and

∂olt
∂ult

cannot be differentiable in spiking convolutional layers. To overcome the

non-differentiability, we use the differentiable ArcTan function g(x) = 1
π
arctan(πx)+ 1

2
as

the surrogate function of the Heaviside step function [132]. For the final prediction layer

with potential-assisted spiking neurons, since they output membrane potential instead of

spikes, we have ∂ol

∂ul
= 1 and

∂olt
∂ult

= 1 for these layers’ weight updates.

3.6. Experiments and Results

In this section, we evaluate the effectiveness and efficiency of our proposed SNN models

on event-based shape from polarization. We begin by introducing the experimental setup,

datasets, baselines, and performance metrics for event-based shape from polarization.

Then, extensive experiments on these datasets showcase the capabilities of our models,

both in quantitative and qualitative terms, across synthetic and real-world scenarios.
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Lastly, we analyze the computational costs of our models to highlight their enhanced

energy efficiency compared to the counterpart ANN models.

3.6.1. Experimental Setup

Our models are implemented with SpikingJelly [133], an open-source deep learning frame-

work for SNNs based on PyTorch [134]. To fairly compare with the counterpart ANN

models, we ensure our models have similar settings to the ANN models in [101]. Specif-

ically, we set B = 8 for the input event representation. In addition, our models have

Ne = 4 encoder blocks and Nd = 4 decoder blocks. And the event encoding module

outputs the binary spiking representation with the channel size of Nc = 64. For the

spiking-related settings, all the spiking neurons in the spiking convolutional layers are set

with a reset value (ureset) of 0 and a threshold value (uth) of 1. Following [126, 135],

normalization techniques are applied after each convolution (Conv) operation for faster

convergence. We train our models for 1000 epochs with a batch size of 2 on Quadro RTX

8000. We use the Adam [136] with a learning rate of 1e− 4 to optimize our models.

3.6.2. Datasets

We evaluate our proposed models on two latest large-scale datasets for event-based shape

from polarization, including the ESfP-Synthetic Dataset and ESfP-Real Dataset.

The ESfP-Synthetic Dataset was generated using the Mitsuba renderer [137], which

created scenes with textured meshes illuminated by a point light source. For each scene, a

polarizer lens, positioned in front of the camera, was rotated through angles ranging from 0

to 180 degrees with 15-degree intervals, producing a total of 12 polarization images. With
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these images, events were simulated using ESIM [138] with a 5% contrast threshold.

Therefore, each scene in the dataset is accompanied by rendered polarization images,

simulated events, and groundtruth surface normals provided by the renderer.

The ESfP-Real Dataset is the first large-scale real-world dataset for event-based shape

from polarization. It contains various scenes with different objects, textures, shapes,

illuminations, and scene depths. The dataset was collected using a Prophesee Gen 4

event camera [139], a Breakthrough Photography X4 CPL linear polarizer [140], a Lucid

Polarisens camera [100], and a laser point projector. Specifically, the polarizer rotated

in front of the event camera that captured the events for each scene in the dataset. The

Lucid Polarisens camera was used to collect polarization images of the same scene at 4

polarization angles {0, 45, 90, 135}. And the groundtruth surface normals were generated

using Event-based Structured Light [141], a technique that involves integrating the laser

point projector with the event camera.

3.6.3. Baselines and Performance Metrics

We evaluate our models against the state-of-the-art physics-based and learning-based

methods in the field of shape from polarization. Smith et al. [118] combined the physics-

based shape from polarization with the photometric image formation model. The method

directly estimates lighting information and calculates the surface height using a single po-

larization image under unknown illumination. Mahmoud et al. [142] presented a physics-

based method to conduct shape recovery using both polarization and shading information.

Recently, Muglikar et al. [101] have been pioneers in addressing event-based shape from

polarization, employing both physics-based and learning-based approaches. Their models
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are notable for directly using event data as inputs. In this work, our focus is on comparing

our proposed models with the learning-based model developed by Muglikar et al. We aim

to demonstrate that our SNN-based models can match their performance while offering

greater energy efficiency.

To evaluate the accuracy of the predicted surface normals, we employ four metrics:

Mean Angular Error (MAE), % Angular Error under 11.25 degrees (AE<11.25), % Angu-

lar Error under 22.5 degrees (AE<22.5), and % Angular Error under 30 degrees (AE<30).

MAE is a commonly used metric that quantifies the angular error of the predicted sur-

face normal, where a lower value indicates better performance [95, 96]. The latter three

metrics, collectively referred to as angular accuracy, assess the proportion of pixels with

angular errors less than 11.25, 22.5, and 30 degrees, respectively, with higher percentages

indicating better accuracy [101].

3.6.4. Performance on ESfP-Synthetic

We thoroughly evaluate our proposed models on the ESfP-Synthetic Dataset, using both

quantitative metrics and qualitative analysis. Specifically, Table 3.1 presents the per-

formance of both baselines and our methods in surface normal estimation on the ESfP-

Synthetic Dataset. In addition, Figure 3.4 showcases the qualitative results of our models

and the ANN counterpart on the ESfP-Synthetic Dataset. Column (a) shows the scene

photographs for context. Column (b) is for the counterpart ANN models. Columns (c-d)

are for the Single-Timestep Spiking UNets with bilinear upsampling and nearest neighbor

upsampling, respectively. Columns (e-f) are for the Multi-Timestep Spiking UNets with

bilinear upsampling and nearest neighbor upsampling, respectively. Column (g) presents
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Table 3.1. Shape from polarization performance on the ESfP-Synthetic
Dataset in terms of Mean Angular Error (MAE) and the percentage of
pixels under specific angular errors (AE< ·). The “Input” column specifies
whether the method utilizes events (E) or polarization images (I). E+I[0]
means the CVGR-I representation. “Single” is for the Single-Timestep Spik-
ing UNet. “Multi” is for the Multi-Timestep Spiking UNet. “Bilinear” and
“Nearest” represent the bilinear upsampling and nearest neighbor upsam-
pling, respectively. We highlight the top performance in bold, and underline
the second-best results.

Method Input Task MAE↓ AE<11.25↑ AE<22.5↑ AE<30↑
Mahmoud et al. [142] I Physics 80.923 0.034 0.065 0.085
Smith et al. [118] I Physics 67.684 0.010 0.047 0.106
Muglikar et al. [101] E Physics 58.196 0.007 0.046 0.095
Muglikar et al. [101] E+I[0] Learning 27.953 0.263 0.527 0.655

Single Bilinear E+I[0] Learning 36.432 0.181 0.403 0.525
Single Nearest E+I[0] Learning 36.824 0.141 0.370 0.491
Multi Bilinear E+I[0] Learning 31.296 0.200 0.438 0.578
Multi Nearest E+I[0] Learning 31.724 0.193 0.425 0.562

Table 3.2. Ablation study on various spiking neurons.

Method Input Task MAE↓ AE<11.25↑ AE<22.5↑ AE<30↑
Multi Nearest IF E+I[0] Learning 31.724 0.193 0.425 0.562
Multi Nearest LIF E+I[0] Learning 35.250 0.154 0.384 0.523
Multi Nearest PLIF E+I[0] Learning 35.086 0.154 0.393 0.530

the ground truth normals. The MAE for the reconstructions is shown on the top left of

each cell in Columns (b-f). For each scene, we highlight the best result using the green

colorbox.

From Table 3.1, we can see that our proposed models significantly outperform the

physics-based methods. The reason why our model can achieve the better performance

is that our models benefit from the large-scale dataset and utilize the spiking neurons to

extract useful information for event-based shape from polarization. Despite this success,

our models do not quite match the overall performance of their ANN counterpart on
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this dataset, likely due to the limited representation capacity of spiking neurons. However,

as Fig. 3.4 illustrates, our Multi-Timestep Spiking UNets still manage to achieve com-

parable, and in some cases superior, results in shape recovery across various

objects in the test set, compared to the ANN models.

Table 3.1 clearly demonstrates that the temporal dynamics inherent in spiking neu-

rons enable the Multi-Timestep Spiking UNets to surpass the Single-Timestep versions

in surface normal estimation. Additionally, nearest neighbor sampling, as compared to

bilinear upsampling, shows comparable performance while preserving the binary nature

and compatibility with SNNs.

