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ABSTRACT

This dissertation introduces deep learning (DL) methods applied to image and video process-

ing, specifically concentrating on two domains: image and video restoration, and video classifica-

tion with action localization.

In the restoration domain, we introduce several innovative deep learning methodologies to ad-

dress three challenges: super-resolution (SR), atmospheric turbulence (AT) correction, and motion

blur (MB) removal.

Generative Adversarial Networks (GANs) have demonstrated impressive performance in ad-

dressing super-resolution challenges, because of their ability to produce visually realistic images

and video frames. However, previous GAN-based models frequently suffer from undesired side

effects in their outputs, such as unexpected artifacts and noise. To mitigate these artifacts and en-

hance the perceptual quality of the results, in Chapter 1, we propose a general method that can be

effectively used in most GAN-based super-resolution models by integrating essential spatial infor-

mation into the training process. We extract spatial information from the input data and integrate

it into the training loss, making the corresponding loss a spatially adaptive (SA) one. We show

that the proposed approach is independent of the methods employed for spatial information extrac-

tion, as well as independent of SR tasks and models. This method consistently guides the training

process towards generating visually pleasing SR images and video frames, substantially reduc-

ing artifacts and noise, and ultimately leading to enhanced perceptual quality. Besides including

the spatial information through training loss, we also discover incorporating it through the model

framework in Chapter 2. We design a new framework that incorporates two collaborative discrim-

inators whose aim is to jointly improve the quality of the reconstructed video sequence. While

one discriminator focuses on the general properties of the images, the second one specializes in
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obtaining realistically reconstructed features, such as edges. Experimental results demonstrate that

the learned model outperforms current state-of-the-art models, yielding super-resolved frames with

fine details, sharp edges, and reduced artifacts.

Atmospheric turbulence, a common phenomenon in daily life, arises primarily due to the un-

even heating of the Earth’s surface. As a result, it causes distortion and blurring in acquired images

or videos, significantly affecting downstream vision tasks, especially those dependent on captur-

ing clear, stable images or videos from outdoor environments, such as accurate object detection

or recognition. It is a challenging restoration task as it consists of two types of distortions: geo-

metric distortion and spatially variant blur. In Chapter 3, we first propose a variational inference

framework AT mitigation baseline, wherein we improve the performance by learning latent prior

information from the input and degradation processes. Then we design a novel deep conditional

diffusion model within the variational inference framework to further enhance the perceptual qual-

ity of output images. We demonstrate that the proposed framework achieves good quantitative and

qualitative results on a comprehensive synthetic AT dataset. Though existing deep learning-based

methods have achieved great performance in synthetic scenarios, they invariably exhibit a perfor-

mance drop when applied to real-world cases. Therefore, in Chapter 4 we further propose a real-

world atmospheric turbulence mitigation method under a domain adaptation framework, which

connects supervised simulated atmospheric turbulence correction with unsupervised real-world at-

mospheric turbulence correction. We will show our proposed method enhances performance in

real-world atmospheric turbulence scenarios, improving both image quality and downstream vi-

sion tasks.

Respiratory motion and the resulting artifacts are considered to be a big problem in abdominal

Magnetic Resonance Imaging (MRI). Many previous deep-learning techniques have been devel-

oped to address these respiratory motion artifacts. However, many models tend to oversmooth fine
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details, such as vessels in liver MRIs, while these details are most important for medical diagnosis.

Thus, in Chapter 5, similar to our approach in SR, we propose a Generative Adversarial Networks

(GAN)-based model for removing motion blur in abdominal MRI. We incorporate perceptual loss

as part of our training loss to further enhance the perceptual quality of the images. Our model gen-

erates motion-reduced images with clearer and better fine-details, thereby providing radiologists

with more realistic MRI images to aid in diagnosis.

For the classification and action localization with videos, we present deep learning methods for

solving avian-solar activity classification and weakly supervised action localization.

Activity classification is essential in various real-life scenarios involving both humans and an-

imals. The demand for precise activity classification concerning avian-solar interactions is rising,

as the usage of solar energy facilities, such as photovoltaic array power stations, has been ob-

served to impact bird species richness, behavior, and activity. However, there has been no effort

to develop an automated system for monitoring and classifying avian-solar interactions. Current

methods depend on human observers, which are time-consuming, resource-intensive, and prone to

errors related to searcher efficiency. With the recent success of Deep Learning models in activity

classification, in Chapter 6, we introduce a recurrent neural network-based model for automatically

classifying six avian activities around solar energy facilities. Our model integrates crucial feature

engineering metadata with video frame data, facilitating enhanced learning and more accurate ac-

tivity classification. Furthermore, we address the challenge of data imbalance during training and

demonstrate our model’s effectiveness in detecting and classifying various activities within video

tracks. Additionally, we analyze the saliency/backpropagation map of the trained proposed model

and validate its decision-making rationale.

Weakly-supervised temporal action localization aims to identify and localize the action in-

stances in untrimmed videos with only video-level action labels. Humans can adapt abstract-level
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knowledge about actions in various video scenarios and detect the occurrence of actions. In Chap-

ter 7, we mimic how humans do and introduce a new perspective for locating and identifying

multiple actions in a video. We propose a network named VQK-Net with a video-specific query-

key attention modeling, which learns a unique query for each action category in every input video.

These learned queries encapsulate abstract-level features of actions and are capable of adapting this

knowledge to the target video scenario, facilitating the detection of corresponding actions along

the temporal dimension. To enhance the learning of these action category queries, we leverage not

only the features of the current input video but also the correlations between different videos using

a novel video-specific action category query learner worked with a query similarity loss. Finally,

we conduct extensive experiments on three widely adopted datasets, achieving state-of-the-art per-

formance.
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CHAPTER 1

SPATIAL ADAPTIVE LOSS FUNCTION FOR GAN-BASED SUPER-RESOLUTION

MODELS

1.1 Introduction

Super-resolution (SR) is a conventional task in image and video processing, which aims to generate

high-resolution (HR) images or videos from low-resolution (LR) counterparts. Various method-

ologies and algorithms have been developed to tackle this task [1]. In recent years, Deep Learning

(DL) has emerged as a powerful approach in the field, demonstrating outstanding performance in

various image processing tasks, including SR [2], [3]. (Please note that portions of this chapter

restate text from our previously published work [4] and a journal paper currently under review.)

Figure 1.1: Deep learning on super-resolution.

In pioneering works employing deep neural network (DNN) on SR problems, Dong et al. [5],

[6] developed the SRCNN for single image super-resolution (SISR). This approach learned end-to-

end mapping from a single LR image to its HR counterpart using a Convolutional Neural Network

(CNN). Subsequently, Kappeler et al. [7] proposed VSRnet, a three-layer CNN for video super-

resolution (VSR). Both works have outperformed the previous state-of-art methods. Since then,

numerous DNN architectures have emerged in these domains [8], [9]. Recently, the focus in this

field has shifted from solely achieving accurate image or video recovery to generating visually
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pleasing results. To achieve this objective, generative adversarial networks [10] have been widely

used in current state-of-art studies [11]–[20]. These works have demonstrated the ability of ad-

versarial learning to guide generative outcomes toward the domain of natural images, which are

perceptually authentic to humans. Consequently, this approach yields images and video frames

with a realistic appearance.

The majority of outcomes produced by GAN architectures have surpassed those of non-GAN

architectures in terms of perceptual quality for images and video frames. Recent studies have

sought to further improve perceptual quality by integrating specific spatial information into net-

work training. This spatial information, often crucial for enhancing visual quality, includes features

like edges and textures. For example, Jiang et al. [21] proposed an edge-enhancement subnetwork

to recover the high-frequency edge details of images. Wang et al. [22] and Wu et al. [23] integrated

a Spatial Feature Transform layer into their network’s architecture, leveraging semantic texture in-

formation from semantic segmentation maps during training. Similarly, Zhao et al. [24] developed

a region-level non-local module integrated into the generative network to capture long-range fea-

ture dependencies. These studies collectively highlight the significant contribution of incorporating

essential spatial information during GAN network training to produce visually pleasing outcomes.

However, these methods rely on modifying or constructing new architectures or layers within their

networks. Such approaches often possess limitations due to their strong dependence on specific

network architectures, hindering straightforward adaptation to different network structures. In such

cases, using the same approach may not reach the same performance, and many adjustments will

be needed. In the current works, few have tried to include spatial information by improving the

objective loss, which can be easily extended to different models regardless of their architectures,

as similar loss functions are employed during training. Therefore, this chapter proposes an effec-

tive and efficient approach to enhance the training loss by integrating spatial information. This is
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achieved by adapting the original loss function to become spatially adaptive (SA). We demonstrate

we can generate better images and video frames with higher perceptual quality after training dif-

ferent networks with the SA losses. Given the superior performance of GAN in the SR field, our

focus is primarily on GAN models.

In state of art GAN-based super-resolution models [11]–[15], [17], [19]–[22], [24], training

losses typically contain two primary components: adversarial loss and distance-based fidelity

losses. The adversarial loss originates from the adversarial mechanism, initially introduced by

Goodfellow et al. [10]. This loss drives the adversarial training dynamics between the generator

and discriminator networks. The distance-based fidelity losses are commonly defined in pixel or

feature spaces, and they can be included for different purposes. For example, most of them are

used to assess the results’ spatial quality [11]–[15], [17], [19], [21], [22], [24], which compute the

difference between super-resolved images/frames and their corresponding HR counterparts in the

low-level pixel space or the high-level feature space. While some of them are computed between

adjacent estimated video frames, aiming at improving the results’ temporal quality in the video

super-resolution scenarios [15]. Since our goal is to further improve the results’ perceptual quality,

our focus lies on the losses used for discriminating the spatial quality. High-frequency details such

as edges are crucial for human vision but are more challenging to recover accurately than flat ar-

eas. Distortions and artifacts are often more pronounced around these edges, impacting perceptual

quality and subsequent vision applications. Such distortions and artifacts can be easily observed by

human eyes and negatively impact the results’ perceptual quality as well as the accuracy of subse-

quent vision applications. Therefore, this chapter selects edge information as the representative of

spatial information. We first extract spatial (edge) information from input images or video frames.

We then incorporate it into the original distance-based fidelity loss (defined in the pixel space in

particular), making the new training loss a spatially adaptive(SA) one. We will show that the pro-
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posed SA loss can effectively guide the network to pay more attention to recovering those edge

areas and generate a more accurate and sharper edge structure. This augmentation significantly

enhances the visual impact of the ultimate super-resolved outcomes. Besides, instead of adding

additional loss terms, the SA loss concept utilizes spatial information within the commonly-used

pixel loss to train SR DNN models. It is also independent of the network’s architecture, thus can

be easily and efficiently incorporated along with different network architectures.

1.2 Proposed Method

Edge information is a crucial factor that influences image and video quality. Precise edges con-

tribute to enhancing the perceptual quality of super-resolved images and videos. Therefore, we

select edge information as the primary representative of spatial characteristics. We will first edge

information from input data and integrate it into the low-level pixel training loss space, trans-

forming the conventional pixel loss into a Spatially Adaptive (SA) one. Such SA loss can guide

the models to focus more on recovering edge areas during training, thereby preserving edge in-

formation effectively. Our experiments demonstrate that employing the proposed SA loss into the

training of both image and video SR GAN models results in a noticeable enhancement in the visual

quality of the output images and video frames.

