

Computer Science Department

Technical Report

Number: NU-CS-2023-08

March, 2023

Multi-Stage Automatic Line-Art Colorization with Style and Color Priors

William Daniels

Abstract

In this work, we propose the SALAC model, a fully automatic method for character line-art

colorization that utilizes concepts from the style extraction and color distribution literature. This

framework allows for fully unannotated colorizations of line-art sketches in varied and non-

deterministic color styles. We show that the proposed approach outperforms previous GAN-

based automatic line-art colorization methods while retaining flexibility with regard to the output

color distribution.

Keywords

Line-Art, Sketch, Automatic, Colorization, GAN, Stage, Segmentation

NORTHWESTERN UNIVERSITY

Multi-Stage Automatic Line-Art Colorization with Style and Color Priors

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

MASTER OF SCIENCE

Computer Science

By

William Daniels

EVANSTON, ILLINOIS

March 2023

2

© Copyright by William Daniels 2023

All Rights Reserved

3

ABSTRACT

Deep generative models have long been able to perform increasingly complex tasks, and

recent work in image generation has been extended to sketch colorization. Because of the

increased difficulty of generalizing from a low-information “line-art” sketch input, much of

this recent work has relied on user supplied information to the colorization model, thereby

making the process semi-automatic. In this paper, we propose the SALAC model, a fully

automatic method for character line-art colorization that utilizes concepts from the style

extraction and color distribution literature. This framework allows for fully unannotated

colorizations of line-art sketches in varied and non-deterministic color styles. Generations

from this model are compared to state-of-the-art automatic approaches in the relevant sketch

colorization literature. We show that the proposed approach greatly outperforms previous

GAN-based automatic line-art colorization methods while retaining flexibility with regard

to the output color distribution.

4

ACKNOWLEDGEMENTS

I would like to thank Dr. Aggelos Katsaggelos for giving me the opportunity to engage

in this research and for taking the time to explore and discuss my work with me. I’m very

grateful for Dr. Emma Alexander’s guidance in the last stages of this work, as it was a

substantial help to me as this thesis concluded. I also want to thank Dr. Mohammed Alam

for giving constructive input and for also leading thought-provoking and exploratory classes

given here at Northwestern.

A special acknowledgement and heart-felt thanks goes out to my loving and immensely

supportive family, especially my parents Kathy Daniels and Bill Daniels, who have adequately

and thoughtfully prepared me for this point in my life. Without them, this work and the

path I’ve taken would not have been possible. I am also thankful for the lifelong support

and love from my grandparents Pam Daniels and the late Walter Daniels, who have always

had me in mind.

5

List of Abbreviations

FID: Fréchet Inception Distance

GAN: Generative Adversarial Network

HSV: Hue-Saturation-Value

ReLU: Rectified linear unit

RGB: Red-Green-Blue

SC: Style Clusters

SOTA: State-of-the-art

SRU: Super-resolution upscaler

TBS: Trapped-ball segmentation

XDoG: Extended Difference-of-Guassians

6

TABLE OF CONTENTS

Acknowledgments . 3

List of Algorithms . 8

List of Figures . 9

List of Tables . 11

Chapter 1: Introduction . 12

Chapter 2: Related Work . 15

2.1 GAN-based line-art colorization . 15

2.2 Line-art extraction algorithms . 16

2.3 Unsupervised Image Segmentation . 17

2.4 Color difference and color distribution representations 19

Chapter 3: The SALAC model . 21

3.1 Model Overview . 21

3.2 Semantic Segmentation Stage . 22

7

3.2.1 Low-level Segmentation . 22

3.2.2 High-level Segmentation . 22

3.3 Color Proposal Stage . 24

3.3.1 Color Category Prediction . 24

3.3.2 Generative Color Proposal . 27

3.4 Refinement Stage . 32

Chapter 4: Experimentation and Results . 33

4.1 Dataset and Data Preparation . 33

4.2 Training Settings . 34

4.3 Results and Evaluation . 35

Chapter 5: Conclusions and Future Work . 38

5.1 Contributions and Significance . 38

5.2 Limitations and Future Work . 39

References . 45

Appendix A: Output Comparisons . 47

8

LIST OF ALGORITHMS

1 CreateColorProposals . 26

2 CreateColorTBS . 28

9

LIST OF FIGURES

2.1 Example of various XDoG outputs . 17

2.2 Visual example of trapped-ball segmentation 18

2.3 The ”Segmentation in Style” segmentation process 19

3.1 The SALAC model flow visualized . 22

3.2 Visualized output of the segmentation stage 24

3.3 Color category proposal visualization . 25

3.4 An abstraction of the color proposal creation process 26

3.5 TBS and color-filled TBS ground truth . 28

3.6 Generative color proposal output . 31

3.7 Differences in image domain before refinement 32

4.1 An example final output from the SALAC model 36

4.2 Selected output examples from a fully trained SALAC model 37

A.1 Selected output examples from AlacGAN . 48

A.2 Selected output examples from SALAC (generative only) 49

10

A.3 Varying color outputs for one sketch . 50

A.4 Visualization of color clusters through random sampling 51

A.5 Examples of SALAC failure modes . 52

11

LIST OF TABLES

4.1 Quantitative comparison of FID scores . 36

12

CHAPTER 1

INTRODUCTION

Line-art colorization is a critical undertaking when attempting to create illustrations from

character sketches, but it is also a challenging task that requires hours of professional work

for just one colorization. This presents a dilemma as it raises the barrier to entry for

creating these types of illustrations and reduces productivity in the design process for those

left who can clear that barrier. In response to these issues, techniques from the deep image

generation literature have been adapted in an attempt to automate the colorization portion

of the illustration process. Results from a näıve approach using these techniques are subpar

as line-art sketches are very low information priors for deep generative models.