Recognizing the effectiveness of Multi-Timestep Spiking UNets, we undertook an ab-

lation study aimed at identifying the ideal spiking neurons to fully leverage their temporal

dynamic capabilities. The results, detailed in Table 3.2, indicate that IF neurons offer su-

perior performance. This is largely due to their ability to retain more extensive temporal

information, as they operate without the influence of a leaky factor.

3.6.5. Performance on ESfP-Real

We also compare these methods on the ESfP-Real Dataset. Specifically, we show the

quantitative performance in Table 3.3 and illustrate the qualitative results in Fig. 3.5.

Similar to the results on the ESfP-Synthetic Dataset, our models demonstrate superior

performance compared to physics-based methods on the real-world dataset. Moreover, as

indicated by Table 3.3 and Fig. 3.5, our models not only match the overall performance

of the ANN counterpart but also excel in qualitative results across diverse scenes in the

test dataset. This enhanced performance on the ESfP-Real Dataset can be attributed to
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Figure 3.4. Qualitative results on the ESfP-Synthetic Dataset.
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Table 3.3. Shape from polarization performance on the ESfP-Real Dataset
in terms of Mean Angular Error (MAE) and the percentage of pixels un-
der specific angular errors (AE< ·). The ”Input” column specifies whether
the method utilizes events (E) or polarization images (I). E+I[0] means the
CVGR-I representation. “Single” is for the Single-Timestep Spiking UNet.
“Multi” is for the Multi-Timestep Spiking UNet. “Bilinear” and “Near-
est” represent the bilinear upsampling and nearest neighbor upsampling,
respectively. We highlight the top performance in bold, and underline the
second-best results.

Method Input Task MAE↓ AE<11.25↑ AE<22.5↑ AE<30↑
Mahmoud et al. [142] I Physics 56.278 0.032 0.091 0.163
Smith et al. [118] I Physics 72.525 0.009 0.034 0.058
Muglikar et al. [101] E Physics 38.786 0.087 0.220 0.452
Muglikar et al. [101] E+I[0] Learning 26.851 0.099 0.449 0.691

Single Bilinear E+I[0] Learning 27.134 0.109 0.458 0.685
Single Nearest E+I[0] Learning 27.391 0.106 0.450 0.684
Multi Bilinear E+I[0] Learning 26.886 0.093 0.439 0.689
Multi Nearest E+I[0] Learning 26.781 0.089 0.450 0.688

the sparser nature of this real-world dataset [101]. In addition, compared to the ANN

counterpart, our model is more compatible with the sparse events and better maintains

the sparsity to prevent overfitting on this dataset.

Mirroring the outcomes observed on the ESfP-Synthetic Dataset, results from Ta-

ble 3.3 and Fig. 3.5 also show that the Multi-Timestep Spiking UNet slightly outperforms

the Single-Timestep Spiking UNet. Additionally, nearest neighbor upsampling is on par

with bilinear upsampling in terms of surface normal estimation performance.

3.6.6. Energy Analysis

In earlier sections, we demonstrated that our models, employing nearest neighbor up-

sampling, can achieve performance comparable to those using bilinear upsampling in

event-based shape from polarization. To delve deeper into the advantages of these fully
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Figure 3.5. Qualitative results on the ESfP-Real Dataset. The meanings of
columns are the same as those for Fig. 3.4. The MAE for the reconstructions
is shown on the top left of each cell in Columns (b-f). For each scene, we
highlight the best result using the red colorbox.
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spiking models, we will now estimate the computational cost savings they offer compared

to their fully ANN counterpart [101] on the ESfP-Real Dataset. Commonly, the number

of synaptic operations serves as a benchmark for assessing the computational energy of

SNN models, as referenced in studies like [58] and [73]. Moreover, we can approximate

the total energy consumption of a model using principles based on CMOS technology, as

outlined in [74].

Unlike ANNs, which consistently perform real-valued matrix-vector multiplication op-

erations regardless of input sparsity, SNNs execute computations based on events, trig-

gered only upon receiving input spikes. Therefore, we initially assess the mean spiking

rate of layer l in our proposed model. In particular, the mean spiking rate for layer l in

an SNN is calculated as follows:

(3.13) F (l) =
1

T

∑
t∈T

S
(l)
t

K(l)

where T is the total time length, S
(l)
t is the number of spikes of layer l at time t, and K(l)

is the number of neurons of layer l. Table 3.4 shows the mean spiking rates for all layers in

our fully spiking models, including the Single-Timestep Spiking UNet and Multi-Timestep

Spiking UNet. Notice that we do not consider the components without trainable weights,

such as max pooling and nearest neighbor upsampling layers. From the table, we can

see that the Multi-Timestep Spiking UNet exhibits a higher average spiking rate across

all its layers compared to the Single-Timestep Spiking UNet. This increased spiking rate

aids in preserving more information, thereby enhancing the accuracy of surface normal

estimation.
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With the mean spiking rates, we can estimate the number of synaptic operations in

the SNNs. Given M is the number of neurons, C is the number of synaptic connections

per neuron, and F indicates the mean spiking rate, the number of synaptic operations at

each time in layer l is calculated as M (l)×C(l)×F (l). Thus, the total number of synaptic

operations in an SNN is calculated by:

(3.14) #OP =
∑
l

M (l) × C(l) × F (l) × T.

In contrast, the total number of synaptic operations in the ANNs is
∑

lM
(l)×C(l). Due to

the binary nature of spikes, SNNs perform only accumulation (AC) per synaptic operation,

while ANNs perform the multiply-accumulate (MAC) computations since the operations

are real-valued. Based on these, we estimate the number of synaptic operations in the our

proposed models and their ANN counterpart. Table 3.5 illustrates that, in comparison

to ANNs, our models primarily perform AC operations with significantly fewer MAC

operations that transform real-valued event inputs into binary spiking representations.

Furthermore, the Multi-Timestep Spiking UNet executes more AC operations than the

Single-Timestep Spiking UNet due to its higher average spiking rate and the utilization

of temporal dynamics across multiple timesteps.

In general, AC operation is considered to be significantly more energy-efficient than

MAC. For example, an AC is reported to be 5.1× more energy-efficient than a MAC in

the case of 32-bit floating-point numbers (0.9pJ vs. 4.6pJ, 45nm CMOS process) [74].

Based on this principle, we obtain the computational energy benefits of SNNs over ANNs

in Table 3.5. From the table, we can see that the SNN models are 3.14× to 28.80× more

energy-efficient than ANNs on the ESfP-Real Dataset.
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Table 3.4. Mean spiking rates for all layers in the Single-Timestep Spiking
UNet and Multi-Timestep Spiking UNet, both utilizing nearest neighbor
upsampling and being fully spiking. Layers 1 to 19 correspond to the spiking
convolutional layers depicted in Fig. 3.2 and Fig. 3.3. Given that the CVGR-
I inputs are real-valued, the first layer in both models does not involve spike
calculation.

Single-Timestep Spiking UNet Nearest Multi-Timestep Spiking UNet Nearest
Spiking rates Spikes Spiking rates Spikes

Layer 1 0.3070 No 0.3070 No
Layer 2 0.0901 Yes 0.2484 Yes
Layer 3 0.1342 Yes 0.2304 Yes
Layer 4 0.1057 Yes 0.1626 Yes
Layer 5 0.1467 Yes 0.2482 Yes
Layer 6 0.1174 Yes 0.1719 Yes
Layer 7 0.1485 Yes 0.2733 Yes
Layer 8 0.1153 Yes 0.1870 Yes
Layer 9 0.1717 Yes 0.3607 Yes
Layer 10 0.1691 Yes 0.2149 Yes
Layer 11 0.1278 Yes 0.1991 Yes
Layer 12 0.1513 Yes 0.2075 Yes
Layer 13 0.1175 Yes 0.1840 Yes
Layer 14 0.1540 Yes 0.1923 Yes
Layer 15 0.1391 Yes 0.1810 Yes
Layer 16 0.1937 Yes 0.1867 Yes
Layer 17 0.1624 Yes 0.1881 Yes
Layer 18 0.2323 Yes 0.2058 Yes
Layer 19 0.2080 Yes 0.2099 Yes
Average 0.1575 - 0.2189 -

Table 3.5. Energy comparison of our models and their ANN counterpart on
the ESfP-Real Dataset. The energy benefit is equal to EnergyANNs

EnergySNNs
.