1.2.1 Extracting Spatial Information

As explained above, we use edge information as our spatial information. To extract edges from the

input images or video frames, we utilize two different algorithms in this chapter: the local variance

algorithm, generating an edge mask with values between 0 and 1, and the widely recognized Canny

edge detection algorithm, which yields a binary edge mask with values of 0 or 1. Utilizing two dif-

ferent edge extraction algorithms stems from our hypothesis that the proposed Spatially Adaptive
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(SA) loss concept remains unaffected by the choice of edge extraction methods or the resulting

masks. As long as the algorithm can efficiently extract edge information from input data, the SA

loss can effectively utilize the corresponding extracted edge mask. In the following, we will first

describe the local variance and canny edge detection algorithms that we have used.

In this chapter, images are considered to be multi-channelized. For instance, grayscale images

typically consist of one channel, while RGB-color images comprise three channels. Images in the

feature domain often contain multiple channels.

1) Local variance edge detection: The local variance edge detection algorithm [25] takes a

multi-channel image x with element x(k, i, j) as input, where k represents the channel index and

(i, j) is the pixel location within the kth channel. The local variance µk,i,j(x) at pixel location (i, j)

within the kth channel is computed by:

µk,i,j(x) =
∑

(l1,l2)∈Γk,i,j

1

|Γk,i,j|
(x(k, i+ l1, j + l2)−mk,i,j(x))

2, (1.1)

where

mk,i,j(x) =
∑

(l1,l2)∈Γk,i,j

1

|Γk,i,j|
x (k, i+ l1, j + l2) (1.2)

is the local mean. Γk,i,j is the analysis window around x(k, i, j), and |Γk,i,j| denotes the number of

elements in the analysis window.

The local mean mk,i,j(x) and local variance µk,i,j(x) compute the average and the variance of

the pixels within the analysis window Γk,i,j . It is evident that the local variance µk,i,j(x) exhibits

high values in high-frequency image areas such as edges, while displaying low values in flat re-

gions. We further normalize its values to the range [0,1], getting the final edge map, defined as
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W (x), with elements

wk,i,j(x) =
µk,i,j(x)

µk,i,j(x) + δ
, (1.3)

where δ > 0, a tuning parameter determined experimentally. It is easy to see that in flat regions

wk,i,j(x) ≈ 0, while in areas of high spatial activity like edge regions wk,i,j(x) ≈ 1. An example

of the edge map computed by the local variance method for a grayscale image (k = 1) is shown in

Figure 1.2(b) (The displayed edge map image is a result of scaling W (x) by 255). We can see that

the edge areas take higher values than the non-edge(flat) areas.

2) Canny edge detection: Since canny edge detection [26] is a well-known and typical edge

extraction method, we won’t further explain its details here. For our experiments, we directly

utilize the Canny function from the OpenCV library [27]. The canny method outputs a binary edge

map, with edge pixels assigned a value of 1 and non-edge pixels assigned a value of 0. Figure

1.2(c) depicts the resultant edge map obtained through the Canny method. Again, the edge map

image shown there is scaled by 255, and we can also see that the edge areas take higher values than

the non-edge (flat) areas.

Next, we demonstrate the integration of extracted edge information into the training losses of

the SR models, thereby transforming them into Spatially Adaptive (SA) losses.

1.2.2 Spatially Adaptive Pixel Loss

Currently, most SR DL models utilize distance-based losses as either their primary training loss

or as a component of it. Specifically, SR GAN models commonly integrate distance-based losses

to regularize GAN training, often defined in both pixel and feature spaces [12]–[15], [17], [22],

[19], [20], [23], [24], [28]. Our objective is to incorporate spatial information (edge information in

this study) extracted from input data into the distance-based loss defined in pixel space. We name

this enhanced pixel loss the spatially adaptive (SA) pixel loss. It effectively guides the model to
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(a) (b) (c)

Figure 1.2: The gray image and its edge maps (a) The gray image; (b) Edge map computed by
local variance; (c) Edge map computed by Canny detection.

produce sharper and more precise edges, thereby enhancing the visual appeal of resulting images

and video frames. Subsequently, we illustrate this concept using two prevalent distance-based loss

formats – the L1 norm and the Charbonnier norm. These loss functions align with those utilized in

the SISR and VSR GAN models discussed in this chapter, as detailed in the subsequent subsection.

The idea can be easily used for other distance-based loss formats in the same way.

The L1 norm distance loss is defined as:

l1(u, v) =
∑
k

∑
i

∑
j

|(uk,i,j − vk,i,j)|, (1.4)

and the Charbonnier distance loss is defined as:

γ(u, v) =
∑
k

∑
i

∑
j

√
(uk,i,j − vk,i,j)2 + ϵ2, (1.5)

for the general case of two multi-channel images u and v, with elements uk,i,j and vk,i,j respectively.

Index k is the channel number, e.g., k = 1 for a gray-scale image, k ∈ {1, 2, 3} for a color image,

and k ∈ {1, 2, 3...} for an image defined in the feature space in the DL settings. ϵ is a small
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constant close to zero, for example, ϵ= 0.001.

The idea for distance losses is straightforward, involving the computation of dissimilarity be-

tween two images. In the context of constructing training loss for Super-Resolution Deep Learning

(SR DL) models, these losses quantify disparities between synthesized SR images and ground truth

HR counterparts, computed within both pixel and feature spaces. Thus, the objective of SR models

is to minimize these losses, ensuring SR images closely resemble their HR counterparts.

A limitation of the defined distance-based losses is that they assign equal weight to all elements

in images. However, we would like to preserve the edge information in the SR images as much

as possible. Towards this end, during training the models, regions of high spatial activity areas

(edge areas) should be weighted heavier than the smooth regions. Thus, we propose the following

modification of the L1 and Charbonnier distance-based losses:

l1w(u, v,H) =
∑
k

∑
i

∑
j

hk,i,j|(uk,i,j − vk,i,j)|, (1.6)

γw(u, v,H) =
∑
k

∑
i

∑
j

hk,i,j

√
(uk,i,j − vk,i,j)2 + ϵ2, (1.7)

where H is a weight matrix, including the set of weights hk,i,j , it weighs the difference between u

and v at position (k, i, j).

The following will show how to include the spatial activity information into the pixel loss by

using the above-modified L1 and Charbonnier losses.

Using Equation 1.6 and 1.7, the original pixel losses for training the SR models are used to be

defined as:

Ll1pixel = l1w(hr, sr, α1), (1.8)

Lγpixel = γw(hr, sr, α1), (1.9)
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where hr is the HR image, and sr is the corresponded SR image. 1 is a weight matrix whose

elements are all 1. The coefficient α is a hyper-parameter, determining the weight of the pixel loss

term. Such hyper-parameters balance different loss terms in the final training loss. As previously

mentioned, the original pixel loss functions uniformly treat all image elements, but we want to

stress the edge areas during training. We then propose the spatially adaptive (SA) pixel losses

which bring the edge information in, defined as:

Ll1SA−pixel = l1w(hr, sr, βW (hr)), (1.10)

LγSA−pixel = γw(hr, sr, βW (hr)), (1.11)

where W (hr) is the weight matrix described in Section 1.2.1, i.e., the edge map we extracted from

the input HR image hr using either local variance or canny methods, and its elements are weights

wk,i,j . Recall what we have learned above about W (hr): in areas of high spatial activity like edge

regions, we have wk,i,j equals 1 or close to 1, depending on which edge extraction methods we

choose. In contrast, in the flat areas, we have wk,i,j equals 0 or close to 0. Therefore, the values of

wk,i,j in the edge regions are larger than the values in the flat regions. The larger the value of wk,i,j

is, the more important the corresponding pixel (at position (k, i, j)) becomes in the function to be

optimized. Because the difference calculated from these edge pixels will contribute a larger loss

value to the total loss than the difference computed from the smooth pixels. Therefore, to minimize

the loss value, during training, our models will consider these edge pixels as more important pixels

and put more effort into recovering them. In other words, during the backward pass, the trainable

parameters will be updated “consciously” towards the direction where more accurate edges can be

super-resolved, and larger weight updates will be given to those parameters responsible for super-

resolving these edge-like regions. Again, β is a hyper-parameter, serving as the coefficient of the
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SA pixel loss used in the final training loss.

However, we still have one problem left for the SA pixel losses defined in Equation 1.10 and

1.11. When we are using the edge map W (hr) as our weight matrix, in the flat areas, we have

wk,i,j equals 0 or close to 0, which means we almost completely ignore to super-resolved the flat

regions, and this is not appropriate. Therefore, in practice, we consistently retain a certain level of

original pixel loss when forming the SA pixel loss, so the final SA pixel losses we used are:

Ll1SA−pixel = l1w(hr, sr, α1+ βW (hr)), (1.12)

LγSA−pixel = γw(hr, sr, α1+ βW (hr)), (1.13)

and the reason for including the α1 term is to ensure that the loss does not ignore flat regions in

the images.

1.2.3 GAN Loss and Perceptual Loss

Following the state-of-the-art methods in super-resolution for both classical and perceptual loss

functions [15], [29] we use a GAN-based training to produce frames of high perceptual quality.

Adapting the GAN formulation first introduced in [10] to VSR results in solving the adversarial

min-max problem

min
θ

max
ϕ

LGAN (ϕ, θ) = Ex [logDϕ (hr)] + (1.14)

EY [log (1−Dϕ (Gθ (lr)))] ,

where lr denotes the LR input, Dϕ refers to the discriminator with trainable parameters ϕ, and

Gθ represents the generator network with trainable parameters θ. Therefore, Gθ(lr) represents the
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Figure 1.3: Super-resolution with GANs.

output of the generator, which corresponds to the super-resolved image sr.

Because the GAN-based model could be unstable during training and is not easy to converge

appropriately. Typically, training the generator can be more challenging than training the discrim-

inator. Therefore, in addition to the adversarial loss, two other distance-based losses, namely the

pixel and perceptual loss, are commonly employed when training the generator, as depicted in

Figure 1.4.

We have defined the pixel loss, which calculates the distance between the generated SR image

and the HR image in pixel space. Regarding the perceptual loss, it measures the distance between

the generated SR image and the HR image in a perceptual space, which is defined by the middle

layer output of a pre-trained discriminative CNN model when taking the HR and SR as inputs,

respectively:

Lpercep = γ(ψ(hr), ψ(Gθ(lr))), (1.15)

where the feature space denoted as ψ(·) is computed from the activations of the intermediate layers

of the V GG network [30]. Without loss of generality, we adopt the Charbonnier distance format
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γ, which can be easily adapted to other distance formats.

Generator

 

Pre-trained Discriminative CNN

 

Figure 1.4: Pixel loss and feature loss visualization. Adapted from [31].

1.2.4 Spatially Adaptive Loss used in Super-Resolution Models

The spatially adaptive loss can be effectively used to improve the results regardless of the chosen

SR models. In this chapter, we use two widely utilized SR GAN models as illustrative instances to

apply the SA loss, one for image SR (ESRGAN [13]), the other for video SR (VSRResFeatGAN

[14]). They both adopted the GANs framework and used perceptual loss during training. We will

show that enhancing their initial training loss with the SA loss leads to a subsequent augmentation

in the visual quality of the output results. The results comparison will be shown in Section 1.4.

1) SA loss for single image super-resolution model: ESRGAN adopts the GAN framework.