Recent line-art colorization approaches have remedied this with frameworks that supply

the generative model with supplemental information along with the input sketch. The most

popular of these additional information sources include user-inputted color tags [1], reference

images to guide the network in terms of output style and color [2], [3], and user-guided color

scribbles to accurately distribute colors to the correct semantic regions in the output image

[4]–[7]. Due to these supplementary methods, output from these models show improved

colorization on quantitative measurements like FID (Fréchet inception distance) [8] and

qualitative user evaluations.

Though the aforementioned approaches perform better for line-art colorization, they trade

this increased performance against the ease of use when generating samples. For instance,

if using a model where the supplemental prior is tag-based, the user must manually input

the relevant semantic color tags (“white shoes”, “blue cap”, etc.) for each generated image.

13

Furthermore, these approaches disincentivize exploration of varying color styles per input

image, as inference for each different color style must be accompanied by the respective

supplementary information. For example, for the color-scribble approach the user would

have to redraw the scribble information in varying colors for each differently colored output

the user wants to explore. So, while these models lower the previously mentioned barrier

to entry for line-art illustration, there is an opportunity for a great productivity increase

through a fully automatic method.

Historically, fully-automatic methods have exhibited the inverse tradeoff compared to

user-guided approaches by trading performance (plausible colorizations) for efficiency (time

and effort per colorization). Predictably, this is due to the generator being given too complex

a task given the current state of generative adversarial network (GAN) models: output a

plausible line-art colorization render with requisite shading and polish given a greyscale 2D

raster of strokes that designate outlines of semantic information. The majority of previous

attempts focus on prediction given one pass through a network, but we suggest that a

framework of this kind is not merely a colorization network, but implicitly a segmentation

and refinement network as well. In this paper we propose a framework for fully-automatic

line-art colorization that rests on the intuition that this task should be deconstructed into

three separate tasks to avoid relying on one function to learn all three tasks simultaneously:

1) explicit semantic segmentation, 2) color proposal, and 3) refinement.

In the first task, through inspiration from the graphics vectorization and style extraction

literature, we extract both low- and high-level semantic segmentation information from the

input line art. Line-art images contain no gradient information compared to many other

domains of images, and it is therefore much harder for a model to differentiate low-level

regions (groups of pixels enclosed by a line or sketch boundary), which is helpful as there is

14

usually one particular color per region in line-art illustrations. While this low-level region

information can help improve colorizations [9], the model also needs an understanding of

higher level regions (groups of low-level regions) that may be semantically relevant. For

example, in complicated line-arts hair renditions may be comprised of hundreds of enclosed

regions, but they should be assigned to the same color cluster. The second task draws on

the color distance and distribution literature to generate color proposals for each low-level

segment. One model translates low and high level information to per-pixel predictions of

a predefined color category, and a follow-up model generates an intermediate coloring from

this information. Finally, for the third task, this proposal is used as a prior to another model

that generates the refined colorization output.

The main contributions of this paper are summarized as follows:

� We propose the SALAC (Multi-Stage Automatic Line-Art Colorization) model, a

multi-stage framework for fully-automatic character line-art colorization.

� We provide a mini model zoo of trained models for each subtask within the SALAC

model framework.

� We make available an altered dataset of filtered, centered, and preprocessed 512x512-

pixel line-art character illustrations.

� Quantitative evaluation comparisons that show that our model outperforms baseline

GANs and the state-of-the-art (SOTA) (to the authors knowledge) previous fully-

automatic GAN-based approach.

� Possible improvements, insights, and further exploration that may be useful when

trying to improve the results of automatic line-art colorization models.

15

CHAPTER 2

RELATED WORK

2.1 GAN-based line-art colorization

Advancements in image generation frameworks over the past decade have resulted in their

application to conditional image generation problems including – but not limited to – sketch

colorization. Generative Adversarial Networks (GANs) [10]–[12], a machine learning frame-

work where a generator attempts to output samples from a training distribution that fool

a separate “discriminator”, have achieved state of the art performance on generation tasks.

Much of the GAN-based image-to-image translation literature traces back to Isola et al.

and their work on “Image-to-Image Translation with Conditional Adversarial Networks.”

This paper introduced pix2pix [13], a powerful framework for training generative networks

that takes an input image as a prior to create a structurally similar counterpart belonging

different domain. Pix2pix takes advantage of a U-Net architecture [14] and a patch-based

discriminator to achieve state of the art performance on image-to-image translation tasks.

Future line-art colorization approaches have heavily drawn from pix2pix as the basis for the

sketch-to-color training paradigm.

AlacGAN [4] takes advantage of both a pretrained sketch feature extractor and user-

defined color hints to guide the colorization generator with essential semantic and color

information. Specifically, ReLU activations from an intermediate layer of the pretrained

Illustration2Vec [15] network, and color hints in the training set are simulated by sampling

random pixels from the target image. In regard to GAN training, the Wasserstein [16]–[18]

16

(earth-mover) distance is used as the discriminator loss metric.

In contrast to using color hints as supplementary information, the Tag2Pix network [1]

utilizes a paired dataset of line-arts and tags (color specific and semantic) are used to guide

the generator. An in-house pretrained classification network is used to label purely semantic

tags called “color invariant tags” (CITs) of the input line-art. CITs may include tags such

as “hat”, “glasses”, and “backpack”. CITs are supplied to the lowest levels of the generator

decoder. On the other hand, “color variant tags” (CVTs) are user supplied and encoded

into multiple layers of the generator decoder. CVTs may include tags such as “blue hat”,

“white background”, and “yellow eyes.”