ANNs [101] Single Nearest Multi Nearest
Average Spiking Rate - 0.1575 0.2189
#OP MAC (×109) 161.11 1.21 1.21
#OP AC (×109) 0 22.36 255.35
Energy (10−3J, 45nm CMOS process) 741.11 25.69 235.38
Energy Benefit (×) 1.0 28.80 3.14
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These results are consistent with the fact that the sparse spike communication and

event-driven computation underlie the efficiency advantage of SNNs and demonstrate the

potential of our models on neuromorphic hardware and energy-constrained devices.

3.7. Conclusion and Future Work

In this work, we build SNNs that solve event-driven regression tasks. Specifically, we

explore the domain of event-based shape from polarization with SNNs.

Drawing inspiration from the feed-forward UNet, we introduce the Single-Timestep

Spiking UNet, which processes event-based shape from polarization as a non-temporal

task, updating the membrane potential of each spiking neuron only once. This method,

while not fully leveraging the temporal capabilities of SNNs, significantly cuts down on

computational and energy demands. To better harness the rich temporal data in event-

based information, we also propose the Multi-Timestep Spiking UNet. This model op-

erates sequentially across multiple timesteps, enabling spiking neurons to employ their

temporal recurrent neuronal dynamics for more effective data extraction. Through exten-

sive evaluation on both synthetic and real-world datasets, our models demonstrate their

ability to estimate dense surface normals from polarization events, achieving results com-

parable to those of state-of-the-art ANN models. Moreover, our models present enhanced

energy efficiency over their ANN counterpart, underscoring their suitability for neuro-

morphic hardware and energy-sensitive edge devices. This research not only advances

the field of spiking neural networks but also opens up new possibilities for efficient and

effective event-based shape recovery in various applications.
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Building on this foundation, future work could focus on several promising directions.

One key area is the further optimization of SNN architectures to enhance their ability to

process complex, dynamic scenes, potentially by integrating more sophisticated temporal

dynamics or learning algorithms. Additionally, exploring the integration of our models

with other sensory data types, like depth information, could lead to more robust and

versatile systems. Moreover, adapting these models for real-time applications in various

fields, from autonomous vehicles to augmented reality, presents an exciting challenge.

Finally, there is significant potential in further reducing the energy consumption of these

networks, making them even more suitable for deployment in low-power, edge computing

scenarios. Through these explorations, we can continue to push the boundaries of what’s

possible with SNNs in event-based sensing and beyond.
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CHAPTER 4

Not Just Spiking Neural Networks: Bio-Inspired Novel Spiking

Architectures

This chapter is based on papers [51, 54]. The paper [51] © 2021 IEEE. Reprinted,

with permission, from Peng Kang, Hao Hu, Srutarshi Banerjee, Henry Chopp, Aggelos

Katsaggelos, and Oliver Cossairt, “Human vision-like robust object recognition,” in 2021

IEEE International Conference on Image Processing (ICIP). IEEE, 2021, pp. 709-713.

The paper [54] © 2023 IEEE. Reprinted, with permission, from Peng Kang, Srutarshi

Banerjee, Henry Chopp, Aggelos Katsaggelos, and Oliver Cossairt, “Spiking glom: Bio-

inspired architecture for next-generation object recognition,” in 2023 IEEE International

Conference on Image Processing (ICIP). IEEE, 2023, pp. 950-954.

In this chapter, we introduce innovative spiking architectures that draw inspiration

from neuroscience findings. Drawing on the understanding that human visual processing

operates hierarchically, combining both analog and digital processing, we proposed the

ANN-SNN models and demonstrated their robustness in object recognition. In addition,

inspired by the GLOM model, a hypothetical model in neuroscience that can imitate

the human ability to parse visual scenes and represent the scene’s part-whole hierarchies,

we proposed energy-efficient and interpretable Spiking GLOM models by incorporating

spiking neurons.
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4.1. Human Vision-Like Robust Object Recognition

In this section, inspired by the evidence in neuroscience that the visual processing

in human vision is performed hierarchically in the combination of analog and digital

processing, we introduce the ANN-SNN models and demonstrate their robustness in object

recognition.

4.1.1. Introduction

With the prevalence of Artificial Neural Networks (ANNs), computers today have demon-

strated extraordinary abilities in many cognition tasks, such as image classification, speech

recognition, and natural language processing [102]. However, ANNs only imitate brain

structures in several ways including vast connectivity, and structural and functional orga-

nizational hierarchy [36]. The brain has more information processing mechanisms like the

time-dependent neuronal and synaptic functionality [59, 60]. To integrate more brain-

like characteristics, researchers propose Spiking Neural Networks (SNNs). Different from

ANNs using real-valued computation, SNNs use binary 0-1 spikes to process information,

which reduces the mathematical dot-product operations to less computationally summa-

tion operations. Besides, in most instances, the neurons in SNNs do not excite until they

receive or generate spikes. Thus SNNs are potentially energy-efficient and may have a

wide range of application scenarios with emerging neuromorphic hardwares [6].

There are two kinds of approaches in SNN learning, namely learning-based methods

and conversion-based methods. In learning-based approaches, researchers have adopted

two main directions including unsupervised learning with spike-timing-dependent plastic-

ity (STDP) [143] and supervised learning with gradient descent and error back-propagation
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[40, 144, 145, 146]. In conversion-based approaches, trained ANNs are converted to

SNNs with the same network topology using weight rescaling and normalization methods

to match the neuronal characteristics [63, 64].

Existing SNNs for object recognition are always pure SNNs [36], which only utilize the

digital signals to transfer the information. However, evidence in neuroscience suggests that

the visual processing in human vision is performed hierarchically in the combination of

analog and digital processing [147]. Most neurons at low-level visual processing, like rod,

cone, and bipolar cells, exhibit graded membrane potentials [148, 149, 150]. Unlike the

spikes (digital signals) following the all-or-none principle, the graded membrane potentials

(analog signals) refer to neuron outputs that are proportional to the inputs. At low-level

visual processing, the visual information is extensively pre-processed and a great number

of features are extracted [151, 152], e.g., whether the light intensity at a certain place

increases or decreases, in which direction a light source moves, or whether there is an

edge in the image [153]. Then, the output signals from the low-level visual processing are

conveyed to retinal ganglion cells which make spikes dominant during further propagation.

Finally, the brain processes spikes and reacts for specific vision tasks. To fully take

advantage of the human vision system, we propose a general hierarchical ANN-SNN model

for robust object recognition.

To the best of our knowledge, there is no pre-existing work on imitating the human

vision systems in this way. We believe that this study should be helpful for further

exploration of the human vision system. We evaluate our model and its variants on two

popular datasets to show its effectiveness, robustness, efficiency, and generality. Extensive
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Figure 4.1. The network structure of the general ANN-SNN, where orange
circles are the inputs and outputs, yellow circles are ANN neurons, and blue
circles are LIF neurons.

experiments clearly demonstrate the superiority of our proposed models over previous

SNNs for robust object recognition.

4.1.2. Models

In this section, we first introduce the network structures of the general ANN-SNN model.

Then, we demonstrate how to convert ANN signals to SNN signals via neural coding.

Finally, to show the generality of the proposed ANN-SNN model, we illustrate its variants

and provide implementation details.

4.1.2.1. Network Structures. Inspired by the human vision system, we propose the

general ANN-SNN model shown in Fig. 4.1. There are two components in the model.