Accordingly, the model comprises two networks: a generator and a discriminator. The generator’s

architecture is shown in Figure 1.5. It takes an LR image as input and outputs the corresponding

SR image. The discriminator’s architecture is shown in Figure 1.6. Its input is either an HR image
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or an SR image generated from the generator, and its output is the probability of whether the input

is a genuine HR image or otherwise. More details can be found in [13].

The original training loss used to train the ESRGAN contains the adversarial(GAN) loss, the

perceptual loss, and the pixel loss [13]:

Lossesr = αLGAN + Lpercep + Lpixel, (1.16)

and the pixel loss used here is:

l1w(x,Gθ(y), β1). (1.17)

It follows the definition from Equation 1.8, where x is the ground truth HR image, y is the cor-

responding LR image, and it is also the input of generator network G with trainable parameter θ.

Therefore Gθ(y) represents the output SR image. This pixel loss evaluates the L1 norm distance

between the super-resolved image Gθ(y) and the ground truth image x in the pixel space, and all

elements in the images are equally weighted. The coefficients assigned to the GAN and pixel loss

terms are represented as α and β, respectively. The coefficient for the perceptual loss term is fixed

to 1.

The new training loss we used to retrain the ESRGAN replaces the original pixel loss with the

proposed SA one and remains the same adversarial loss and perceptual loss used in [13]. Therefore,

the final SA training loss we used to train the model is defined as:

LossSA−esr = αLGAN + Lpercep + LSA−pixel, (1.18)
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and the SA pixel loss used here is:

l1w(x,Gθ(y), β11+ β2W (x)), (1.19)

which follows the definition of SA pixel loss from Equation 1.12. We name the model trained with

this SA training loss (Equation 1.18) the SA-ESRGAN.
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Figure 1.5: The ESRGAN’s generator architecture. It consists of a convolutional (conv) operation
applied to the input image, followed by 23 basic blocks and a conv layer. A long skip connection
is used, where the output feature maps will add with the output feature maps from the first conv
operation. After this, up-sampling and two more conv operations are conducted to obtain the final
SR image output. The basic block used here is Residual-in-Residual-Dense-Block (RRDB), which
combines the multi-level residual network and dense connections. [13]

2) SA loss for video super-resolution model: VSRResFeatGAN model also contains a gener-

ator and a discriminator. The generator’s architecture is shown in Figure 1.7. Since the VSRRes-

FeatGAN is used for video super-resolution task, it also takes temporal information in. Rather

than using a single frame, its generator takes five consecutive frames as input, which are the bicu-

bic interpolation on the LR frames at times t-2, t-1, t, t+1, and t+2. The resulting output is the

corresponding SR frame at the central time instance, t. The discriminator’s architecture is shown
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Figure 1.6: The ESRGAN’s discriminator architecture. It consists of conv, Leaky ReLU, and
batch normalization layers along the way, followed by two fully connected layers and a sigmoid
activation function to obtain a probability.[13]

in Figure 1.8. Its input is either an HR frame or an SR frame generated from the generator, and its

output is the probability of whether the input is a real HR frame or not. More details can be found

in [14].

The original training loss used to train the VSRResFeatGAN also contains three terms: the

adversarial(GAN) loss, the perceptual loss, and the pixel loss [14]:

Lossvsr = α1LGAN + α2Lpercep + Lpixel, (1.20)

and the pixel loss used here is:

γw(x,Gθ(Y ), β1), (1.21)

it follows the definition from Equation 1.9, where x is the ground truth HR frame. Y is the bicubic-

interpolated frames sequence, and it is also the input of the generator network G with trainable

parameter θ, and Gθ(Y ) represents the output SR frame at time t. This pixel loss evaluates the

Chabonnier norm distance between the super-resolved frame Gθ(Y ) and the ground truth frame

x in the pixel space, and all elements in the images are equally weighted. α1, α2, and β are the

coefficients for GAN, perceptual, and pixel loss terms.

Like what we have done with the SISR model (ESRGAN), the new training loss we used to
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retrain the VSRResFeatGAN replaces the original pixel loss with the corresponding SA one and

remains the same adversarial loss and perceptual loss used in [14]. Therefore, the final SA training

loss we used to train the model is defined as:

LossSA−vsr = α1LGAN + α2Lpercep + LSA−pixel, (1.22)

and the SA pixel loss used here is:

γw(x,Gθ(Y ), β11+ β2W (x)), (1.23)

which aligns with the definition of the SA pixel loss from Equation 1.13. We name the model

trained with this SA training loss (Equation 1.22) the SA-VSRResFeatGAN.

1.3 Experiments

This section shows the details of training Single Image Super-Resolution models, including ESR-

GAN and SA-ESRGAN, as well as the Video Super-Resolution models, comprising VSRResFeat-

GAN and SA-VSRResFeatGAN.

1.3.1 Datasets

The training dataset used for ESRGAN [13] and SA-ESRGAN is DIV2K [32], and the valida-

tion dataset used for them is Set14 [33]. The dataset used for VSRResFeatGAN [14] and SA-

VSRResFeatGAN is Myanmar video dataset [34]. Myanmar video dataset contains 59 video se-

quences, and we take 53 of them to make the training (80%) and validation (20%) datasets. The

rest 6 are used for testing. We followed the same data generation approaches described in [13] and

[14], respectively. All experiments are performed under the scale factor 4 between LR and HR
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feature map to obtain the final output of the residual block. In the end, one more conv operation is
conducted to obtain the final SR frame output at time t.[14]
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Figure 1.8: The VSRResFeatGAN’s discriminator architecture. It consists of conv, batch nor-
malization, and Leaky ReLU layers along the way, followed by one fully connected layer and a
sigmoid activation function to obtain a probability. [14]
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1.3.2 Training Process

To train the ESRGAN and SA-ESRGAN models, we first initialize their generators with the PSNR-

oriented pre-trained model, provided by the author of ESRGAN [13]. Such initialization facilitates

proper convergence during the following GAN-based training phase. Within the GAN-based train-

ing, the ESRGAN model’s generator is optimized using the loss function defined in Equation 1.16,

while the SA-ESRGAN model’s generator is optimized using the loss function defined in Equation

1.18. For both models, the learning rates for the generator and discriminator are initialized to 10−4,

then halved at [50k, 100k, 200k, 300k] iterations (k = 103). To guarantee fair comparisons, we set

the maximum training iteration number as 500k and use the minimum validation loss as the termi-

nation criterion for both models. The validation loss is computed by Equation 1.16 and Equation

1.18 on the validation dataset, respectively. The optimizer we use is Adam [35] with batch size 16.

The generator and discriminator are updated alternately.

The training processes of the VSRResFeatGAN and SA-VSRResFeatGAN models are simi-

lar. We first initialize the generator with the PSNR-oriented pre-trained model, provided by the

author of VSRResFeatGAN [14]. In the following GAN-based training process, for the VSRRes-

FeatGAN model, the generator is trained using the loss function in Equation 1.20, and for the

SA-VSRResFeatGAN model, the generator is trained using the loss function in Equation 1.22. For

both models, the learning rates for the generator and discriminator are set to 10−4. We set the

maximum training epoch number to 40 and also use the minimum validation loss as the training

termination criterion for both models. The validation loss is computed using Equation 1.20 and

Equation 1.22 on the validation dataset, respectively. The optimizer we use is Adam with batch

size 64. The generator and discriminator are updated alternately.
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1.3.3 Hyper-Parameters for the Loss Functions

For training the ESRGAN and VSRResFeatGAN models, we choose the same coefficients used

in [13] and [14] respectively: α = 0.005, β = 0.01 in Equation 1.16 and 1.17 when training the

ESRGAN model. α1 = 0.001, α2 = 0.998 and β = 0.001 in Equation 1.20 and 1.21 when training

the VSRResFeatGAN model.

During the training of the SA-ESRGAN and SA-VSRResFeatGAN models, we have deter-

mined that when the SA loss component constitutes approximately 15% of the total loss value,

it exhibits the ability to exert a substantial and appropriate influence on the generator, leading to

the production of sharper and more distinct edges in the generated outcomes. Based on this ob-

servation, we have set the coefficients for the loss terms as follows: for SA-ESRGAN model, the

generator is trained employing the loss outlined in Equation 1.18 and Equation 1.19, with α1 =

0.005, β1 = 0.01, and β2 = 20. For SA-VSRResFeatGAN model, its generator is trained using

the loss function outlined in Equation 1.22 and Equation 1.23, with α1 = 0.001, α2 = 0.998 and

β1 = 0.001, and we set β2 = 5 when using the local variance edge extraction method to compute

weight matrix W , while β2 = 1.5 when using the canny edge extraction method. In both models,

β2 governs the influence of the SA loss component; its values are decided experimentally so that

the SA loss part took up around 15% of the total training loss, respectively.

1.4 Results

In this section, we show the impact of the proposed SA loss on the outcomes. By doing so,

we will provide both qualitative and quantitative comparisons between the SISR model and the

VSR model, trained both with and without the SA loss, i.e., ESRGAN vs. SA-ESRGAN and

VSRResFeatGAN vs. SA-VESRResFeatGAN.

In Table 1.2 and 1.1, we show the comparison of ESRGAN and SA-ESRGAN in terms of
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PSNR, SSIM, and the Learned Perceptual Image Patch Similarity (LPIPS) [36] metrics for VidSet4

and Myanmar test datasets. LPIPS is a new standard to compare the perceptual similarity between

a reference image and a distorted one with a CNN. The author found out this perceptual distance

provides results consistent with human judgment [37]. We also observed that it was consistent with

the human’s opinion regarding the sharpness of the produced super-resolved images. For the SA-

ESRGAN model, based on the edge detection algorithm used to compute the weight matrix W (x)

in Equation 1.19, we categorize the model into SA-ESRGAN (lv) and SA-ESRGAN (canny), i.e.,

they are trained with the local variance-based SA loss and the Canny detection–based SA loss,

respectively. We can see that for the Vidset 4 test dataset (Table 1.2), the SA-ESRGAN models

surpass the ESRGAN model across all metrics. Similar trends emerge for the Myanmar test dataset

(Table 1.1), where all SA-ESRGAN models outperform the ESRGAN model in terms of the LPIPS

metric. This fact verifies our proposal that using the SA loss for the training can help guide the

SISR model to generate images with higher perceptual quality. The qualitative comparisons are

shown in Figure 1.9-1.10. We can see that the SA-ESRGAN yields more precise super-resolution

of edges and fine details with reduced noise than the ESRGAN.

Similarly, for the VSR models, we show the quantitative comparison of VSRResFeatGAN

and SA-VSRResFeatGAN in Table 1.3 and 1.4. Again, SA-VSRResFeatGAN models surpass the

VSRResFeatGAN model almost for all the metrics’ values. Especially for the LPIPS metric, it

consistently improves after SA loss is used, which verifies our proposal that the use of the SA loss

during training can guide the VSR model towards generating images with higher perceptual quality

and better visual feelings. The qualitative comparisons are shown in Figure 1.11. We can observe

that the SA-VSRResFeatGAN generates more accurate super-resolved edges and fine details with

less noise compared with the VSRResFeatGAN.
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PSNR SSIM LPIPS
ESRGAN 29.13 0.8445 0.0398

SA-ESRGAN (lv) 29.23 0.8444 0.0387
SA-ESRGAN (canny) 29.75 0.8561 0.0357

Table 1.1: Metrics comparison between ESRGAN, SA-ESRGAN (local-variance), and SA-
ESRGAN (canny). The results are evaluated on Myanmar testing Dataset for scale factor 4.