2.2 Line-art extraction algorithms

The historically preferred approach for compiling sketch-to-color line-art datasets has been

synthetic creation of line-art sketches from running sketch extraction algorithms on line-art

illustrations as opposed to gathering pairs of real sketches and real colored illustrations on

those sketches. A worry of using these methods is a type of input domain overfitting by

colorization models on the styles of synthetic line-arts. Tag2Pix used a combination of three

different extraction approaches to avoid overfitting, while AlacGAN mixed a small portion

of real line-art sketches of varying styles in with synthetic ones.

The most extensively used sketch extraction algorithm is an extended formulation of

the difference-of-Gaussians operator, or XDoG [19]. With the correctly tuned parameters,

XDoG can render a colored line-art as a convincing pre-colored representation. Recently,

late-resizing [20] has been proposed to mimic the original sketches even more closely by

extracting sketches with XDoG before resizing, which results in a much slower extraction

procedure but a more convincing output. Tag2Pix authors mention a similar strategy in their

17

work, even going as far to upscale images with a custom illustration-based super-resolution

upscaler [21] (referred to as SRU) before extraction.

Figure 2.1: Various XDoG outputs as visualized in ”XDoG: An eXtended
difference-of-Gaussians compendium including advanced image stylization.”

2.3 Unsupervised Image Segmentation

There are many applications where region segments that signify closed areas (areas in an

image that have a sharp pixel outline or boundary) are useful as supplementary information

to many types of models. Trapped-ball segmentation [22] is an algorithm designed specifically

for segmentation of regions in a cartoon frame that are closed by sketch boundaries. Through

the use of a set of morphological operations on an image, large and enclosed regions (whose

size is identified by some starting parameter) are identified and filled with a unique value.

When all regions are filled, smaller regions are considered. This loop continues until all

regions in the image are filled.

18

(a) Line-art sketch (b) Trapped-ball segmentation

Figure 2.2: Visual example of trapped-ball segmentation.

The StyleGAN [23]–[26] family of models have historically achieved impressive results

on image generation tasks with narrow domains (faces, landscapes, etc.) The success of

these models is attributed to cleverly injected style information and progressive growing [18]

of generated images. Pakhomov et al. proposed an unsupervised segmentation approach

that probes the StyleGAN2 architecture to extract semantically meaningful clusters [27]. By

using any generic clustering algorithm in the feature space of a trained StyleGAN model

(here, the 7th or 9th layers of an unmodified StyleGAN2 model), semantic segmentation

masks can be collected for each generated image. Clusters from layers closer to the output

appear finer in detail but have less semantic meaning, while clusters closer to the input layer

are coarse but more semantically relevant.

19

Figure 2.3: The segmentation process as visualized in ”Segmentation in Style:
Unsupervised Semantic Image Segmentation with StyleGAN and CLIP.”

2.4 Color difference and color distribution representations

Color distance (or color difference) is the term used to describe the amount of separation

between two colors in an arbitrary color space. Standard distance metrics like Euclidean

distance are poor representations of color difference when the “separation between two colors”

is likely to be gauged perceptually (visually by humans) instead of by strict difference in

RGB (or some other color) space. Perceptual color distance metrics such as CIEDE76,

CIEDE94 [28], and CIEDE2000 [29] attempt to construe the color distance problem such

that differences between colors are subjectively agreeable visually.

Color distributions in images can be represented in various ways. Condensed represen-

tations such as color palettes [30] are useful for signaling the top-n most common colors in

an image, but can be less helpful when the most common colors are not easily clustered into

n categories, such as when the color distribution approaches uniformity. More information-

saturated methods like color histograms can represent color distributions in two or more

20

dimensions. Condensed representations of image color can be utilized to guide generative

models in the direction of the color distribution for an output image. In the case of His-

toGAN [31], an image is converted to the log-chroma space [32] with respect to all RGB

channels of the image, yielding three 2-dimensional histograms that are combined into a

3-dimensional histogram. This representation can made differentiable by using a learnable

kernel to control bin thresholding [33].

21

CHAPTER 3

THE SALAC MODEL

3.1 Model Overview

Input to the SALAC model, and therefore the segmentation stage, is a greyscale 512x512-

pixel image. A trapped-ball segmentation map (referred to as TBS map) is created sequen-

tially in accordance with Zhang et al.’s [22] usage. The sketch and TBS map are passed to two

trained style cluster (referred to as SC) segmentation algorithms to retrieve corresponding

SCs.

The color proposal stage takes a sketch, TBS map, and SC batch as input from the

segmentation stage output. A trained per-pixel segmentation algorithm then predicts one of

six color categories for each pixel on the input sketch, resulting in a rough color proposal for

the sketch. This rough color proposal is sent to a generative (GAN-trained encoder-decoder

architecture) color proposal model for a more detailed color proposal per segment of the TBS

map.

The final refinement stage, using a separate generative model, takes a sketch and the

refined color proposal from the output of the color proposal stage and pushes the generated

output towards the target illustration distribution. The outputs of this stage are the outputs

of the SALAC model.

22

Segmentation Stage Color Proposal Stage Refinement Stage

Input Sketch Output Coloring

Low/High-level
Segmentation Maps

Color Category
Proposals

Per-segment
Proposals

Color Histogram Distribution

Figure 3.1: The SALAC model flow visualized.