The first component is the ANN-based module, where each neuron is the ANN neuron
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Figure 4.2. The unrolled network structure of a specific ANN-SNN, where
orange cubes are the inputs and outputs, yellow cubes are ANN neurons,
and blue cubes are LIF neurons. Round arrows in Fig. 4.1 are unrolled in
this figure.

accepting and generating real-valued signals. The second component is the SNN-based

module, which contains the Leaky Integrate-and-Fire (LIF) neurons accepting and gen-

erating spikes. Specifically, we utilize the ANN-based module to imitate the low-level

visual processing, which involves complex analog computations like noise smoothing and

edge detection. After that, to simulate the process of ganglion reformatting the analog

signals to digital signals and sending the digital signals to the brain, we employ the neural

coding layer to conduct the analog-to-digital conversion. Finally, to mimic the behavior of

dynamic neuronal activities in the brain, we use the LIF model to construct the neurons

in the SNN-based modules. LIF model is commonly used to describe the behavior of
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neuronal activities, including the update of membrane potential and spike firing. Specifi-

cally, the SNN-based module follows the basic structure of many other SNNs, which can

be trained with backpropagation. We use discretized time steps and divide the forward

propagation inside spiking neurons into two phases: update of membrane potential (rep-

resented by horizontal arrows in Fig. 4.2) and firing (represented by vertical arrows in

Fig. 4.2). Membrane potential updates following

(4.1) u(t) = k ∗ u(t− 1) ∗ (1− δ(u(t− 1)− Vth)) + I(t),

where u(t) is the membrane potential at time step t, k is a decay factor, Vth is a given fire

threshold, δ(·) is the Heaviside function whose gradient is approximated [145], I(t) is the

pre-neuron input at time step t.

We show the unrolled network structure of a specific ANN-SNN in Fig. 4.2, which can

be applied to the object recognition task. Specifically, its ANN-based module is a light

convolutional module that imitates the low-level human vision process extracting low-level

noise-robust features. Its SNN-based module is a LIF neuron-based convolutional module

that simulates the dynamic neuronal characteristic in the brain.

4.1.2.2. Neural Coding Layer. To encode the ANN’s outputs into spiking trains,

which is suitable for the inherent dynamic of the SNN-based module, we use the rate

coding method to convert analog signals to digital signals. Specifically, at each simula-

tion time step, we normalize the outputs of ANNs and generate the random feature map

Q ∼ U [0, 1] which has the same size as the outputs of ANNs. Then we compare every

generated random number in Q with its corresponding ANN’s outputs. If the generated

random number is greater than the ANN’s output data, the corresponding position is set
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Figure 4.3. Three variants of the ANN-SNN model: Denoising ANN-SNN
model, Skip ANN-SNN model, and Gated ANN-SNN model.

to 0. Otherwise, it is set to 1. By this means, we transform floating-point ANN’s outputs

into spiking trains, which ensures positions that have larger ANN’s output data have

higher firing frequency. Moreover, since we use mask operations to implement the neural

coding layer in Pytorch and mask operations do not change the gradient characteristic in

Pytorch, this means models with the neural coding layer can still be differentiable and

optimized by autograd.

4.1.2.3. Model Variants and Implementation Details. To show the generality of

the ANN-SNN model, we propose several variants (see Fig. 4.3) to make preceding ANNs

gain the denoising ability explicitly. The first variant is Denoising ANN-SNN model, which

reconstructs the clean input x from its (partially) corrupted version x̃ and forces the ANN-

based module to discover more noise-robust features. We utilize the additive Gaussian
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noise whose variance range is [0.0, 0.5] to corrupt the clean inputs and optimize the whole

model on the task of object recognition via the loss in Eq. 4.2, where z = ANN(x̃),

x̃ = x+Gaussian(0.0, var) and var ∼ U(0.0, 0.5), MSE is the mean squared error, and

λ controls the balance between the object recognition loss and denoising loss. We set

λ = 1.0 in all the experiments.

(4.2) loss = MSE(y, ŷ) + λ ∗MSE(x, z)

However, if x̃ itself has already been a clean image, we tend to get a noisy image from

ANN(x̃) at this time since it is hard for ANN to get the identity mapping, especially when

ANN is deep [154]. At this time, it is necessary for us to keep the input information. To

achieve this, we add a skip connection to the first variant and get Skip ANN-SNN model,

where the outputs are the concatenation of (x̃, z). However, Skip ANN-SNN model is too

redundant to keep all the x̃. We thus use a gating module to distinguish the situation of

keeping the input from the situation of discarding the input. Specifically, following Eq.

4.3, the gating module generates the weight G based on the input. Then, the ANN-based

module outputs the weighted combination of x and z, i.e., z = G� z+ (1−G)� x̃, where

� is the element-wise multiplication.

(4.3) G = Sigmoid(Conv(x̃))

4.1.3. Experiments

We conduct the experiments on NVIDIA RTX 2070S. The model is implemented under

the Pytorch framework. We use Adam with the decay learning rate to optimize the model.
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Table 4.1. The performance on MNIST. The best performance is in bold.

Models Type ACC(%)
Spiking CNN [63] Conversion-based 99.31
SLAYER [144] Learning-based 99.41
STBP [40] Learning-based 99.42
HM2-BP [146] Learning-based 99.49
LISNN [145] Learning-based 99.50
SNN (without ANN) Learning-based 99.50
ANN-SNN Learning-based 99.54

To show the effectiveness, robustness, and efficiency of ANN-SNN model, we evaluate its

performance on two classification tasks including the frame-based MNIST and event-based

N-MNIST, and compare it with the current state-of-the-art performances of SNNs.

4.1.3.1. Frame-Based Dataset. MNIST is a frame-based dataset. It contains a train-

ing set of 60,000 images and a testing set of 10,000 images. Each image in the dataset is

a 28×28 normalized grey-scale picture with a label from 0 to 9. To show the effectiveness

of the ANN-SNN model, we compare the performance of our model with several other

SNN models (to fairly compare, most of them are learning-based SNNs). From Table 4.1,

it is clear that our ANN-SNN model outperforms other SNN models. The reason why

our model can achieve the best performance could be two-fold: (1) the structure and

functionality of our model are quite similar to those of the human vision system; (2) the

preceding ANN can conduct the analog computations and extract effective information

to boost the performance of latter networks – SNNs.

To show the robustness and generality of our proposed models, we evaluate the models

in two experimental settings: out-domain noise and in-domain noise.

For the setting of out-domain noise, we train the models on the original MNIST and

test them on the noisy MNIST testing set. We set the variance of the additive Gaussian
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Figure 4.4. Experimental results for the out-domain noise setting.

noise to be 0, 0.1, 0.2, 0.3, 0.4, 0.5. The results of out-domain noise experiments are

shown in Fig. 4.4. From the figure, we can find that the ANN-SNN model consistently

performs better than the SNNs without preceding ANNs. Moreover, the ANN-SNN model

has more benefits as the noise level increases. The reason why the ANN-SNN model is

out-domain noise-robust could be that the preceding ANNs imitate the low-level retina

process to conduct the analog computations and extract low-level noise-robust features.

For the setting of in-domain noise, we train and test the models on the noisy MNIST.

We set the variance of training noise to follow the uniform distribution U [0.0, 0.5] and

the variance of testing noise to be 0, 0.1, 0.2, 0.3, 0.4, 0.5. Fig. 4.5 shows the results of

in-domain noise experiments. From the figure, we can see that the ANN-SNN model still

consistently performs better than the pure SNNs. However, as the noise level increases,

the benfits that the ANN-SNN model provides decrease. For example, when the noise
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Figure 4.5. Experimental results for the in-domain noise setting.

level is 0.5, the gain is 0.20. Such gain is slightly lower than the gain of 0.23 the ANN-SNN

model obtains for the noise level of 0.4, To make the ANN-SNN model more in-domain

noise-robust and gain more and more benefits as the noise level increases, we utilize the

variants shown in Fig. 4.3 and optimize them with the loss function in Eq. (4.2). From

Fig. 4.5, compared to the pure SNNs, we can see that the three variants can gain more

and more benefit as the noise level increases. When the noise level is 0.5, all the variants

can achieve the best performance. Compared to the original ANN-SNN model, because

we use lighter ANNs in the variants, the performance of all the variants is lower at low

noise levels.
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Figure 4.6. Qualitative denoising output.

Table 4.2. The performance on N-MNIST. The best performance is in bold.

Models Type ACC(%)
Spiking CNN [63] Conversion-based 95.72
LSTM [155] Learning-based 97.05
MLP [156] Learning-based 97.80
CNN [157] Learning-based 98.30
Spiking MLP [156] Learning-based 98.74
STBP [40] Learning-based 98.78
LISNN [145] Learning-based 99.45
SNN (without ANN) Learning-based 99.51
ANN-SNN Learning-based 99.53

To qualitatively show the effectiveness of denoising in the variants, we present the

original MNIST image, MNIST image with noise level of 0.5, ANN’s output of Denoising

ANN-SNN model in Fig. 4.6. From the figure, we can see that the preceding ANNs indeed

perform denoising.