PSNR SSIM LPIPS
ESRGAN 21.53 0.6349 0.1022

SA-ESRGAN (lv) 22.14 0.6581 0.0953
SA-ESRGAN (canny) 22.32 0.6674 0.0955

Table 1.2: Metrics comparison of ESRGAN, SA-ESRGAN (local-variance), and SA-ESRGAN
(canny) in PSNR, SSIM, and LPIPS metrics. For the LPIPS, smaller is better. The results are
evaluated on VidSet4 Dataset for scale factor 4.

PSNR SSIM LPIPS
VSRResFeatGAN 24.71 0.7199 0.1045

SA-VSRResFeatGAN (lv) 25.09 0.7344 0.0992
SA-VSRResFeatGAN (canny) 24.74 0.7192 0.1027

Table 1.3: Metrics comparison of VSRResFeatGAN, SA-VSRResFeatGAN (local-variance), and
SA-VSRResFeatGAN (canny) in terms of PSNR, SSIM, and LPIPS metrics. For the LPIPS,
smaller is better. The results are evaluated on VidSet4 Dataset for scale factor 4.

PSNR SSIM LPIPS
VSRResFeatGAN 32.22 0.8887 0.0545

SA-VSRResFeatGAN (lv) 32.48 0.8918 0.0540
SA-VSRResFeatGAN (canny) 32.36 0.8890 0.0539

Table 1.4: Metrics comparison between VSRResFeatGAN, SA-VSRResFeatGAN (local-
variance), and SA-VSRResFeatGAN (canny). The results are evaluated on Myanmar testing
Dataset for scale factor 4.
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1.5 Conclusion

In this chapter, we introduced the Spatially Adaptive (SA) loss for training SR models, incorpo-

rating spatial information extracted from input images/video frames into the training process. We

specifically emphasize edges as a crucial spatial feature. Models trained with the SA loss exhibit

the ability to produce super-resolved images/video frames with improved perceptual quality.

We have shown that the proposed method is independent of the edge information extraction ap-

proach, as long as it effectively detects the edges. Utilizing extracted edge information to construct

the SA loss and retraining the SR model accordingly consistently yielded improved results. These

enhancements were evident in better metric values, sharper edges, improved reconstruction of fine

details, and a notable reduction in noise. Additionally, we have shown that the SA loss benefits

both SISR and VSR GAN models, consistently enhancing their performance. This underscores

the adaptability and effectiveness of our proposed SA loss across various scenarios, guiding SR

models toward generating visually appealing outcomes.
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Figure 1.9: Qualitative comparison of ESRGAN, SA-ESRGAN(lv), and SA-ESRGAN(canny).
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Figure 1.10: Qualitative comparison of ESRGAN, SA-ESRGAN(lv), and SA-ESRGAN(canny).
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Figure 1.11: Qualitative comparison of VSRResFeatGAN, SA-VSRResfeatGAN(lv), and SA-
VSRResfeatGAN(canny).
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CHAPTER 2

COMPOSITE DISCRIMINATORS FOR GAN-BASED VIDEO SUPER-RESOLUTION

Besides including the spatial information through training loss, we also discovered to incorporate

it through the model framework. We design a second discriminator tailored to discern edge in-

formation. By employing this additional discriminator, we exert more pressure on our generator

to produce edge information closer to reality. The alterations in the loss function are primarily

in the adversarial losses due to the inclusion of the second discriminator, which focuses specifi-

cally on the edges of input images. (Please note that this chapter revisits text and figures from our

previously published work [38].)

2.1 Introduction

One of the fundamental problems in image and video processing is Video Super-Resolution (VSR),

aiming to restore High-Resolution (HR) video sequences from Low-Resolution (LR) counterparts.

Recent advancements in Super-Resolution (SR) suggest that learning-based methods yield more

realistic images compared to model-based techniques [39], [40]. Deep Neural Networks have

emerged as the preferred tool for these learning-based approaches [41]–[43].

Generative Adversarial Networks (GANs) [44], capable of learning complex distributions from

samples, have gained attention in the VSR domain. Researchers adopt GAN-based training over

classical Mean Squared Error (MSE) to encourage networks to produce solutions resembling nat-

ural videos [45]–[48]. Many GAN-based approaches integrate feature-based perceptual losses to

enhance the perceptual quality of frames. Furthermore, recent GAN-based VSR methods enhance

their performance by integrating useful information, such as spatial [47] or temporal information
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[45], [46], [48], during training. For instance, findings from [47] demonstrate that integrating

spatial information into the training objective function (pixel and perceptual losses) enhances the

sharpness of frames while reducing artifacts and noise. These approaches typically augment the

training objective function by either adding or enhancing loss terms [46], [47], or by refining the

generator network [45], [46], [48]. No published findings in VSR have attempted to integrate

this information by enhancing the discriminator’s capability significantly. GAN-based VSR ap-

proaches have predominantly employed the traditional two-player GAN framework introduced in

[44], comprising a single generator and discriminator in a min-max game. Recent GAN studies

[49], [50] have proposed alternative GAN frameworks, demonstrating their effectiveness in over-

coming several modeling limitations of traditional GANs.

In this chapter, we introduce a novel GAN framework for addressing VSR challenges. Dur-

ing training, a composite discriminator is employed. The model leverages spatial information to

generate frames with enhanced edge reconstruction and visual quality. The convergence of the pro-

posed approach is established. By training with this new GAN framework, we outperform current

state-of-art methods [45], [47], [48] which are trained using the traditional GAN framework with

no additional spatial information included in the discriminator.

2.2 Proposed Method

The model proposed in [45], [48] sometimes produces SR frames with blurred edges and noise in

high-frequency areas. A limitation of this model is that the spatial activity of image regions is not

specifically taken into account during training. It is, however, clear that edge information plays a

very important role in the quality of the reconstruction and that edge regions are more difficult to

super-resolve than flat-regions. We propose the use of a composite discriminator which includes

a novel edge sharpness enforcing collaborative discriminator to obtain realistic edges. Our model
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makes use of high frequency information extracted from frames in our training datasets and forces

the generator to specifically take into account edge (high spatial activity) areas. By doing so, the

generator is forced to produce crisper edges and fewer artifacts.

2.2.1 A Composite Discriminator

GANs [44] learn to generate samples from a specific data distribution through an adversarial train-

ing procedure. In the traditional GAN approach for image generation, a generator network learns

to generate an image given a latent random vector z at its input. The learning of the generator is

guided by an auxiliary network, a discriminator, which is simultaneously trained to distinguish be-

tween images generated by the generator and images from the training dataset. Given a generator

G(z), with latent variable z to be defined later, the discriminator is trained to distinguish between

real and fake images, i.e., it outputs D(x) = 1 when x is sampled from the training dataset of

natural images and D(G(z)) = 0 when the images are produced by the generator. On the other

hand, the generator is trained to make the discriminator believe that its generated images G(z) are

real, i.e., trained to assign to the discriminator output a probability D(G(z)) = 1. As a result of

this adversarial training, the generator eventually converges to a solution which the discriminator

fails to identify as ”fake”, which generally implies successful learning of the image manifold by

the generator.

In [45], [48] we propose the use of the powerful generative property of GANs in VSR. Using

GAN-based instead of MSE-based training enables the models to obtain frames of much higher

perceptual quality. The original GAN setting was modified by inputting the sequence of input

low-resolution frames Y to the generator instead of a random vector z. This is similar to the use

of GANs in still image super-resolution [51], where a single LR image is provided as input to the

generator. The generator is adversarially trained to super-resolve the input LR frames in a way that
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the discriminator cannot distinguish between the reconstructed HR frames, x̂ = G(Y) and real HR

images. The GAN formulation first introduced in [44] was adapted to VSR by solving:

min
θ

max
ϕ

LGAN(ϕ, θ) = Ex[log Dϕ(x)]

+ EY[log(1−Dϕ(Gθ(Y)))], (2.1)

where x is the center HR frame of dimensions N × N , Y is a short sequence of LR input frames

around its LR version y, each of dimensions N × N (notice that the LR images are bicubically

upsampled), Dϕ is the discriminator network with trainable parameters ϕ and Gθ is the generator

network with trainable parameters θ, where here these parameters correspond to the learnable

convolutional kernels of our networks.

The above model is the basis of all the so far based GAN formulation, but a close look at the

optimization function indicates that the better discrimination could be achieved by using a model

of the form

min
θ

max
ϕ,ϕ′

LGAN(ϕ, ϕ
′, θ) = Ex∼px(x)[log(D

λ
1ϕ(x)D

1−λ
2ϕ′ (x))]

+ EY∼pY(Y)[log((1−D1ϕ(Gθ(Y)))
λ(1−D2ϕ′(Gθ(Y)))

1−λ)], (2.2)

where two different discriminators D1ϕ and D2ϕ′ with parameters ϕ and ϕ′, respectively, are used

and 0 < λ < 1.

Notice that following the approach in [44], it can be easily shown that fixing θ

max
ϕ,ϕ′

LGAN(ϕ, ϕ
′, θ)

= Ex∼px(x)

[
log

px(x)

px(x) + pg(x)

]
+ Ex∼pg(x)

[
log

pg(x)

px(x) + pg(x)

]
, (2.3)
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where pg(x) is the probability distribution induced on x by Y. Furthermore, following the approach

in [44] it can be shown that

D1ϕ(x) = D2ϕ′(x) =
px(x)

px(x) + pg(x)
. (2.4)

and also that the global minimum on θ in Eq. (2.2) is achieved when and only when pg(·) =

px(·). However, the network architecture ofD1ϕ(x) will prevent it from always satisfying Eq. (2.4).

For instance, this discriminator may concentrate on detecting important image properties but may

not be capable of detecting all of them. This is similar to the case when prior models are used

to restore images. For instance, horizontal filters are used to regularize horizontal differences but

these filers are insensitive to vertical ones. In GAN terminology, a discriminator may be good at

detecting certain fake note properties (or even be good on some notes) but not all of them. In this

chapter we approach the possible limited capabilities ofD1ϕ by introducing a second discriminator

that, in our case, concentrates on the quality of high frequency areas and, in particular, on producing

realistic edges. To do so we redefine D2ϕ′(·) = D2ϕ′(W ·), where W denotes a high pass filter.

Notice that other definitions of D2ϕ′(·) are possible, but we will concentrate here on recovering

high spatial activity areas.

Let us now provide a graphical description of our collaborative model. In Fig. 2.1, the W

operator is a spatial information extractor. We use the method illustrated in [52][47] to define the

W operator, which is consistent with the

masking property of the human visual system, according to which noise is visible in flat regions

but not visible at edges. The output of the W operator is a weighted image (edge focusing map),

where pixels in areas of high spatial activity, like edge regions, have much larger values than those
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Figure 2.1: The proposed model.

in flat regions (in this work, all the pixel values are normalized to the range [0,1] during training).

In the rest of the chapter, the weighted image generated after the application of operator W will be

simply referred to as the edge map.

We adopt the VSRResNet architecture proposed in [45], [48] as our generator. The architecture

is shown in Fig. 2.2. It is based on 15 residual blocks, each block containing two convolutional

layers with kernels of size 3 by 3, with a Rectified Linear Unit (ReLU) activation function after

each convolution step.