3.2 Semantic Segmentation Stage

3.2.1 Low-level Segmentation

For low-level segmentation, a Python implementation [34] of the original trapped-ball seg-

mentation algorithm is used to extract region-level segments from a sketch input. This

algorithm is deterministic and not learned, and therefore does not require training.

3.2.2 High-level Segmentation

For high-level segmentation, a method for extracting segmentation maps from StyleGAN

models is considered [27]. First, a pretrained, modified StyleGAN2 model [24] is fine-tuned

on a separate partition of 500 hand-selected images from the target illustration distribution

until convergence. Two k-means clustering models are trained on the intermediate output

features for the 7th and 9th layer respectively. These clustering models can predict clusters

from any image generated by the aforementioned fine-tuned generator, but we want to able to

predict semantic clusters from arbitrary sketch inputs to our SALAC model. To achieve this,

we will transform the StyleGAN generator outputs to sketches with the XDoG algorithm

23

(more on this in section 4.1) and train two semantic segmentation models (for the 7th and

9th feature layers respectively) to predict the semantic clusters from transformed sketches.

We generate and save 5,000 images from the fine-tuned StyleGAN model, along with the

k-means predictions for the clusters of both the 7th and 9th layer for each image. TBS maps

for each sketch are also gathered. We use a modified version of a U-Net-like network called

RefineNet [35], [36] for the segmentation task. Inputs to the models are the StyleGAN-

generated image’s extracted sketch and TBS map. Outputs are 7x512x512- and 6x512x512-

integer array segmentation masks for the 7th and 9th layer, respectively. We train two

semantic segmentation models on these 5,000 sketch-to-cluster pairs, one to predict 7th-

layer clusters and one to predict 9th-layer clusters. During training, image augmentation is

used to synthetically increase the size of the dataset and avoid overfitting.

To optimize our segmentation model, we minimize the cross entropy loss ℓ between model

predictions x and target clusters y:

ln = −
C∑
c=1

log
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c

ℓ(x, y) =
N∑
n=1

1∑N
n=1 1

ln

where C is the number of classes per cluster, and N is the batch size.

24

(a) Line-art sketch (b) TBS map (c) 7th-layer clusters (d) 9th-layer clusters

Figure 3.2: Visualized output of the segmentation stage.

3.3 Color Proposal Stage

3.3.1 Color Category Prediction

For the color proposal stage, we again consider a model that will act as a per-pixel segmenta-

tion algorithm, predicting a class of color categories that pixels from the input image belong

to. Six color categories are selected subjectively on perceived value as a color proposal for

line-art colorizations: a black spectrum, white spectrum, brown spectrum, ”red” spectrum

(red/yellow/orange), ”blue” spectrum (blue/green/purple), and fair/pink spectrum.

25

Semantic segmentation algorithm
0

1

2

3

4

5

Color
Categories

Figure 3.3: Color category proposal visualization.

To train a model that maps an input sketch, TBS map, and SC to a color proposal mask,

we need sketch and color proposal mask training pairs. To do this we formulate an algorithm

for translating the final target illustrations in our training set to color proposal masks. We

utilize the CIEDE2000 color distance formula [29] to assign pixels in line-art illustrations

to the predefined color category bins. For example, for a pixel at HxW, where H is the

row and W is the column in a target RGB illustration array, its distance from every pixel

value for a color category is calculated. The category color that is closest to the illustration

pixel considered is assigned to the same HxW coordinate in a new image array. Each color

proposal mask is a 6x512x512-integer array.

We optimize this segmentation model in the same way as the last: minimizing the cross

entropy loss ℓ between model predictions x and target categories y.

26

Sketch-
Illustration

pair
CreateColorProposals()

Color category proposal training pair

Figure 3.4: An abstraction of the color proposal creation process. For visualization
purposes, the output shown is a RGB representation of the mask output.

Algorithm 1 CreateColorProposals

1: procedure CreateColorProposals(I, C)

2: I ← rgb2lab(I) ▷ Transform image to the CIELAB color space

3: D ←M + λ1 where M ∈ RK,IH,IW ▷ Initialize a distance matrix

4: for k ← 0 to K do

5: c← Fill(index(C, k)) ▷ HxW array filled with k-th color

6: distance← CIEDE2000(c, I) ▷ Per-pixel color distance for k-th category

7: index(D, k)← distance ▷ Update distance matrix

8: end for

9: mins← argminK D ▷ Return indices of smallest distances along K

10: mask ←index(Identity, mins) ▷ Create K masks from HxW ”mins” array

11: return mask ▷ Return a KxHxW color proposal mask

12: end procedure

27

The creation process for color proposal masks to train against is formulated in Algorithm

1, and the symbols used are defined here:

� I : Input colored illustration to bin pixels based on.

� C : Array of colors that represent category bins.

� K : Number of categories C.

� M : Empty KxIHxIW array where H/W are height/width of I.

� λ1: Initial distance value of 1000.

� CIEDE2000 : The CIEDE2000 color distance formula.

� Identity : The Identity matrix.

Again, a modified RefineNet is used as the network for learning this color proposal, with

inputs to the model being a sketch, TBS map, and style cluster batch.

3.3.2 Generative Color Proposal

For more detailed color proposal information, a second model is proposed that takes the color

proposal masks (plus sketch and TBS map) as a prior and generates an altered version of a

TBS map with color proposals for each region segment. As with the previous color proposal

model, we require a ground truth to train against. For each training sketch, a color-filled

version of the TBS map is created, which fills each segment with the median color value in

the same region of the illustration instead of a unique region label.

28

(a) Existing TBS map (b) Color-filled (ground-truth)

TBS map

Figure 3.5: Creating ground truths for a more detailed color proposal generation model.