To show the efficiency of the ANN-SNN model, we record the training time for the

ANN-SNN model and pure SNNs. Both of them need around 6.4s to process 10,000

training images. This shows that the ANN-SNN model does not add too much complexity

to the SNNs.
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4.1.3.2. Event-Based Dataset. To show that our model can process different data

formats, we also evaluate the ANN-SNN model on the event-based dataset N-MNIST,

which is a spiking version of the frame-based MNIST dataset. It contains 60,000 sets of

training events and 10,000 sets of testing events. The N-MNIST dataset is captured by

displaying MNIST images on a monitor and moving the sensor on a motorized unit to view

these images. N-MNIST images have two channels that record brighter pixels and darker

pixels separately. In this case, we partition the triggered pixels into 10 simulation time

steps according to its timestamp and transfer the event-based data to the frame-based

one.

We compare the performance of our model with several other algorithms working on

N-MNIST in Table 4.2, which demonstrates the effectiveness of ANN-SNN model on the

event-based dataset. The reason why our model is effective and competitive could be

two-fold: (1) the whole structure and functionality of our model are quite similar to those

of the human vision system; (2) Dynamic Vision Sensors (DVS) create inevitable noise

when capturing the object and this increases the difficulty for networks to extract the

significative features from input data, while the preceding ANN in our model can conduct

the analog computations and extract noise-robust features, which guarantees the superior

performance. To verify the efficiency, we also record the training time for the ANN-SNN

model and pure SNNs. Both of them need around 12.6s to process 10,000 training images.
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4.2. Spiking GLOM: Bio-inspired Architecture for Next-generation Object

Recognition

In this section, inspired by the GLOM model, a hypothetical model in the neuroscience

that can imitate the human ability to parse visual scenes and represent the scene’s part-

whole hierarchies, we proposed energy-efficient and interpretable Spiking GLOM models

by incorporating spiking neurons.

4.2.1. Introduction

With the prevalence of Artificial Neural Networks (ANNs), computers today have achieved

impressive performance in many cognition tasks, such as computer vision and natural

language processing [102]. However, such extraordinary performance has come at the

expense of model complexity, making ANN-based technologies energy-consuming and dif-

ficult to interpret. High energy efficiency and interpretability of artificial intelligence prod-

ucts are essential to many fields, such as autonomous driving [158] and healthcare [159],

where energy is constrained and safety is at stake.

To reduce the energy consumption in neural networks, researchers proposed Spiking

Neural Networks (SNNs) inspired by energy-efficient biological systems [36, 51]. Unlike

ANNs that perform real-valued computations, SNNs use binary spikes to process infor-

mation, which reduces the mathematical dot-product operations inherent in ANNs to just

a few summations. Moreover, in most instances, the neurons in SNNs do not excite until

they receive or generate spikes. Therefore, SNNs are potentially energy-efficient and have

a wide range of application scenarios with emerging neuromorphic hardware [160, 161].
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However, with the recent advance in deep SNNs, it becomes hard to explain the results

of these models, which could pose challenges when we deploy them to the critical fields.

Recently, Geoffrey Hinton introduced a hypothetical system called GLOM to improve

the interpretability of neural networks [162]. The GLOM model imitates the human

ability to parse visual scenes and aims to represent the scene’s part-whole hierarchies in

neural networks. Specifically, the model utilizes inter-connected columns with sharing

weights, which mimic the hyper-column structures of the human visual cortex [163],

to process the input image patches. Each column comprises auto-encoders stacked in

levels and processes a patch of the image. Ideally, the GLOM would learn different

patch abstractions in the columns at different locations and levels and create part-whole

hierarchies with rich representations. Inspired by this work, Garau et al. [164] turned

it into a fully working system with the application to image classification. Although

the work did not reach the state-of-the-art performance, it verifies the feasibility and

interpretability of the GLOM model. However, since both the GLOM model [162] and its

implementation [164] are ANN-based frameworks, they could be more energy-consuming

compared to the bio-inspired SNNs that employ the binary spikes.

In this work, to alleviate the two limitations mentioned above, we extend the con-

ceptual idea of the GLOM model and propose the Spiking GLOM by adopting the spik-

ing neurons with neuronal dynamics as the building blocks. Moreover, we propose the

potential-assisted Spiking GLOM and hybrid Spiking GLOM to further improve the ap-

plicability and performance of our model. Furthermore, we introduce the spike-based

supervised contrastive loss to optimize our models. To the best of our knowledge, this

is the first time using spikes to conduct the supervised contrastive learning. Finally, to
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demonstrate the feasibility of our models, we provide a preliminary implementation of

these models and conduct experiments on object recognition. Extensive experiments on

CIFAR-10 clearly demonstrate the effectiveness of our proposed models and show the

superiority of our models in energy efficiency and interpretability.

4.2.2. Models

In this section, we first introduce the architecture of the Spiking GLOM. Then, we propose

the variants of our model, including the potential-assisted Spiking GLOM and hybrid

Spiking GLOM. Finally, we present the training procedure and introduce the spike-based

supervised contrastive loss.

4.2.2.1. Spiking GLOM. To alleviate the low energy efficiency and poor interpretabil-

ity in ANNs, we propose a novel bio-inspired model for next-generation object recognition

– Spiking GLOM by adopting the spiking neurons with neuronal dynamics in the GLOM

model. In this work, we use the integrate-and-fire (IF) neurons whose neuronal dynamics

are controlled by

(4.4) u(t) = u(t− 1) ∗ (1− δ(u(t− 1)− Vth)) + I(t),

where u(t) is the membrane potential at time step t, Vth is a given fire threshold, δ(·) is

the Heaviside function whose gradient is approximated as in [126] to enable the back-

propagation, I(t) is the pre-neuron input at time step t. Figure 4.7 presents the network

structure of the Spiking GLOM. Specifically, the proposed model has four major compo-

nents: a spike-based patch embedding, spike-based columns, a spike-based contrast head,

and a spike-based classification head.
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Figure 4.7. The architecture of the Spiking GLOM (center) with detailed
structures of building elements (left and right) and neuronal dynamics of
IF neurons (bottom-left). Each cube is a level representation lkt denoting
various part-whole hierarchies. A: spike-based patch embedding; B: spike-
based MLPs in the spike-based columns; C, D: the information routing in
the spike-based columns, including the contributions from the same level,
the bottom level, the top level, and the attentional neighbors; E: spike-based
contrast head; F: spike-based classification head; G: neuronal dynamics of
IF neurons. The neuron receives spikes, accumulates its potential, and
generates spikes when the potential reaches the threshold.
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The spike-based patch embedding utilizes a convolutional tokenizer with IF neurons

to extract the rich representation of the input image. Compared to the ANN-based

tokenizer, our module can be more energy-efficient since binary spikes are utilized in

information processing. The neuronal dynamics of IF neurons are controlled by Eq. 4.4

with I(t) = Conv2D(x(t)), where x(t) is real-valued input image for the first layer and

binary spike representation for the deeper layers. As in [164], our spike-based patch

embedding is feed-forward, which indicates that the IF neurons in this module only update

their potentials once. And at each time step t, the module produces the same spike-based

patch embedding L0
t , which has the size of H ×W × d, where N = H ×W is the number

of patches and d is the embedding dimension. We then feed each d-dimensional patch

embedding to a spatially located spike-based column C(h;w), which is the core component

of the Spiking GLOM.

As shown in Fig. 4.7, each column C(h;w) consists of K level representations {lkt |k =

1, ..., K; t = 1, ..., T0}. Ideally, at the end of time, the variances of representations across

all the patches tend to reduce with the increase of levels, and the highest level repre-

sentations tend to have similar values and represent the same whole (“Dog” in Fig.4.7).