We adopt the same architecture for both discriminators D1ϕ and D2ϕ′ (used in [48]), shown

in Fig. 2.2. The network is composed of three convolution layers followed by a fully connected

layer and a sigmoid operation. However, they are provided with different inputs. The input to

discriminator D1ϕ are super resolved and HR frames, while the input to discriminator D2ϕ′ are the

corresponding edge maps of the super resolved and HR frames. Besides of fooling the original

discriminator D1ϕ, the generator has also to fool the discriminator D2ϕ′ , so the edge map of the

generated super resolved frame has to be realistic, close to the edge map of its corresponding

HR frame. As a result, generated frames have more accurate edges with less noise and fewer
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Figure 2.2: The proposed architecture for the generator (first row) and discriminator (second row)
[48]

artifacts and both discriminators collaborate to obtain better images. We name our proposed model

the Collaborative Discriminator GAN (CoDiGAN), when applied to VSR we will denote it by

VSRCoDiGAN.

2.2.2 Pixel and Feature Losses

To regularize undesired artifacts that may escape the collaborative model, similar to Chapter 1, we

use two distance-based regularizers, defined in pixel and feature spaces, respectively.

Let us consider the Charbonnier loss, defined as

γ(u, v) =
∑
k

∑
i

∑
j

√
(uk,i,j − vk,i,j)2 + ϵ2, (2.5)

where u and v are multichannel images with elements uk,i,j and vk,i,j , respectively, where k de-

notes channel (for instance, k = 1 for a gray-scale image and k = 1, 2, 3 for a color image), i, j
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denotes pixel location and ϵ > 0. The pixel-wise loss only depends on low-level pixel informa-

tion, and it is defined as the Charbonnier loss of the difference of two frames in pixel space, that

is,
∑

(x,Y)∈T γ (x,Gθ (Y)), where x and Y are sampled from the training dataset T. The percep-

tual loss in feature space computes differences between high-level image feature representations

extracted from pre-trained convolutional neural networks. In this chapter, we choose our feature

space to be the representation space obtained from extracting the feature maps from the third and

fourth convolution layer of the VGG network defined in [53], denoted as V GG (·) in this chap-

ter. Therefore, the feature loss is defined as
∑

(x,Y)∈T γ (V GG (x) , V GG (Gθ (Y))). In the next

section, we show the final loss for training the generator.

2.2.3 Final Loss for Generator

Combining the losses defined in the previous sections, our generator has to effectively minimize

adversarial losses together with pixel and feature losses, thus our final loss function becomes:

Lfinal(θ) = α1 [EY [− logD1ϕ (Gθ (Y))− logD2ϕ′ (W (Gθ (Y)))]]

+ α2

∑
(x,Y)∈T

γ (x, Gθ (Y))

+ (1− α1 − α2)
∑

(x,Y)∈T

γ (V GG (x) , V GG (Gθ (Y))) , (2.6)

where 0 < α1, α2 and α1 + α2 < 1, We have fixed λ to 1/2. In the next section, we show that this

model improves the quality of the super resolved video.
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2.3 Experiments

We synthesized the training dataset of HR/LR-sequence pairs from the Myanmar video sequence.

Our training dataset consists of nearly 1 million pairs, where each sample in the training dataset

is composed of five extracted 36 × 36 LR patches at times t − 2, t − 1, t, t + 1, and t + 2,

and its corresponding 36 × 36 HR patch at time t. The LR frames were computed using bicubic

downsampling followed by bicubic upsampling to bring them to the same spatial extent as the

original HR patch.

To ensure convergence of generator and discriminator loss functions, it is critical for the gener-

ator network to start at a reasonable θ at the beginning of the training [48]. Thus, prior to beginning

the adversarial training, we first trained the generator network for 100 epochs with the traditional

pixel based MSE loss using the ADAM [54] optimizer and a batch size of 64. For this pre-training,

the initial learning rate was set to 10−3 and it was then further divided by a factor of 10 at the 50th

and 75th epochs of the training. We train our generator for the scale factor 3. Using the weights of

this pre-trained generator as initial weights, we trained our spatially adaptive collaborative GAN

model with the loss functions defined in (2.6) for 30 epochs, setting the learning rate to 10−4 for

the generator and both discriminators. The weight decay was set to 10−3 for the discriminators

and 10−4 for the generator. We use the ADAM [54] optimizer and a batch size of 64. The values

of α1 and α2 used in (2.6) were determined experimentally. We found their optimal values to be:

α1 = 0.0005, α2 = 0.001. The parameter ϵ in (2.5) is set to 0.001. We found out that 30 epochs

were appropriate for our model to converge.
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(a) Ground Truth

(b) VSRResFeatGAN

(c) SA-GAN

(d) VSRCoDiGAN

Figure 2.3: Qualitative comparison of results obtained by VSRResFeatGAN [48], SA-GAN [47],
and VSRCoDiGAN on scale factor 3. The ground truth frames are shown in Fig. 2.3(a).



54

2.4 Results

As we have already indicated, we trained our model on the Myanmar dataset. In order to check

whether our model could also work well in different datasets, we tested it on the VidSet4 dataset

[55], a commonly used dataset for testing VSR models, which contains 4 scenarios.

We compared our proposed VSRCoDiGAN model with the current state-of-the-art video super-

resolution models for VidSet4 test dataset. More specifically, we compared it with VSRResFeat-

GAN [48] which uses a similar adversarial training approach as ours but with a single discrimi-

nator, that is, without explicitly using spatial information into account. Our second model used

for comparison is the spatially adaptive GAN (SA-GAN) for the VSR problem [47], which incor-

porates spatial information into pixel and feature losses and is trained using the traditional single

discriminator GAN framework.

Table 2.1: PSNR and SSIM comparison with state-of-the-art VSR models on the VidSet4 dataset
for scale factor 3.

VSRResFeatGAN SA-GAN VSRCoDiGAN
PSNR/SSIM PSNR/SSIM PSNR/SSIM

calendar 23.40/0.8033 23.59/0.8130 23.63/0.8086
city 27.23/0.7832 27.48/0.7925 27.57/0.7869

foliage 25.29/0.7544 25.74/0.7754 26.37/0.7974
walk 30.20/0.9182 30.40/0.9213 30.64/0.9230

Average 26.53/0.8148 26.80/0.8256 27.06/0.8289

Table 2.1 reveals that both VSRCoDiGAN and SA-GAN outperform the state-of-the-art VS-

RResFeatGAN model in all scenarios (calendar, city, foliage, walk). This suggests that including

spatial information into training helps to improve the quality of generated frames. Furthermore,

we observe that our VSRCoDiGAN model performs better than SA-GAN in most cases, which

indicates that it is beneficial to formulate the training with collaborative discriminators to explictly
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incorporate high frequency spatial information in the learning process. Also, as table 2.1 indicates,

our method improves the visual quality of the generated frames for all scenarios. A qualitative

comparison is shown in Fig. 2.3. Considering the zoomed in regions in the frames (numbers and

letters in the first column and the star in the second column), we can clearly observe that our

VSRCoDiGAN model generates more accurately super-resolved edges (closer to those in ground

truth frames) with fewer artifacts and less noise compared to VSRResFeatGAN and SA-GAN. We

conclude from these quantitative and qualitative results that including a spatially adaptive discrim-

inator to incorporate spatial information into the GAN training has a significant positive impact on

the quality of the resulting frames.

2.5 Conclusion

In this chapter, we have shown that our VSRCoDiGAN model, which incorporates a novel spatially

adaptive collaborative discriminator to explicitly integrate high-frequency spatial information into

training. The model exhibits significantly fewer artifacts and more accurate edges. We established

the zero-sum game property of our model and provided justification for its selective discrimination

approach.
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CHAPTER 3

ATMOSPHERIC TURBULENCE CORRECTION VIA VARIATIONAL DEEP

DIFFUSION

From this chapter, we begin to delve into the atmospheric turbulence correction task. Atmospheric

turbulence is a common phenomenon in our daily experiences. For instance, when driving on a

hot day, distant landscapes may appear blurred and distorted. It results primarily from turbulent

airflow caused by the interaction of hot and cold air masses. When light traverses these regions, it

becomes distorted. Subsequently captured by detectors, such as human eyes or cameras, resulting

images exhibit blurring and distortion. Such distortions adversely impact subsequent computer

vision tasks, including human or object detection and recognition. Our objective is to mitigate

atmospheric turbulence effects by producing cleaner images or videos, thereby improving the per-

formance of the following vision tasks. (Please note this chapter restates text and figures from our

previously published work [56]).

Figure 3.1: Atmospheric turbulence. Adapted from the internet.
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3.1 Introduction

Atmospheric turbulence, a common phenomenon in daily life, iprimarily arises from the uneven

heating of the Earth’s surface. This phenomenon can lead to significant blur and perceptual degra-

dation. Consequently, it can significantly affect the performance of subsequent downstream vision

tasks, such as detection, recognition, and so on. Unlike other imaging inverse problems, atmo-

spheric turbulence degradation contains a mixture of geometrical distortion, spatially variant blur,

and noise, which makes AT more challenging to mitigate. Earlier works in AT correction mainly

focus on optics and lucky imaging algorithms [57]. In recent years, with the development of deep-

learning (DL) algorithms for solving various inverse problems [58], some works have proposed

DL-based AT removal methods [59], [60]. The availability of a fast AT simulation algorithm that

preserves essential turbulence statistics, as presented in [61], has made large-scale data-driven DL

training for AT correction feasible [59]. In this chapter, we also adopt the simulation method in

[61] to construct our training and testing datasets.

Recently, deep diffusion models have emerged for image generation [62]. As a likelihood-

based algorithm, this algorithm exhibits greater stability during training compared to generative

adversarial networks (GAN) and does not suffer from mode collapse. Diffusion models have

proven successful in diverse vision tasks, including image synthesis [63] and super-resolution [63],

[64]. A recent study applied diffusion models for restoring faces affected by atmospheric turbu-

lence [65]. The authors employed a pre-trained diffusion model from the super-resolution task and

adapted it for face atmospheric turbulence (AT) correction. Nevertheless, no prior research has ex-

plored the use of diffusion models in generic scene atmospheric turbulence (AT) correction. In this

chapter, we propose employing a diffusion model to eliminate atmospheric turbulence in generic

scenes, yielding visually superior results. Moreover, in contrast to prior methods [64], [65] that
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only rely on the input low-quality image for guiding diffusion models, we leverage a variational

inference image restoration framework [66] to learn latent features relevant to task-specific prior

information from both the input and the degradation process. Subsequently, we incorporate this

acquired knowledge as a conditioning factor into the diffusion models, enabling them to adapt their

behavior based on both the degraded input image and the task-specific prior information, thereby

enhancing their performance.

3.2 Proposed Method

In this section, we present the proposed AT-VarDiff model. We begin by explaining the conditional

denoising diffusion process of our model in Section 3.2.1. Then, we introduce the variational

framework used to obtain the condition encoding the task-specific information in Section 3.2.2.

Finally, in Section 3.2.3, we illustrate the inference during testing.

3.2.1 Conditional Diffusion Model

Our training dataset containsN image pairs {yi, xi}Ni=1, where yi represents the AT degraded image

and xi the corresponding ground-truth image. As shown in Figure 3.1, our model aims at learning

the data distribution p(x|y, c) by a stochastic iterative refinement process, which maps the input

degraded image y and the learned latent prior information c to the ground-truth image x. The

forward/diffusion process (from right to left) gradually adds Gaussian noise, denoted by q(xt|xt−1).