Algorithm 2 CreateColorTBS

1: procedure CreateColorTBS(F, C)

2: S ← populate(F) ▷ Create mapping of segments to lists of 2-D image coordinates

3: M ← getColor(S, C) ▷ Get median segment color given coordinates w.r.t. C.

4: rgb← getRGB(M) ▷ Project median color tuples to their respective coordinates.

5: return rgb ▷ Return an RGB image array.

6: end procedure

The creation process for color-filled TBS maps to train against is formulated above, and

the symbols used are defined here:

� F : Input TBS (or fill) map.

� C : Corresponding colored illustration.

� S : Data structure for mapping segment labels to a list of 2-D coordinates the segment

is assigned to (e.g. ’2’: [[245, 72], ...], where key ’2’ is the segment/region label and

value [[245, 72], ...] is a list of coordinates).

29

� getColor(): Function that, for each region label (key) in S, gets the median out of all

colors retrieved by masking C by the coordinates (value) the segment is assigned to.

� M : Mapping of (median) color tuple to the 2-D coordinate that color belongs to in the

color-filled TBS.

� getRGB(): Translates M into an RGB image (the color-filled TBS map) by filling an

empty RNG image array with the red, green, and blue values at their assigned 2-D

coordinates.

� rgb: Output color-filled TBS map which will act as the ground truth for the current

algorithm.

To enable our model to propose colors from the entire RGB spectrum, we structure the

learning problem as a generative task in a GAN framework. Here, a generator G will create

a new proposal P ′ conditional on the prior P color category proposal (plus the carried over

sketch and TBS map) and a color histogram [33] derived from the target color-filled TBS

map. This new color histogram feature is helpful for guiding the generator toward the correct

color distribution, and can be any sampled histogram at inference time. The generator is

optimized by minimizing a loss function which is a combination of a structure loss, color

loss, and adversarial loss. The generator loss function is formulated as:

LG = Lstruct ∗ λ1 + Lcolor + Ladv

Lstruct is the mean squared error of the output and target images with a weight of λ1 = 5.

Lcolor is the Hellinger distance between a generated image’s color histogram Hg and a target

30

illustration’s color histogram Ht defined as:

1√
2
∥H1/2

g −H1/2
t ∥2

where ∥·∥2 is the Euclidean norm. Ladv is an adversarial loss term defined as:

LGfull
∗ λ2 + LGpatch

where

LGfull
= log(exp(−Dfull(G(x, Ht), Ht)) + 1),

LGpatch
= log(exp(−Dpatch(G(x, Ht))) + 1),

and λ2 = 5e-2

Here, Dfull is a full image discriminator which takes a image (in this case G(x,Ht)) and a

target histogram Ht as input, and Dpatch is a patch-based discriminator that only takes an

image. G(x,Ht) is the output of the previously mentioned generator G given x (the combined

input of a sketch, TBS map, and prior P) and Ht.

Our discriminators Dfull and Dpatch are trained in tandem, and their loss functions are

defined as:

LDfull
= log(exp(Dfull(y, Ht)) + 1) +R1

(
ψDfull

)
+ log(exp(Dfull(G(x, Ht), Ht)) + 1)

LDpatch
= log(exp(Dpatch(y)) + 1) +R1

(
ψDpatch

)
+ log(exp(Dpatch(G(x, Ht))) + 1)

where y is a target color-filled TBS map and R1 (ψD) =
γ
2
EpD(x) [||∇Dψ (x)||2] is a regular-

31

ization term [37] on the weights ψ of a discriminator D with a γ of 10 and input x.

The formulated structure loss keeps the shape content of generations similar to the in-

put sketch and the color loss penalizes the generator from outputting images whose color

distribution strays too far away from the target image. The adversarial loss component is

informed by two separate discriminator networks that push the generator output distribution

toward the combined discriminators’ approximation of the real target distribution.

(a) Color proposal prediction (b) Raw generative proposal

output

(c) Color-filled TBS of raw

output

Figure 3.6: Example output from our generative color proposal network, using the same
example image from Figure 3.4.

Outside of training, these generative outputs are cleaned by creating a color-filled TBS

map with respect to itself. These cleaned outputs are output from the color proposal stage,

and are sent to the final refinement stage for further distribution shift.

32

3.4 Refinement Stage

Our per-segment color proposals provide us with a useful and diverse spatial color prior, but

reside in a separate data distribution from the illustration distribution that we want as our

final output.

(a) Generated color proposal (b) Ground truth illustration

Figure 3.7: Differences in image domain before refinement.

To bridge this domain gap between proposal and final ground truth we introduce a final

generative refinement model. As in the generative proposal stage, the model framework is

a GAN paradigm where a generator G generates illustration approximations that minimize

the function:

LG = Lstruct + Ladv

Here, the loss function is the same as for the generative color proposal stage except that λ1

and Lcolor are removed from the loss function and Ht is no longer sent as color information

to the generator and discriminators.

Outputs from this final trained generative model are outputs of the SALAC model.

33

CHAPTER 4

EXPERIMENTATION AND RESULTS

4.1 Dataset and Data Preparation

A baseline dataset is collected from a work-safe version of the Danbooru 2021 512x512-

resolution illustration dataset [38]. Images are filtered based on metadata tags to select for

illustrations that closely resemble the colorized versions of line-art character sketches (static

background, one character, humanoid, non-greyscale, etc.) Duplicate images are removed

and a custom centering algorithm is used to preprocess images so that their content resides

in the horizontal center of the image. Further filtering is done by ranking the images by

color and removing all images in the lowest 20 percent of “colorfulness” based on a color

perception metric based on the HSV color space [39]. Finally, the remaining data is “color

boosted” to an extent inversely proportional to its rank (higher rank number is more colorful)

by boosting the saturation value of the image in the HSV color space. This ensures that,

during training our colorization model, regressing to the mean in terms of output color is

heavily penalized, as our discriminator will easily be able to tell that “muddier” images in

terms of color are fakes on average.