To obtain such part-whole hierarchies, we update the lkt of C(h;w) in the form of the

average-weighted spike representations:

lkt = avg(wll
k
t−1 + wBUNSpikingBU(lk−1

t−1 )

+ wTDNSpikingTD(lk+1
t−1 ) + wAA(Lkt−1)),

(4.5)

where lkt , l
k
t−1, lk−1

t−1 , and lk+1
t−1 are spatio-temporal consecutive level representations in

C(h;w). For k = 1, the spike-based patch embedding l0t ∈ L0
t will get involved. avg()
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indicates the arithmetical average, wl, wBU , wTD, and wA are four trainable scalars. As

in [164], A(Lkt−1) is a standard attention weighting mechanism without trainable weights,

which takes the attentional average of the level representations across all the patches at

level k and time t− 1. The spike-based Multi Layer Perceptrons (MLPs) NSpikingBU and

NSpikingTD compute the bottom-up contribution of the level lk−1
t−1 and the top-down contri-

bution of the level lk+1
t−1 , respectively. Since level representations in Eq. 4.5 are real-valued,

these spike-based modules first utilize a layer of IF neurons to transform the representa-

tions into binary spikes. Such the transformation ensures energy-efficient summations in

the deeper layers. The neuronal dynamics of IF neurons in the deeper layers are controlled

by Eq. 4.4 with I(t) = Linear(x(t)), where x(t) is the binary spike representation from

the previous layer. As suggested in [162], all the NSpikingBU(·) connecting lk−1
t−1 ∈ Lk−1

t−1

to lkt ∈ Lkt share the same weights. The same is true for all the NSpikingTD(·) connect-

ing lk+1
t−1 ∈ Lk+1

t−1 to lkt ∈ Lkt . After T0 time steps, we obtain the final average-weighted

spike-based column representations LKT0 for N image patches. Then, we rearrange these

N representations lKT0 ∈ LKT0 to a vector with the dimension of N × d′, where d′ is the size

of lKT0, and input this vector to the spike-based contrast head.

The spike-based contrast head further provides contrastive representations for the

input image. Specifically, at each time step t, the spike-based contrast head first utilizes

a layer of IF neurons to transform the real-valued LKT0 to binary spikes. Then, it uses

several Linear IF layers to extract spiking contrastive features Ft. The dropout layer is

applied before each Linear IF layer to stabilize the model training. Finally, we obtain

the time-weighted spiking contrastive features Fa =
∑T1

t=1 Ft/T1, which are fed to the
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spike-based classification head. Compared to the spike-based contrast head, the spike-

based classification head has a similar structure, except that the output dimension is the

number of classes and the total number of time steps is T2. The final time-weighted

prediction is O =
∑T2

t=1 Ot/T2, where Ot is the spiking prediction from the spike-based

classification head at each time step. The final predicted label is associated with the

neuron with the largest value in O.

4.2.2.2. Model Variants. Inspired by the superiority of potential-assisted SNNs in re-

gression tasks [122, 43], we propose the potential-assisted Spiking GLOM to obtain richer

hierarchical level representations. Specifically, we change the spike-based MLPs in the col-

umn structure and employ the IF neurons with infinite thresholds in the last layer of

these MLPs. Therefore, instead of generating binary spikes, these potential-assisted

MLPs generate real-valued potentials at the last layer. Nevertheless, since all the other

layers still employ the IF neurons with finite thresholds, such modules still conduct the

binary summations and maintain the energy efficiency. Furthermore, inspired by the hy-

brid SNN-ANN model [73], we propose the hybrid Spiking GLOM that builds upon the

potential-assisted Spiking GLOM. Specifically, we keep the spike-based patch embedding

and spike-based columns but change the contrast head and classification head with ANNs

in [164].

4.2.2.3. Training and Loss. The training procedure is divided into two steps: (i) a

pre-training phase using the spike-based supervised contrastive loss and (ii) a training

phase for object recognition using the Cross-Entropy loss. Specifically, given a batch of B

samples, we duplicate each image in the batch for a total of 2B data points. Moreover, we

apply the random data augmentation to all the samples and obtain their time-weighted
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spiking contrastive features Fa as described in Sec. 4.2.2.1. The spike-based supervised

contrastive loss is shown as follows:

L =
∑
i∈I

−1

|P (i)|
∑
p∈P (i)

log
exp(F i

a · F p
a /τ)∑

q∈Q(i) exp(F
i
a · F

q
a/τ)

,(4.6)

where i ∈ I ≡ {1, ..., 2B} is the index of an arbitrary augmented sample, P (i) is the set

of indices of all positives (with the same labels) in the augmented batch distinct from i,

Q(i) ≡ I\i, the · is the inner product, and τ is a scalar temperature parameter. Once the

network is pre-trained using this loss, the weights are frozen, except for the spike-based

classification head, which is optimized by the Cross-Entropy loss and provides the final

predictions.

4.2.3. Experiments

We evaluate our proposed model on CIFAR-10 to show its effectiveness on object recog-

nition. Moreover, we demonstrate the superior energy efficiency of our model compared

to its ANN counterpart. Finally, we present the interpretability of our model. To make

a fair comparison between the ANN-GLOM [164] and our model on effectiveness and

energy efficiency, we maintain the same training epoch (300) and batch size (256). Ad-

ditionally, we employ the same trainable weights (connections) as the ANN-GLOM but

with IF neurons. Following [126, 135], normalization techniques are applied after each

Conv2D or Linear operation for faster convergence. The experimental settings and codes

are available at https://github.com/pkang2017/slom.

4.2.3.1. Basic Performance. Table 4.3 reports the validation accuracies of our pro-

posed models and the ANN-GLOM [164] on CIFAR-10. As can be seen, our models

https://github.com/pkang2017/slom
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Table 4.3. The validation accuracies on CIFAR-10 dataset, where “GLOM”
is ANN-based, “Ours” is for the Spiking GLOM, “Ours PA” is for the
potential-assisted Spiking GLOM, and “Ours Hybrid” is for the hybrid
Spiking GLOM.

Models Acc(%)
GLOM [164] 87.61
Ours 84.35
Ours PA 85.10
Ours Hybrid 85.71

achieve the comparable performance to the ANN-GLOM, which shows the effectiveness

of our models on object recognition. Moreover, we can see that the potential-assisted

method and hybrid structure further boost the performance of Spiking GLOM on object

recognition.

4.2.3.2. Energy Efficiency. Following [73], we estimate the gain in inference energy

efficiency compared to the ANN-GLOM. Generally, the number of synaptic operations in

an ANN layer is M × C × T , where M is the number of neurons, C is the number of

synaptic connections per neuron, and T is the total time length for this ANN layer. And

the number of synaptic operations in an SNN layer is M × C × F × T ′, where F is the

layer’s firing rate and T ′ is the total time length for this SNN layer. T ′ = T = 1 for the

patch embedding module, T ′ = T = T0 > 1 for the columns, and T ′ = T1, T2 > T = 1

for the other modules. Moreover, due to the binary nature of spikes, SNNs perform only

accumulation (AC) per synaptic operation, while ANNs perform the multiply-accumulate

(MAC) computations. The AC is reported to be 5.1× more energy-efficient than the

MAC operation in the 45nm CMOS process [74]. Based on these principles, we obtain

the computational energy benefits of our models over ANN-GLOM in Table 4.4. From

the table, we can see that most SNN layers are 10× to 40× more energy-efficient than
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Table 4.4. Firing rates (FR) and energy benefits (the compute-energy of
ANNs / the compute-energy of SNNs, 45nm CMOS process) of layers
(Conv2D IF or Linear IF in Fig. 4.7) in the the potential-assisted Spiking
GLOM ( PA) and the hybrid Spiking GLOM ( Hybrid).

Layers FR PA Energy Benefit PA FR Hybrid Energy Benefit Hybrid
Patch Embedding 1 1.0 1.0× 1.0 1.0×
Patch Embedding 2 0.1843 27.6723× 0.1838 27.7476×
Patch Embedding 3 0.2768 18.4249× 0.3023 16.8707×
Column BU 1 0.1712 29.7897× 0.1814 28.1147×
Column BU 2 0.2427 21.0136× 0.2346 21.7391×
Column TD 1 0.1045 48.8038× 0.2916 17.4897×
Column TD 2 0.1668 30.5755× 0.1477 34.5295×
Contrast 1 0.1455 1.7526× 1.0 1.0×
Contrast 2 0.0089 28.6517× 1.0 1.0×
Classification 1 0.0160 15.9375× 1.0 1.0×
Classification 2 0.0807 3.1599× 1.0 1.0×

the counterpart ANN layers, except for the first layer of the spike-based patch embedding

and the ANN-based contrast head and classification head in the hybrid Spiking GLOM.