Our goal is to reverse the diffusion process (from left to right) by gradually recovering the image

from the input Gaussian noise with conditions, which corresponds to learning the reverse process

of a fixed Markov Chain of length T conditioned on y and c. More specifically, starting from a

pure Gaussian noise image xT ∼ N (0, I), the model learns the conditional transition distribution

pθ(xt−1|xt, y, c) and iteratively denoises the image for T steps, generating the target image x0 in
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the end, such that x0 ∼ p(x|y, c).

The overall training framework of the AT-VarDiff model is shown in Figure 3.3. Following

the model design in denoising diffusion probabilistic model (DDPM) [62], the architecture of our

conditional diffusion module is a U-Net [67] based on a wide ResNet [68], denoted as ϵθ. Training

is performed by optimizing the usual variational bound on the negative log-likelihood, and the

corresponding objective function can be simplified to [62], [63]:

Ldiff = Ex,y,c,ε,t[∥ϵ− ϵθ(xt, t, y, c)∥22], (3.1)

with t is uniformly sampled from {1, ..., T}. According to Equation 1, ϵθ takes as input the noisy

target image xt, time step t, the AT degraded image y, and the learned latent prior information

c to provide an estimate of the noise ϵ. The details of obtaining c are discussed in the following

Section.

3.2.2 Variational Inference Framework

!!~#(!|&, ()!"#$!"!%~*(0, ,)

#&(!"#$|!" , &, ()
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Figure 3.2: Conditional denoising diffusion process.

The current conditional diffusion models used for solving image restoration tasks like super-

resolution [63], [64], and face AT correction [65] only use the input degraded image as the condi-

tion. No work in the literature has employed any other task-specific prior information or domain-

knowledge to further enhance the conditioning progress. According to [66], providing additional
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Figure 3.3: Training framework of AT-VarDiff model.

information can be interpreted as dividing a complex distribution into simpler sub-distributions

that will eventually make network training easier and the results more accurate, since the number

of possible solutions would be reduced. In this chapter, we propose to use a variational inference

framework to extract the latent task-specific prior information from the input and the degradation

process and use the extracted feature as an additional condition to guide the diffusion model.

As shown in Figure 3.3, we refer to a variational autoencoder (VAE) based framework [66] to

learn the latent feature c from the input degraded image y and the AT degradation parameters. To

achieve this goal, the objective we use here contains three parts: the VAE loss, the adversarial loss,

and the AT degradation parameters’ loss.

The VAE loss contains the fidelity term and the reconstruction term, that is,

Lvae = DKL(qeψ(c|y)||p(c)) + ||y − ŷ||22. (3.2)

The first term is the fidelity term; it measures the fidelity of c extracted from the encoder eψ, whose
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Figure 3.4: Testing framework of AT-VarDiff model.

input is the degraded image y. It is represented as the KL divergence of the approximate posterior

qeψ(c|y) from the prior p(c). We select the prior p(c) as a standard Gaussian distribution. The

second term is the reconstruction term, and we adopt the pixel-wise mean squared error (MSE)

distance between the input degraded image y and the output ŷ of the decoder dφ. In addition, we

utilize a GAN [69] to better learn the input degraded image distribution, in which an additional

discriminator is jointly trained to discriminate the generated ŷ and the true degraded image y.

Therefore, we also include an adversarial loss: Ladv = −log(D(ŷ)), and the corresponding loss

for the discriminator D is: Ldisc = −log(D(y))− log(1−D(ŷ)).

Finally, we would like the latent feature c to contain knowledge from the AT degradation pro-

cess. Therefore, we add a degradation loss defined as:

Ldegrad = ||ϕat − ϕ̂at||22, (3.3)

where ϕat represents the ground-truth AT degradation parameters from the pre-trained AT simula-

tor [61]. ϕ̂at = Param(c) represents the estimated AT degradation parameters, and is the output

of a small network (parameter estimation module) Param(·) taking c as input, as shown in Figure

3.3.
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Therefore, the final objective used for training our AT-VarDiff model is defined as

L = Ldiff + λ1Lvae + λ2Ladv + λ3Ldegrad, (3.4)

where λ1, λ2, λ3 are hyper-parameters.

3.2.3 Inference

The testing framework of our model is shown in Figure 3.4. During testing, we followed the

DDPM’s denoising sampling procedure (Algorithm 2 in [62]) conditioned on the input degraded

image y and the learned task-specific latent feature c to generate the output restored image. During

both training and testing, we perform the conditioning via concatenation, and we set T = 1000 for

all the experiments.

3.3 Experiments

Table 3.1: LPIPS, FID & NIQE metrics comparison on simple-DDPM, AT-VarDiff, and AT-DDPM
[65].

AT-DDPM [65] Simple-DDPM AT-VarDiff (Ours)

LPIPS ↓ 0.2150 0.1923 0.1094
FID ↓ 80.05 60.87 32.69

NIQE ↓ 10.15 6.65 6.46

We use the AT simulator in [61] to simulate the effect of AT on the REDS dataset [70], and the

hyper-parameter of the simulator (D/r0) is chosen randomly in the range [0.5, 2.0]. Our synthetic

training dataset has one million AT degraded and clean image pairs. We use another 2500 synthetic

AT degraded images as the testing dataset.
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For our encoder module, we use 5 2D-convolution (2D-conv) layers with ReLU activation

and one down-sampling layer after the first conv layer. For the decoder module, we use 5 2D-conv

layers with ReLU activation and one up-sampling layer after the first conv layer. For our parameter

estimation module, we simply use 2 2D-conv layers with LeakyReLU activation. The discriminator

is formed by 11 2D-conv layers with LeakyReLU activation and spectral normalization [71].

During training, we augment the training data by random cropping (160×160), random verti-

cal and horizontal flips, and random transposing. We train our model for 200 epochs with 1500

iterations per epoch, and we set the batch size to 16. We use the Adam optimizer [35] with a

weight decay of 0, and we set the initial learning rate to 1e− 4 and gradually reduced it to 5e− 6

during training utilizing the cosine annealing schedule [72]. The hyper-parameters λ1, λ2, and λ3

used in our final training objective (Equation 3.4) are set to 0.1, 0.1, and 0.5, respectively. All the

experiments are performed on a single NVIDIA Quadro RTX 8000 GPU.

3.4 Results

To evaluate our model, we first the Fréchet Inception Distance (FID) [73] and the Learned Percep-

tual Image Patch Similarity (LPIPS) [36] metrics, which are measures of similarity between two

sets of images. We also use the Naturalness Image Quality Evaluator (NIQE score) [74] to evaluate

how likely the generated image is to be a naturally occurring one. These three metrics are shown

to correlate well with the human judgment of visual quality. Lower metric values indicate higher

image quality. In Table 3.1, we show the quantitative results of our proposed AT-VarDiff model

and compare it to using a pure conditional DDPM-based diffusion model like the approach used

in [65], i.e., this simple-DDPM model is only built with the conditional diffusion module and is

only conditioned on the input degraded image y. We can see that our AT-VarDiff model improves

on all metrics, demonstrating the effectiveness of our proposed variational conditional diffusion
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Figure 3.5: Visual comparisons of AT-DDPM [65], simple-DDPM, and AT-VarDiff.

framework. We also compare with the pre-trained AT-DDPM model from [65] in the table. Our

proposed approach consistently exhibits much better visual clarity, far fewer artifacts, and higher

quality across the testing dataset. A visual example can be seen in Figure 3.5.

3.5 Conclusion

In this chapter, we propose the variational deep diffusion model AT-VarDiff to restore images

degraded by atmospheric turbulence. Our approach utilizes the diffusion process to mitigate at-

mospheric turbulence (AT) in generic scenes. Additionally, we employ a variational inference

framework to extract latent task-specific prior information from both the input and the AT degra-

dation. Furthermore, we incorporate the extracted features as an additional condition to guide the

diffusion model’s behavior. We demonstrate that our proposed method yields superior results and

outstanding visual quality, outperforming the current state-of-art.
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CHAPTER 4

REAL-WORLD ATMOSPHERIC TURBULENCE CORRECTION VIA DOMAIN

ADAPTATION

Up to this point, our AT correction model has been trained using synthetic data, and there’s always

a performance drop when applying the model to another dataset, particularly when confronted

with real-world AT data. Additionally, in real-world scenarios, there is no ground-truth clean

data available for AT-degraded videos. Consequently, to mitigate the performance degradation of

our model on real data and to maximize the utilization of labeled synthetic datasets, we employ a

domain adaptation method and propose a real-world AT mitigation model. (Please note this chapter

restates some text and figures from our current under-reviewed conference paper [75].)

Synthetic high/low quality 
video frame pairs

Real-world low quality video 
frames

Figure 4.1: Domain adaptation framework.
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4.1 Introduction

Atmospheric turbulence (AT) introduces numerous challenges such as image/video distortion, blur-

ring, and diminished accuracy in subsequent vision tasks like object detection, recognition, and

tracking. For instance, the task of identifying a person appearing in an image or video is impor-

tant in many surveillance applications, and such surveillance tasks usually involve imaging over

long distances, which are more susceptible to the effects of atmospheric turbulence [76], [77].

Therefore, multiple methods have been studied in the literature for AT mitigation. Early attempts

at AT correction centered on adaptive optics-based methods [78]–[80], which typically demand

costly and intricate hardware setups. Therefore, numerous image-processing-based methods were

also developed [57], [81]–[83]. These methods often involve fusing complementary clear regions

across frames using the lucky fusion process, followed by deconvolution to restore the output [76].

Recently, with the development of deep-learning (DL) algorithms for solving various inverse

problems [31], an increasing number of studies have proposed DL-based AT removal methods.

A deep learning-based approach is introduced in [84] employing an effective nearest neighbors-

based method for registration and an uncertainty-based network for restoration. A physics-inspired

transformer model for imaging through atmospheric turbulence is introduced in [59]. The authors

in [85] presented a multi-frame image restoration transformer tailored for addressing atmospheric

turbulence. The authors in [60] employ a two-stage deep adversarial network aimed at minimizing

atmospheric turbulence, where the first stage focuses on reducing geometrical distortion, while

the second stage targets minimizing image blur. A method leveraging well-trained Generative

Adversarial Networks (GANs) as effective priors, learning to restore images within the semantic

space context is proposed in [86]. Reference [87] proposes a variational deep-learning approach

for video atmospheric turbulence mitigation. Finally, references [56], [65], [88] propose diffusion-
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based models for atmospheric turbulence restoration and generate high-quality images. All these

current models are trained using synthetically generated data and tested on synthetic or real-world

data. The performance of the existing models always decreases when applied to real-world images

or videos. Therefore, motivated by the success of domain adaptation techniques in real-world im-

age super-resolution and blurring tasks [89]–[91], we propose in this chapter to employ domain

adaptation to train the model using a combination of synthetic and real-world data. As shown in

Figure 4.1, we use a teacher-student framework and perform knowledge transfer from supervised

learning to unsupervised learning. The teacher network is trained with a synthetic dataset con-

taining simulated AT degraded frames paired with their corresponding ground-truth clean frames,

enabling supervised learning. The student network is only trained with the AT degraded dataset

from the real world, and no ground-truth clean frames are used, therefore the learning is unsuper-

vised.

4.2 Proposed Method

In Section 4.2.1, we will first describe the design of the domain adaptation framework for our

real-world AT mitigation model along with the associated objective functions. In Section 4.2.2,

we will delve into the design of our generators and their associated objective functions. Lastly, the

summarized objective function during training, the training and testing procedures are outlined in

Section 4.2.3.