To obtain the sketch training inputs for each illustration, conventions from both late-

resizing and Tag2Pix are used by upscaling images to 4 times their original size with the

SRU and running the XDoG algorithm on the upscaled images. Images are resized down to

512x512-resolution after extraction. To combat overfitting, XDoG sketch extraction param-

eters are randomly assigned values within separate ranges for each image.

34

1 def make_xdog(image):

2 s = random.uniform (.3, .7)

3 k = random.uniform(2, 5)

4 g = random.uniform (.94, .96)

5 return get_xdog_image(image , sigma=s, k=k, gamma=g,

6 epsilon =-0.5, phi =10 ** 9)

Listing 4.1: XDoG parameter settings

A final dataset of 87,215 sketch-to-image pairings are split into a set of 80,000 training

pairs and 7,215 held-out pairs.

4.2 Training Settings

The PyTorch framework [40] is used to implement all models and training paradigms dis-

cussed here. All training was carried out on a single NVIDIA GTX 3090 GPU.

Due to the large amount of varied image pairs along with data augmentations at training

time, there is no risk of overfitting on training samples and the full training set is iterated

over when training models in the color proposal and refinement stages (as the segmentation

stage trains on StyleGAN generated illustration outputs). Going forward when training

networks, unless otherwise indicated, the ADAM optimizer [41] is used with β1 = 0.9 and

β2 = 0.999, α (learning rate) is initially set at 1e-4 and decayed exponentially with γ = 0.9,

and a batch size of 4 is used.

For the segmentation stage, the two SC segmentation networks are pretrained on greyscale

representations of the StyleGAN illustration outputs for 25 epochs, then fine-tuned on the

sketch extractions of these illustrations for an additional 25 epochs with an α of 2e-5.

For the color proposal stage, the color category segmentation network is trained for 10

35

epochs, and the color proposal GAN is trained for 15 epochs with an initial α of 2e-4 with

γ = 1.2. Due to memory consumption from backpropagation on the difference in color

histograms, images were resized to 256x256-pixels from this point onward, and a batch size

of 8 was used.

In the last stage, the refinement GAN was trained on 15 epochs with a batch size of 64.

4.3 Results and Evaluation

For evaluation of generated samples and comparison to other methods, we employ the Fréchet

Inception Distance (FID) [8] metric. FID is extensively used as a evaluation metric for

measuring the distance between distributions for image generation tasks. It is derived from

calculating a mean and standard deviation of the deepest layer in InceptionV3 [42] for each

image distribution (real and generated) as samples are passed through the network. Metrics

are gathered with respect to the automatic AlacGAN method discussed previously. As

work on automatic line-art colorization has stagnated, this model, as far as the authors

are aware, is still considered near state-of-the-art for this particular automatic colorization

task. Another baseline method is added for further comparison, which is a R1-regularized

GAN model with the same framework as the SALAC model’s generative color proposal and

refinement stage (a generator playing a GAN game versus a full image discriminator and a

patch discriminator).

One might recall that ground truth histograms were a conditional for the generative color

proposal during training, but at inference we do not have this ground truth information, and

to supply it from the user would make the process semi-automatic. Instead, color histograms

are sampled from a histogram distribution (in this case the training set distribution) during

inference.

36

Model FID ↓

AlacGAN (automatic) 49.05

SALAC (generative only) 48.32

Full SALAC model 27.64

Table 4.1: Quantitative comparison of Fréchet Inception Distance scores between different
models (smaller is better). Results are calculated from results on all training set sketches.

As seen in Table 4.1, the SALAC model approach performs much better for automatic

image colorization than previous methods, almost halving the FID score of the baseline

SALAC generative setup with modern GAN training techniques and the automatic form of

AlacGAN.

(a) Original sketch input (b) Final SALAC output (c) Ground truth illustration

Figure 4.1: An example final output from the SALAC model.

37

Figure 4.2: Selected 256x256-pixel output examples from a fully trained SALAC model
(left) and their corresponding ground truths (right).

38

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Contributions and Significance

In this paper, we introduced the SALAC model approach for multi-stage fully-automatic

colorization for character line-art sketches. This method outperforms previous approaches

due to the powerful style and color priors that are learned as sequential sub-tasks. Fur-

thermore, because the intermediate outputs of each stage are accessible not only as explicit

information, but in human-viewable form, the SALAC model provides a more explainable

generation paradigm. (For instance, if the segmentation model misses labeling some semantic

information, this can be detected by the model user by merely observing the segmentation

stage output masks.)

The SALAC model also is more accommodating than other approaches in terms of diverse

color output, as an arbitrary distribution of color histograms can be given to the model at

inference. For example, users may wish to imagine their own line-art in hundreds of various

color styles for inspiration. Moreover, the SALAC model can even be used in a user-guided

fashion, as one could derive color histograms from reference images or dense color hints to

feed to the model at inference. This functionality would be trivial to implement, but is out

of the scope of this thesis.

The SALAC model has multiple interacting models, each with it’s own weights and archi-

tectures. Some of these can even be used independently of each other, such as the modified

TBS algorithm for retrieving color-filled TBS maps, or the two semantic segmentation al-

39

gorithms in the segmentation stage. We release all of the models in the SALAC framework

and their weights in a model mini zoo for public use.