There are no energy benefits for these layers since they receive real-valued inputs.

4.2.3.3. Interpretability. As described in Sec. 4.2.2, the spike-based column is the

core component of the Spiking GLOM. Moreover, the potential-assisted Spiking GLOM’s

columns employ the potentials of spiking neurons to maintain richer part-whole hierarchi-

cal representations. Therefore, to demonstrate the interpretability of our model, we train

a potential-assisted Spiking GLOM with K = 5 levels following [162, 164] and provide a

few CIFAR-10 examples in Fig. 4.8. Specifically, the bottom row presents the input im-

ages with their labels. And the rest of the rows show the column representations LkT0 with

their variances. Ideally, at the end of time T0, we expect the variances of representations

across all the patches LkT0 tend to reduce with the increase of level k, and the highest level

representation LKT0 tends to have similar values and represent the same whole. From the
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Figure 4.8. Input images and their 5 level representations. The representa-
tion variance decreases with the increase of level k.

figure, we can see that all the lowest level representations have the largest variances. In

contrast, the level representations tend to agree on a common representation of the whole

scene and achieve smaller variances with the increase of level k.

4.3. Discussion and Conclusion

In this chapter, we propose a general hierarchical ANN-SNN model, which is a human

vision-like robust object recognition system. We illustrate the network structures of our

model and its variants to show its generality and differentiability. Finally, we use extensive

experiments to demonstrate the superiority and robustness of our proposed models over
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previous SNNs for object recognition. Moreover, inspired by the GLOM model, we propose

various bio-inspired Spiking GLOM models, which make a step towards the effective,

energy-efficient, and interpretable object recognition.

With this work, we intend to provide preliminary implementations and experimen-

tal object recognition results on these next-generation spiking models. Furthermore, we

hope our work can inspire other researchers to explore more robust, energy-efficient, and

interpretable AI techniques for diverse tasks with the lessons from other fields.
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CHAPTER 5

Conclusion and Future Work

This chapter concludes the dissertation by summarizing the contributions and dis-

cussing directions for future work.

5.1. Conclusion

In this dissertation, we embarked on a journey to architect effective and efficient

SNNs tailored for event-driven processing and learning, exploring three critical domains

of inquiry. Our endeavors in developing SNNs for event-driven classification challenges,

particularly in tactile learning, have yielded several fully SNN models that not only out-

perform existing approaches in tasks like tactile object recognition and slip detection

but also highlight the models’ exceptional energy efficiency. This efficiency, coupled with

their performance, hints at the transformative potential of our models for deployment on

energy-constrained hardware, broadening the scope of their applicability across various

event-driven classification tasks.

Further, our exploration extended into resolving event-driven regression problems

through SNNs, with a spotlight on event-based shape from polarization. The introduc-

tion of Single-Timestep and Multi-Timestep Spiking UNets for surface normal estimation

stands as a testament to our commitment to advancing SNN capabilities in regression

tasks. Our comprehensive evaluations on both synthetic and real-world datasets have

confirmed that our models are on par with the performance of leading-edge ANNs, all the
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while bringing to the table superior energy efficiency. This achievement not only propels

the field of SNNs in 3D scene tasks but also lays a solid groundwork for future efforts

aimed at refining SNN architectures for regression-oriented tasks.

Lastly, our work has been enriched by cross-disciplinary inspirations, notably from

neuroscience. By drawing parallels with the hierarchical visual processing observed in

human vision, we have proposed ANN-SNN hybrid models that excel in robustness for

object recognition tasks. Moreover, inspired by the hypothetical GLOM model from neu-

roscience, known for its capability to parse visual scenes and understand complex hierar-

chies, we have introduced Spiking GLOM models. These models, through the integration

of spiking neurons, not only push the boundaries of energy efficiency but also enhance

interpretability, marking a significant leap forward in our understanding and application

of next-generation object recognition.

In conclusion, this dissertation not only advances the state-of-the-art in SNNs for

event-driven processing and learning across classification and regression problems but

also brings the lessons from neuroscience into practical spiking architecture design. Our

work demonstrates the vast potential of SNNs in tackling complex computational tasks

with superior energy efficiency, paving the way for their broader adoption and further

exploration in the realm of neuromorphic computing and engineering.

5.2. Other Contributions from Collaborative Work

In collaboration with other researchers, we proposed a novel adaptive multimodal

intensity-event algorithm to optimize an overall objective of object tracking under bit

rate constraints for a host-chip architecture [165]. Please note that this work was funded
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by Defense Advanced Research Projects Agency (DARPA) (Grant Number: HR0011-17-

2-0044).

5.3. Future Directions

Moving forward, my research endeavors will pivot around pioneering enriched learn-

ing competencies in the forthcoming generation of intelligent computing systems and

improving social welfare through neuromorphic technologies. A detailed expanse of this

ambitious journey is demarcated below:

Large-Scale Neural Networks for Various On-Device Applications: The up-

coming work will involve innovating algorithms for large-scale SNNs and ANNs, optimizing

their compute complexity during both training and inference phases. The optimization

will be grounded on metrics such as robustness, energy efficiency, and memory usage, par-

ticularly zeroing in on on-device applications, including but not limited to recommender

systems, computer vision, natural language processing, and robotic manipulation.

Energy-Aware Software-Hardware Co-Design Frameworks for Edge AI: Pro-

gressing on a parallel path, the research will focus on designing energy-aware software-

hardware co-design frameworks for ANNs and SNNs. The intention here is to perform a

myriad of computational operations, such as pruning, quantization, and neural architec-

ture search for learning or inference, tailoring them for various edge AI applications.

Innovative Computing Scenarios Exploration with a Multidisciplinary Can-

vas: The research endeavors will chart into the territories of novel computing scenarios,

for instance, event-driven data processing and learning, multi-modal learning, continual
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learning, and federated learning. The multidisciplinary insights derived from understand-

ing natural intelligence, including learning mechanisms and intricate brain architectures,

will guide these explorations. The aim is to mold the next generation of AI systems,

embarking on a journey where they not only perceive and reason but also make informed

and real-time decisions.

Neuromorphic AI for Social Good: A promising direction in my future research

will be the intersection of Neuromorphic AI with applications that amplify social good.

While technological advancements have rapidly propelled AI systems’ capabilities, there

remains an imperative to channel these innovations toward social welfare. Outlined below

is my envisioned trajectory in Neuromorphic AI tailored for societal benefits:

• Health and Well-being: Using Neuromorphic AI, I aim to develop assistive tech-

nologies for early detection, diagnosis, and therapeutic interventions for various

health conditions. The energy-efficiency and real-time responsiveness of SNNs

can be instrumental in wearable health devices, enabling continuous patient mon-

itoring without cumbersome battery constraints.

• Environmental Sustainability: The efficient computational power of Neuromor-

phic AI can be harnessed to monitor environmental factors in real-time, aiding in

the prediction of natural disasters, climate change impact analysis, and real-time

pollution monitoring. These systems, being energy-efficient, align with the sus-

tainability objective, reducing the carbon footprint of computational operations.

• Disaster Response and Management: Leveraging the rapid decision-making ca-

pability of Neuromorphic AI, I envisage developing systems that can efficiently

coordinate disaster response. These systems can process vast amounts of data
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from various sources in real-time, enabling quicker and more effective responses

to emergencies.

• Assistive Technologies for Differently-abled: Drawing inspiration from the hu-

man brain’s adaptability, I will explore Neuromorphic AI’s potential in creating

assistive technologies. These could range from mobility aids, communication de-

vices, or environment interaction tools tailored for individuals with physical or

cognitive challenges.

My envisioned future research is not merely a continuation of what has been accom-

plished, but a strategic and thought-out expansion into arenas that hold the promise

of revolutionizing intelligent computing systems and fostering a society that is more in-

clusive, sustainable, and forward-thinking. I believe that these efforts will elevate the

current paradigm of AI, especially in designing systems that are robust, energy-efficient,

and capable of learning and inferring at the edge, thereby ushering us into a new era

of technological advancement and discovery. Moreover, by intertwining the realms of ad-

vanced AI with societal well-being, I hope to carve a future where technology is an enabler

of positive societal change.
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APPENDIX A

Appendix for Chapter 2

A.1. Acronyms and Notations

A.2. Datasets

This section introduces the details of the datasets for the Hybrid SRM FC and the

datasets for the Hybrid LIF GNN.