4.2.1 Domain Adaptation Framework

The framework of our real-world atmospheric turbulence mitigation (Real-ATM) model is depicted

in Figure 4.2. We employ a teacher-student (T-S) framework and facilitate knowledge transfer

from supervised to unsupervised learning. Specifically, the teacher network is trained using a
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synthetic dataset comprising simulated AT-degraded frames and their corresponding ground-truth

clean frames, thus learning in a supervised manner. The student network is trained solely on the

AT-degraded dataset from the real world, and there are no ground-truth clean frames for them.

We adopt the GAN-based [10] training to generate frames of high perceptual quality. First, for

training the teacher component, we utilize pairs of synthetic AT-degraded and clean frames. The

degraded frame yT is fed into the teacher generator and outputs the restored one x̂T . The teacher

discriminator is trained to differentiate between its input being the restored frame x̂T generated by

the teacher generator and the real frame xT from the corresponding ground-truth clean frame. The

Reproduce Net (R-Net) is trained to regenerate the degraded frame ŷT , taking the restored frame

x̂T as input.

The objective function for training the teacher part first contains a pixel distance loss and a

perceptual distance loss, measuring the distance between the restored frame and its corresponding

ground-truth clean frame:

LTdist = ∥xT −Gθ(yT )∥22 + ∥ψ(x)− ψ(Gθ(yT ))∥22, (4.1)

where xT denotes the ground-truth clean frame, yT represents the corresponding synthetic de-

graded frame, and Gθ denotes the teacher generator, so Gθ(yT ) represents the output of the gen-

erator, which is the restored frame x̂T . The feature space denoted as ψ(·) is computed from the

activations provided by the 3rd and 4th convolution layers of the V GG network [30].

Following [10], the adversarial losses for our AT mitigation task are shown as follows: The

teacher generator network minimizes the following loss with respect to θ

LTgen = EyT
[
− logDϕT (Gθ (yT ))

]
, (4.2)
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and the teacher discriminator network DϕT minimizes the following loss with respect to ϕT

LTdis =ExT
[
− logDϕT (xT )

]
+

EyT
[
− log

(
1−DϕT (Gθ (yT ))

)]
.

(4.3)

A reproduce match loss is used to quantify the distance between the degraded frame reproduced

by the R-Net and the true degraded frame:

LTrm = ∥yT − ŷT∥22. (4.4)

During the training of the student component, we utilize real-world AT data, which consists

solely of degraded frames. During training, the student generator takes the real-world AT degraded

frame yS as input and outputs the restored frame x̂S . We have the student generator share weights

with the teacher generator, constituting one of the knowledge transfer steps between the teacher

and the student.

The student discriminator DϕS is trained to distinguish between the real clean frame xS and

the fake restored frame x̂S . Note that since we do not have the real clean frames, we utilize the

clean frame xT from the dataset used for training the teacher part. This is feasible because the goal

of the discriminator is to distinguish between data from two distributions: samples from the clean

data distribution and those from the fake data distribution. Furthermore, the student discrimina-

tor’s weights are partially shared with the teacher discriminator’s, representing the second stage of

knowledge transfer. Finally, the restored frame x̂S is also fed into the R-Net, which regenerates the

degraded frame ŷS . The R-Net here serves as the third knowledge transfer stage.

The losses associated with the student part include the adversarial losses for the student gener-
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Figure 4.2: Real-world atmospheric turbulence mitigation model (Real-ATM) framework.

ator and discriminator:

LSgen = EyS
[
− logDϕS (Gθ (yS))

]
, (4.5)

LSdis =ExT
[
− logDϕS (xT )

]
+

EyS
[
− log

(
1−DϕS (Gθ (yS))

)]
,

(4.6)

and the reproduce match loss between the regenerated degraded frame and the real degraded frame:

LSrm = ∥yS − ŷS∥22. (4.7)

Up to this point, we have gained a better understanding of how our model works via the knowl-

edge transfer from supervised learning to unsupervised learning. Specifically, the T-S knowledge

transfer relies on a shared generator network, partial weight sharing of dual discriminators, and a

reproduce network.
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4.2.2 Generator Framework

Drawing inspiration from the variational inference framework employed in restoration models [56],

[66], [87], the detailed framework of the teacher and student generators is shown in Figure 4.3.

During training, the Decoupled Dynamic Filter (DDF)-based [92] network aims at generating the

restored frame from the degraded input frame conditioned on the latent feature c. This c is learned

via a variational autoencoder (VAE), which aims at learning to reconstruct the degraded frames,

thereby imbuing c with image-prior information acquired from the degraded data.

Additionally, we learn from the literature that incorporating the information from the degrada-

tion process during training could further improve the model’s performance. Therefore, we employ

another CNN-based network to predict the atmospheric turbulence degradation parameters. Con-

sequently, c also encompasses prior information learned from the AT degradation procedure.

The losses associated with this VAE-based design contain a fidelity term and a reconstruct term.

The fidelity term is the KL divergence of the learned posterior and the prior, which is a standard

normal distribution. The reconstruction term measures the distance between the reconstructed

degraded frame and the real degraded frame.

Thus, for the teacher part, the VAE loss is defined as:

LTvae = DKL(qeψ(cT |yT )||p(cT )) + ||yT − ŷGT ||22, (4.8)

where the first term is the fidelity term; it measures the fidelity of cT extracted from the encoder eψ,

whose input is the degraded image yT . It is represented as the KL divergence of the approximate

posterior qeψ(cT |yT ) from the prior p(cT ). We select the prior p(cT ) as a standard Gaussian dis-

tribution. The second term is the reconstruction term, and we adopt the pixel-wise mean squared

error (MSE) distance between the input degraded image yT and the output ŷGT of the decoder dφ.
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Similarly, the VAE loss for the student is:

LSvae = DKL(qeψ(cS|yS)||p(cS)) + ||yS − ŷGS ||22. (4.9)

Finally, we would like the latent feature c to encompass knowledge about the AT degradation

process. Remember that only the teacher knows the synthetic AT degradation process. Therefore,

we add a degradation loss for the teacher part, defined as:

LTdegrad = ||ϕat − ϕ̂at||22, (4.10)

where ϕat represents the ground-truth AT degradation parameters from the pre-trained AT simula-

tor [61]. ϕ̂at = Param(cT ) represents the estimated AT degradation parameters and is the output

of a small network (parameter estimation module) Param(·) taking cT as input, as shown in Figure

4.3.

4.2.3 Training & Testing

Since we utilize a GAN-based training scheme, there is a generation procedure and a discrimination

procedure, and they are trained alternatively [10]. To summarize, the objective function during

training contains both the teacher part and the student part. Specifically, during the generation

procedure, the objective function is formulated as follows:

Lg = LT + LS, (4.11)

where

LT = LTdist + λ1L
T
gen + λ2L

T
rm + λ3L

T
vae + λ4L

T
degrad, (4.12)
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and

LS = λ1L
S
gen + λ5L

S
rm + λ3L

S
vae, (4.13)

where λ1, λ2, λ3, λ4 and λ5 are hyper-parameters. During the discrimination procedure, the objec-

tive function is formulated as:

Ld = LTdis + LSdis. (4.14)

During testing, only the generator network is needed. Illustrated in Figure 4.4, the degraded

frame is fed into the encoder module to obtain the latent feature c. Then, c and the degraded frame

are input into the DDF module to produce the restored output.

DDF

Encoder C Decoder

Param( )

AT Parameters

Figure 4.3: Generator training framework.

Encoder C

DDF

Figure 4.4: Testing framework.
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4.3 Experiments

To get the synthetic training dataset for training the teacher part, we use the AT simulator in [61]

to simulate the effect of AT on the REDS dataset [70], and the hyper-parameter of the simulator

(D/r0) is chosen randomly in the range [0.5, 2.0]. Our synthetic training dataset comprises 106

AT-degraded and clean image pairs. We use another 2500 synthetic AT-degraded images as the

synthetic testing dataset. For the student part training, we use 18 AT-degraded videos from the

training set of the real-world dataset BRIAR [93]. We use another 54 AT-degraded videos from the

testing set of BRIAR as the real-world testing dataset.

To construct our teacher and student generators, as shown in Figure 3, for the encoder module,

we use 5 2D-convolution (2D-conv) layers with ReLU activation and one down-sampling layer

after the first conv layer. For the decoder module, we use 5 2D-conv layers with ReLU activation

and one up-sampling layer after the first conv layer. For the DDF-based module, we use 1 2D-

conv layer followed by 8 DDF bottleneck blocks [92] and 2 2D-conv layers. For our parameter

estimation module, we simply use 2 2D-conv layers with LeakyReLU activation.

AT-input
(49.3/47.6)

Syn-ATM
(48.2/45.4)

Real-ATM
(33.3/41.6)

AT-input
(64.6/54.0)

Syn-ATM
(73.7/55.0)

Real-ATM
(53.7/52.1)(a) (b)

Figure 4.5: Visual samples of real-world AT-input, and the restored results from Syn-ATM and
Real-ATM. (PIQE/BRISQUE) is shown in the parenthesis, the best score is marked in bold.

To construct the teacher and student discriminators, we use 11 2D-conv layers with LeakyReLU

activation and spectral normalization [71]. The partial weight sharing of the teacher and student
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discriminators occurs from the 6th to the 9th convolutional layers.

During training, we augment the training data by random cropping (160 × 160), random ver-

tical and horizontal flips, and random transposing. We train our model for 200 epochs with 1500

iterations per epoch, and we set the batch size to 16. We use the Adam optimizer [35] with no

weight decay, and we set the initial learning rate to 1e−4 and gradually reduced it to 5e−6 during

training utilizing the cosine annealing schedule [72]. The hyper-parameters λ1, λ2, λ3, λ4, and λ5

used in Equation 4.12 and Equation 4.13 are set to 1e-3, 5e-1, 1e-1, 2e-1, and 2.5e-1, respectively.

All the experiments are performed on two NVIDIA Quadro RTX 8000 GPUs.

4.4 Results

In this section, we will show that our proposed method enhances performance in real-world at-

mospheric turbulence (AT) scenarios, benefiting both image quality and the downstream person

identification task.

4.4.1 Image Quality

In Table 4.1, we show the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity Index

Measure (SSIM) results of the model trained only with the AT synthetic dataset (Syn-ATM), i.e.,

only the teacher part is trained. We can see that the current model has achieved noticeable improve-

ment on the synthetic testing set. Due to the absence of ground-truth counterparts in the real-world

testing set, we adopt the no-reference image quality metrics: Blind/Referenceless Image Spatial

Quality Evaluator (BRISQUE) and Perception-based Image Quality Evaluator (PIQE) to evaluate

the image quality (lower metric values indicate higher image quality). As shown in Table 4.2, for

the Syn-ATM model, the image quality does not improve much when we test it on the real-world

AT testing set. This observation aligns with our explanation that synthesized turbulent images
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are insufficient in capturing all real-world turbulence characteristics. Despite achieving remark-

PSNR↑ SSIM↑
AT-input 24.19 0.7263
Syn-ATM 30.61 0.8168

Table 4.1: Image quality results of the Syn-ATM model on the synthetic AT testing set.