Finally, we also make available data gathering and preprocessing scripts for obtaining

and recreating the dataset for training, as this dataset was extensively filtered, geometrically

preprocessed, and even cleaned by hand.

5.2 Limitations and Future Work

This framework is not without its limitations and even drawbacks. As stated, this model

is not trained end-to-end, and requires multiple passes through multiple stages before out-

putting a final result. This introduces many possible points of failure within the model,

especially for sketches that lie outside of the distribution the model was trained on. Addi-

tionally, inference times for this framework far exceed any ”one-pass” generative model such

as AlacGAN. Notably, the trapped-ball segmentation algorithm used here takes a consider-

able amount of time to complete.

There may also be ways to reduce model size or even eliminate portions of stages. For ex-

ample, feeding color histograms as supplementary input to the category proposal model allow

for more color prediction categories, therefore short-cutting the generative color proposal.

In concert with this, there are no ablation studies present in this work, and further testing

would have to be undertaken to ascertain which combination of methods and sub-tasks are

necessary or useful for better performance.

Another limitation present is the lack of testing of authentic line-arts. Although it is the

case that, at least historically [4], [43], the extensive augmentation performed on extracted

(synthetic) sketches primes the model to generalize well to authentic user-made sketches,

room should be made to do further testing on these authentic sketches.

40

Future work on automatic line-art colorization opens opportunities to amend the lim-

itations expounded on here, and call for new techniques involving new models. Namely,

diffusion models [44]–[47] have emerged as powerful iterative generative methods, and could

be used a more powerful and stable learner for some of the tasks touched on in this work.

41

REFERENCES

[1] H. Kim, H. Y. Jhoo, E. Park, and S. Yoo, “Tag2pix: Line art colorization using text tag
with secat and changing loss,” CoRR, vol. abs/1908.05840, 2019. arXiv: 1908.05840.

[2] X. Liu, W. Wu, C. Li, Y. Li, and H. Wu, “Reference-guided structure-aware deep
sketch colorization for cartoons,” Computational Visual Media, vol. 8, no. 1, pp. 135–
148, Mar. 2022.

[3] Z. Li, Z. Geng, Z. Kang, W. Chen, and Y. Yang, Eliminating gradient conflict in
reference-based line-art colorization, 2022.

[4] Y. Ci, X. Ma, Z. Wang, H. Li, and Z. Luo, “User-guided deep anime line art colorization
with conditional adversarial networks,” CoRR, vol. abs/1808.03240, 2018. arXiv: 1808.
03240.

[5] L. Zhang, C. Li, E. Simo-Serra, Y. Ji, T.-T. Wong, and C. Liu, “User-guided line
art flat filling with split filling mechanism,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[6] Y. HATI, G. JOUET, F. ROUSSEAUX, and C. DUHART, “Paintstorch: A user-guided
anime line art colorization tool with double generator conditional adversarial network,”
in Proceedings of the 16th ACM SIGGRAPH European Conference on Visual Media
Production, ser. CVMP ’19, London, United Kingdom: Association for Computing
Machinery, 2019, isbn: 9781450370035.

[7] Colorization and L. Zhang, “Two-stage sketch,” 2018.

[8] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a nash equilibrium,” CoRR,
vol. abs/1706.08500, 2017. arXiv: 1706.08500.

[9] R. Cao, H. Mo, and C. Gao, “Line art colorization based on explicit region segmenta-
tion,” Computer Graphics Forum, 2021.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial networks,
2014.

https://arxiv.org/abs/1908.05840
https://arxiv.org/abs/1808.03240
https://arxiv.org/abs/1808.03240
https://arxiv.org/abs/1706.08500

42

[11] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” CoRR, vol. abs/1411.1784,
2014. arXiv: 1411.1784.

[12] A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep
convolutional generative adversarial networks, 2015.

[13] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional
adversarial networks,” CoRR, vol. abs/1611.07004, 2016. arXiv: 1611.07004.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” CoRR, vol. abs/1505.04597, 2015. arXiv: 1505.04597.

[15] M. Saito and Y. Matsui, “Illustration2vec: A semantic vector representation of il-
lustrations,” in SIGGRAPH Asia 2015 Technical Briefs, ser. SA ’15, Kobe, Japan:
Association for Computing Machinery, 2015, isbn: 9781450339308.

[16] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, 2017.

[17] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” CoRR, vol. abs/1704.00028, 2017. arXiv: 1704.00028.

[18] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved
quality, stability, and variation,” CoRR, vol. abs/1710.10196, 2017. arXiv: 1710.10196.

[19] H. Winnemöller, J. E. Kyprianidis, and S. C. Olsen, “Xdog: An extended difference-of-
gaussians compendium including advanced image stylization,” Computers and Graph-
ics, vol. 36, no. 6, pp. 740–753, 2012, 2011 Joint Symposium on Computational Aesthet-
ics (CAe), Non-Photorealistic Animation and Rendering (NPAR), and Sketch-Based
Interfaces and Modeling (SBIM).

[20] D. Kim, D. Je, K. Lee, M. Kim, and H. Kim, “Late-resizing: A simple but effective
sketch extraction strategy for improving generalization of line-art colorization,” in 2022
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022,
pp. 965–974.

[21] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convo-
lutional networks,” CoRR, vol. abs/1501.00092, 2015. arXiv: 1501.00092.

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1501.00092

43

[22] S.-H. Zhang, T. Chen, Y.-F. Zhang, S.-M. Hu, and R. R. Martin, “Vectorizing cartoon
animations,” IEEE Transactions on Visualization and Computer Graphics, vol. 15,
no. 4, pp. 618–629, 2009.