A.2.1. Datasets for the Hybrid SRM FC

Objects-v1: There are 36 object classes in this dataset, including 26 objects directly from

the YCB dataset [166] and 10 deformable YCB objects. To collect each event-driven

tactile data sequence, the gripper grasped an object, lifted it off the table by 20 cm, and

placed it back onto the table. Each data sequence is 6.5 seconds, including the time from

lifting the object to releasing it. And we sample the spikes every 0.02 seconds like [2],

which results in the total time length of this dataset being 325. For each object class, 25

event sequences are collected, yielding a total of 900 event sequences. Each gripper has

two event-driven tactile sensors. And we use the event data from these two tactile sensors

(78 taxels) in the experiments.

Containers-v1: There are 20 object classes in this dataset, including four containers

with five different volumes. Four containers are a coffee can, a plastic soda bottle, a

soymilk carton, and a metal tuna can. Five different volumes are 0%, 25%, 50%, 75%,
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100% of the respective maximum amount of water (or rice for the tuna can). The gripper

grasped a container and lifted it off the table by 5 cm to collect each tactile data sequence.

Each data sequence is 6.5 seconds, including the time from grasping the container to lifting

and holding it for a while. And we sample the spikes every 0.02 seconds like [2], which

results in the total time length of this dataset being 325. For each class, 40 event sequences

are collected, yielding a total of 800 event sequences. Each gripper has two event-driven

tactile sensors. And we use the event data from these two tactile sensors (78 taxels) in

the experiments.

Slip Detection: Two objects are used in the experiments. One is stable and the other

one is unstable. They are visually identical and have the same overall weight. The model

is required to determine whether the held object is stable or rotational in a short time.

To collect each event-driven tactile data sequence, the gripper is instructed to close upon

the object, lift by 10cm off the table in 0.75 seconds and hold it for an additional 4.25

seconds. Since we are interested in rapid slip detection, we extract a 0.15s window around

the start of the lift like [2]. And we sample the spikes every 0.001 seconds, which results

in the total time length of this dataset being 150. For each object, 50 event sequences

are collected, yielding a total of 100 event sequences. Each gripper has two event-driven

tactile sensors. And we use the event data from these two tactile sensors (78 taxels) in

the experiments.

Interested readers can find more details about the datasets from [2] and the corre-

sponding website https://clear-nus.github.io/visuotactile/download.html.

https://clear-nus.github.io/visuotactile/download.html
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A.2.2. Datasets for the Hybrid LIF GNN

Objects-v0: There are 36 object classes in this dataset, including 26 objects directly from

the YCB dataset [166] and 10 deformable YCB objects. The gripper grasped an object,

lifted it off the table by 20 cm, and placed it back onto the table to collect each event-

driven tactile data sequence. Each data sequence is 5 seconds, including the time from

lifting the object to releasing it. And we sample the spikes every 0.02 seconds like [5],

which results in the total time length of this dataset being 250. For each object class, 20

event sequences are collected, yielding a total of 720 event sequences. Each gripper has

two event-driven tactile sensors. And we use the event data from only one tactile sensor

(39 taxels) in the experiments to fairly compare with other published results.

Containers-v0: There are 20 object classes in this dataset, including four containers

with five different volumes. Four containers are a coffee can, a plastic soda bottle, a

soymilk carton, and a metal tuna can. Five different volumes are 0%, 25%, 50%, 75%,

100% of the respective maximum amount of water (or rice for the tuna can). The gripper

grasped a container and lifted it off the table by 5 cm to collect each tactile data sequence.

Each data sequence is 6.5 seconds, including the time from grasping the container to lifting

and holding it for a while. And we sample the spikes every 0.02 seconds like [5], which

results in the total time length of this dataset being 325. For each class, 15 event sequences

are collected, yielding a total of 300 event sequences. Each gripper has two event-driven

tactile sensors. And we use the event data from only one tactile sensor (39 taxels) in the

experiments to fairly compare with other published results.

Interested readers can find more details about the datasets from [5] and the corre-

sponding website https://clear-nus.github.io/visuotactile/download.html.

https://clear-nus.github.io/visuotactile/download.html


161

Figure A.1. Training and testing profiles for the SNN with TSRM neurons
(gray) and the Hybrid SRM FC (blue): (A) the training loss, (B) the
training accuracy, (C) the testing accuracy.

A.3. Mean Spiking Rates

We present the mean spiking rates of Hybrid SRM FC layers in Table A.2. And

Table A.3 provides the mean spiking rates of Hybrid LIF GNN layers.

A.4. Training and Testing Profiles on Event-Driven Audio Learning

We show the training and testing profiles of the SNN with TSRM neurons and the

Hybrid SRM FC in Fig. A.1. From these figures, we can see that our hybrid model

converges faster and attains a lower loss and a higher accuracy compared to the SNN

with TSRM neurons on event-driven audio learning. From this experiment, we can see

that location spiking neurons can be applied to other spike-based learning applications.

Moreover, the location spiking neurons can bring the benefits to the models built with

conventional spiking neurons and improve their performance on the tasks.
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Table A.1. List of Acronyms and Notations in Chapter 2

TSRM Time Spike Response Model
LSRM Location Spike Response Model
TLIF Time Leaky Integrate-and-Fire
LLIF Location Leaky Integrate-and-Fire
Hybrid SRM FC the hybrid model that combines a fully-connected SNN with

TSRM neurons and a fully-connected SNN with LSRM neurons
(see Fig. 2.4)

Hybrid LIF GNN the hybrid model that fuses the spatial spiking graph neural
network with TLIF neurons and temporal spiking graph neural
network with LLIF neurons (see Fig. 2.6)

ν ν = t for existing spiking neurons and ν = l for location spiking
neurons

ui(ν) the membrane potential of neuron i at ν
ηi(·) the refractory kernel of neuron i
εij(·) the incoming spike response kernel between neurons i and j
Γi the set of presynaptic neurons of neuron i
wij the connection strength between neurons i and j
xj(ν) the presynaptic input from pre-neuron j at ν
I(ν) the weighted summation of the presynaptic inputs at ν
τ the time constant of TLIF neurons
α the decay factor of TLIF neurons
τ ′ the location constant of LLIF neurons
β the location decay factor of LLIF neurons
uth the firing thresholds of neurons

N the number of taxels of NeuTouch
T the number of total time length of event sequences
K the number of classes for the tasks
Xin the event-based tactile input
X ′in the transposed event-based tactile input
O1 output spikes from the SNN with existing spiking neurons
oi(t) the output spiking state of existing spiking neuron i at time t
O2 output spikes from the SNN with location spiking neurons
oi(l) the output spiking state of location spiking neuron i at location l
O output spikes from the Hybrid SRM FC
Gs(t) the tactile spatial graph at time t
Gt(n) the tactile temporal graph of taxel n
O′1 the predicted label vector of the spatial spiking graph neural

network
O′2 the predicted label vector of the temporal spiking graph neural

network
O′ the predicted label vector of the Hybrid LIF GNN
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Table A.2. Mean spiking rates of Hybrid SRM FC layers.

Objects-v1 Containers-v1 Slip Detection
Input layer 0.1539 0.2316 0.0333
Spiking FC layer1 with TSRM neurons 0.2148 0.2461 0.0536
Spiking FC layer2 with TSRM neurons 0.0146 0.0176 0.1962
Spiking FC layer1 with LSRM neurons 0.2134 0.3576 0.0232
Spiking FC layer2 with LSRM neurons 0.0284 0.0376 0.0824

Table A.3. Mean spiking rates of Hybrid LIF GNN layers

Objects-v0 Containers-v0
Input layer 0.1272 0.0994
Spatial Spiking Graph layer 0.0271 0.0106
Spatial Spiking Fully-connected layer1 0.1503 0.0857
Spatial Spiking Fully-connected layer2 0.1767 0.1077
Spatial Spiking Fully-connected layer3 0.0403 0.0580
Temporal Spiking Graph layer 0.0134 0.0067
Temporal Spiking Fully-connected layer1 0.1100 0.2196
Temporal Spiking Fully-connected layer2 0.1275 0.1489
Temporal Spiking Fully-connected layer3 0.0213 0.0419
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