[23] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” CoRR, vol. abs/1812.04948, 2018. arXiv: 1812.04948.

[24] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and
improving the image quality of stylegan,” CoRR, vol. abs/1912.04958, 2019. arXiv:
1912.04958.

[25] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, “Training genera-
tive adversarial networks with limited data,” CoRR, vol. abs/2006.06676, 2020. arXiv:
2006.06676.

[26] T. Karras, M. Aittala, S. Laine, et al., “Alias-free generative adversarial networks,”
CoRR, vol. abs/2106.12423, 2021. arXiv: 2106.12423.

[27] D. Pakhomov, S. Hira, N. Wagle, K. E. Green, and N. Navab, “Segmentation in
style: Unsupervised semantic image segmentation with stylegan and CLIP,” CoRR,
vol. abs/2107.12518, 2021. arXiv: 2107.12518.

[28] W. Mokrzycki and M. Tatol, “Color difference delta e - a survey,” Machine Graphics
and Vision, vol. 20, pp. 383–411, Apr. 2011.

[29] G. Sharma, W. Wu, and E. N. Dalal, “The ciede2000 color-difference formula: Imple-
mentation notes, supplementary test data, and mathematical observations,” Color Re-
search & Application, vol. 30, no. 1, pp. 21–30, 2005. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/col.20070.

[30] H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkelstein, “Palette-based photo
recoloring,” ACM Trans. Graph., vol. 34, no. 4, Jul. 2015.

[31] M. Afifi, M. A. Brubaker, and M. S. Brown, “Histogan: Controlling colors of gan-
generated and real images via color histograms,” CoRR, vol. abs/2011.11731, 2020.
arXiv: 2011.11731.

[32] J. T. Barron, “Convolutional color constancy,” CoRR, vol. abs/1507.00410, 2015.
arXiv: 1507.00410.

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2106.12423
https://arxiv.org/abs/2107.12518
https://onlinelibrary.wiley.com/doi/pdf/10.1002/col.20070
https://onlinelibrary.wiley.com/doi/pdf/10.1002/col.20070
https://arxiv.org/abs/2011.11731
https://arxiv.org/abs/1507.00410

44

[33] M. Afifi and M. S. Brown, “Sensor-independent illumination estimation for DNN mod-
els,” CoRR, vol. abs/1912.06888, 2019. arXiv: 1912.06888.

[34] P. HAT, Linefiller.

[35] G. Lin, A. Milan, C. Shen, and I. D. Reid, “Refinenet: Multi-path refinement networks
for high-resolution semantic segmentation,” CoRR, vol. abs/1611.06612, 2016. arXiv:
1611.06612.

[36] Y. Song and S. Ermon, “Improved techniques for training score-based generative mod-
els,” CoRR, vol. abs/2006.09011, 2020. arXiv: 2006.09011.

[37] L. M. Mescheder, “On the convergence properties of GAN training,” CoRR, vol. abs/1801.04406,
2018. arXiv: 1801.04406.

[38] Anonymous, D. community, and G. Branwen, Danbooru2020: A large-scale crowd-
sourced and tagged anime illustration dataset, https://gwern.net/Danbooru2020,
dataset, Accessed: DATE, Jan. 2021.

[39] D. Hasler and S. Suesstrunk, “Measuring colourfulness in natural images,” Proceedings
of SPIE - The International Society for Optical Engineering, vol. 5007, pp. 87–95, Jun.
2003.

[40] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32, H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds.,
Curran Associates, Inc., 2019, pp. 8024–8035.

[41] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

[42] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” CoRR, vol. abs/1512.00567, 2015. arXiv: 1512.
00567.

[43] Y. Liu, Z. Qin, Z. Luo, and H. Wang, “Auto-painter: Cartoon image generation from
sketch by using conditional generative adversarial networks,” CoRR, vol. abs/1705.01908,
2017. arXiv: 1705.01908.

[44] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data
distribution,” CoRR, vol. abs/1907.05600, 2019. arXiv: 1907.05600.

https://arxiv.org/abs/1912.06888
https://arxiv.org/abs/1611.06612
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/1801.04406
https://gwern.net/Danbooru2020
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1705.01908
https://arxiv.org/abs/1907.05600

45

[45] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” CoRR,
vol. abs/2006.11239, 2020. arXiv: 2006.11239.

[46] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” CoRR, vol. abs/2010.02502,
2020. arXiv: 2010.02502.

[47] C. Saharia, W. Chan, H. Chang, et al., “Palette: Image-to-image diffusion models,”
CoRR, vol. abs/2111.05826, 2021. arXiv: 2111.05826.

[48] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2111.05826

48

APPENDIX A

OUTPUT COMPARISONS

Figure A.1: Selected 256x256-pixel output examples (left) and their corresponding ground
truths from AlacGAN.

49

Figure A.2: Selected 256x256-pixel output examples (left) and their corresponding ground
truths from SALAC (generative only).

50

Figure A.3: By generating with varying color histograms, we can get an array of different
color outputs for one sketch.

51

Figure A.4: Variety of colorizations for one sketch achieved through random sampling of
color histograms. Created through dimensionality reduction with t-SNE [48].

52

Figure A.5: Examples of failure modes (left) with corresponding ground truths (right):

Coloring over semantically different objects (top left)

Out-of-domain input sketches (top right)

Overly-saturated input color histograms (middle left)

SALAC not able to recognize semantic content (middle right)

Black color proposals overpowering sketch details (bottom left)

Visible artifacts in output (bottom right)