BRISQUE↓ PIQE↓
AT-input 47.67 63.39
Syn-ATM 46.99 68.89
Real-ATM 44.90 49.95

Table 4.2: Image quality results of Syn-ATM and Real-ATM models on the real-world AT testing
set. The best result is marked in bold.

able performance in simulated scenarios, a performance drop occurs when applying the models

to real-world cases. Conversely, our proposed real-ATM model obtains improved results on both

metrics, demonstrating the effectiveness of our proposed method in filling up the domain gap be-

tween synthetic and real-world space. Some real-world visual examples are shown in Figure 4.5.

We could see that the real-ATM model provides better visual quality. Besides, we observed that the

synthetic-ATM model can sometimes generate results with artificial characteristics and does not

look like a naturally occurring image, as shown in Figure 4.5 (b). This discrepancy arises because

the model is solely trained on the synthetic AT dataset, failing to capture the full complexity of

real-world AT distributions.

4.4.2 Downstream Person Identification Task

According to previous works from the literature [94]–[96], image and video restoration as a funda-

mental low-level vision task can significantly improve the visual quality and benefit many down-

stream computer vision tasks. However, there is a complexity in real-world applications that might
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not be solved by quality alone. Sometimes the enhancement of the perceptual quality of images

Top-20↑ Top-15↑
AT-input 18.5% 14.8%
Syn-ATM 14.8% 7.4%
Real-ATM 25.9% 16.7%

Table 4.3: Human recognition results on real-world AT videos and restored videos by Syn-ATM
and Real-ATM. The best result is marked in bold.

does not necessarily improve the performance on vision tasks or the enhancement strategies need

to be tailored to specific applications rather than just improving image quality alone. Therefore,

in this section, we investigate the potential benefits of our proposed restoration network for down-

stream tasks. Specifically, we evaluate our model on a human recognition task to validate the

necessity of restoration. For evaluation, we use the real-world person identification model, ShARc

[97], applied to our real-world testing set comprising 54 videos from the BRIAR testing set. As

shown in Table 4.3, top-M represents whether the person could be correctly identified within the

top M predictions made by the identification model. When applying the identification model to

the restored videos generated from the Syn-ATM, the identification results do not improve. When

applying the identification model to the videos restored from the real-ATM, the identification re-

sults significantly improve, demonstrating the effectiveness of our proposed method in benefiting

the downstream vision task, in addition to improving the image quality alone.

4.5 Conclusion

In this chapter, we introduce a real-world atmospheric turbulence mitigation method. Our model

utilizes a domain adaptation teacher-student framework, bridging supervised synthetic AT mitiga-

tion with unsupervised real-world AT mitigation. This strategy improves our capacity to utilize

information from labeled synthetic datasets while minimizing the domain gap between synthetic
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and real-world data. Our ultimate model, real-ATM, not only enhances image quality in restoring

real-world atmospheric turbulence data but also aids downstream vision tasks.
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CHAPTER 5

MOTION BLUR REDUCTION IN ABDOMINAL MRIS USING GANS

In this chapter, we look into the motion blur reduction task. Similar to the approach used for super-

resolution, we employ a GAN-based method to eliminate motion blur in abdominal MRIs.(Please

note this chapter restates text and figures from our previously published work [98])

5.1 Introduction

Magnetic resonance imaging (MRI) is a noninvasive test used to diagnose medical conditions. It

is also an invaluable diagnostic tool in early diagnosis and evaluation of liver focal lesions and

tumors [99]. However, involuntary body movements and respiration during imaging sessions often

lead to motion artifacts, especially in individuals unable to hold their breath adequately, resulting

in significant image degradation [100]. Given the crucial role of abdominal anatomy in accurate

diagnosis, the need for repeat scans due to such artifacts burdens hospitals with additional time and

costs [101]. Therefore, a more efficient method needs to be developed to reduce abdominal motion

and artifacts automatically in real-time.

Deep learning methods, particularly Convolutional Neural Networks (CNNs), have demon-

strated significant success in addressing various inverse problems in image processing [31], includ-

ing denoising [102], [103], super-resolution [6], [104], [105], and motion artifact reduction [106],

[107]. However, outcomes from these models often suffer from blurring and over-smoothing due

to the filtering effects of CNN kernels. Notably, in the medical domain, where image quality is

crucial for accurate diagnosis, there is a growing demand for cleaner, sharper, and more realistic

images. Recently, Generative Adversarial Networks (GANs) [10] have emerged as a powerful tool
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for learning the underlying distribution of training data, leading to more natural-looking images

with improved fine-detail reconstruction compared to pure CNN models [31], [108]. Therefore, in

this chapter, we propose a GAN-based model to address our motion reduction task.

To enhance the perceptual quality of generated images, we incorporate the perceptual loss [109]

into our GAN-based model’s training loss. It is a distance-based loss defined in the feature space

from a pre-trained discriminative CNN model, so it contributes to optimizing the model in the

feature space instead of the pixel space. The perceptual loss has been included as a regularizer to

the adversarial loss in a number of the state-of-the-art GAN-based models, which shows promising

results with respect to improving the image visual quality in many other image processing tasks,

like denoising[110] and super-resolution[111], [112].

GAN-based models are generally challenging to train due to their complexity. Hence, starting

with a solid foundation is crucial, particularly for the generator, which faces a more complex task

than the discriminator. Rather than training both components from scratch, we initially pre-train

our generator using a pixel-wise distance loss (i.e., mean square error). Subsequently, we employ

this pre-trained model as the starting point for the generator in subsequent GAN training steps.

This chapter shows that this pre-training technique further facilitates the model to have a better

motion reduction performance.

This chapter begins by simulating three types of motion artifacts to replicate real abdominal

motion. Then, we propose a GAN-based model for reducing motion artifacts. To train this model

effectively, we incorporate the perceptual loss into our training loss function. Additionally, we add

another pre-training step to enhance the perceptual quality of the results, thereby improving the

performance of GAN training.



81

5.2 Proposed Method

In this section, we first describe a method to simulate motion artifacts via the K-space and generate

three different motion types for abdominal MRIs. Then we introduce the whole process of our

GAN-based motion reduction pipeline and explain the algorithms and loss functions we use for

training the GAN model.

5.2.1 Motion Simulation

Pairs of images (i.e., clean images and images with simulated motion) are needed for training

purposes. The motion is simulated by manipulating the clean MRI image in the K-space. K-

space represents the 2D Fourier transform of the MRI images, where low spatial frequencies (i.e.,

close to the center of the K-space) contain contrast and signal to noise ratio information and high

spatial frequencies (i.e., close to the peripheral regions of the K-space) contain image resolution

information [113]. Therefore, by manipulating the K-space data, we can obtain different types and

varying severity of the simulated motion artifacts.

Three types of motion artifacts are simulated following [114] in order to mimic the most real-

istic body motions, as shown in Fig. 5.1. The clean images Ic are first converted to the K-space,

F(Ic), by taking their Discrete Fourier Transform (DFT). They can be converted back to the image

space by taking their inverse DFT (iDFT). Images of the first motion type Im1 simulate the peri-

odic respiratory patterns of motion. They are generated by adding phase shifting errors ϕ(k) in a

sinusoidal wave, i.e.,

Im1 = F−1[F(Ic)e
−jϕ(k)], (5.1)
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Figure 5.1: The motion simulation process. Three types of motion (i.e., sinusoidal motion, random
motion and interweaving motion) are simulated by manipulating K-space data to generate new
k-space data using DFT and iDFT.

and

ϕ(k) =


0 if |k| ≤ km

2πk∆sin(αk + β) if |k| > km

, (5.2)

where k is the K-space coordinate in the phase-encoding direction (−π < k < π), km is the

number of center k-space lines that are kept unchanged, which is randomly selected in [π/10, π/2],

∆ denotes the number of shift pixels (The larger the ∆, the more severe the simulated motion), and

α in [0.5, 5] Hz and β in [0, π/4] are the frequency and phase of the sinusoidal wave, respectively.

Similarly, to simulate the non-periodic and irregular respiratory pattern, images of the second

motion type Im2 are generated by adding phase shifting errors ϕ(k) in a random wave as in Eq.5.1

and keeping the center %5 ∼ %10 of the K-space lines unchanged with no phase encoding, while

ϕ(k) is randomly selected to be close to the peripheral K-space lines in chance of %10 ∼ %50.
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In terms of the severe motion artifacts caused by the body movement, another motion type Im3

is introduced by interweaving K-space data across the clean and the rotated images, where the

rotated image Ir is created by rotating a clean image Ic with a random angle in [−25o, 25o]. Both

images are converted to K-space and a new K-space data, Knew, can be generated according to:

Knew =


F(Ir) if ki ⩽ |k| ⩽ ki+j

F(Ic) if otherwise
, (5.3)

where j ∈ [0, 128] is the number of K-space lines kj from Ir and i ∈ [0, 384] is the value of a K-

space location in Ic where we want to interweave with the K-space data from Ir. The total number

of K-space lines is 512, which equals to the size of the MRI in the image space. The motion image

Im3 can then be converted back from Knew by using the iDFT. The selections of i and j simulate

different severities of the motion.

Figure 5.2: Illustration of the completed motion reduction pipeline. It is composed of a generator
and a discriminator. The Vgg-16 architecture [115] is used to form the perceptual loss. The CNN
U-net blocks are used as the generator in our proposed GAN model. The pairs of the clean image
and the image with simulated motion are used as the training input pairs.
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5.2.2 The Motion Reduction Pipeline

Because the GAN model[10] favors solutions that look more like realistic images, in this chapter,

we use a GAN-based motion reduction model. The complete pipeline of the motion reduction

process is illustrated in Fig. 5.2.

The GAN architecture includes a generator and a discriminator, where the generator is used

to reduce most of the motion artifacts and the discriminator aims to distinguish if the input image

is the clean image (i.e., True) or the output image from the generator (i.e., Fake), so as to further

help the generator perform motion reduction. In other words, in order to fool the discriminator, our

generator will be trained to output images that look like the ground truth (clean) images as much

as possible. The generator is made up of two U-net like blocks [107], each including an encoder to

extract the motion patterns and a decoder to restore the image to its original size. The discriminator

contains 3 blocks, where each block combines convolutional, batch normalization, and activation

function LeakyReLU (Conv+BN+LeakyReLU) operations. Finally, a fully-connected layer and a

sigmoid function are used in the end to output a probability of the input image to be real or fake. If

the input image is real, the probability should be close to 1, and if it is fake, the probability should

be close to 0. Additional details about the generator and the discriminator can be found in Fig. 5.2.

5.2.3 The Loss Functions

The loss function Lgen used for training the generator in our GAN model is a combination of the

pixel loss Lpix, the perceptual loss Lper, and the adversarial generator loss LGANG , that is,

Lgen = Lpix + λ1Lper + λ2LGANG , (5.4)



85

where λ1, λ2 are hyper-parameters, representing the relative importance of the three loss terms.

Lpix is the Mean Absolute Error (MAE) loss defined in the pixel space, that is,

Lpix =
1

hwc
||Imr − Ic||1, (5.5)

where Imr is the output of the generator G, Ic is the corresponding ground truth clean image, h and

w represent the height and the width of images, respectively, and c represents the number of image

channels.

Lper is the perceptual MSE (Mean Squared Error) loss defined in the feature space, that is,

Lper =
1

hwc′
||ϕi(Imr)− ϕi(Ic)||2, (5.6)

where ϕi(.) is the feature map generated from layer i of the pre-trained Vgg-16 model [115], and c′

represents the number of feature map channels. The Vgg-16 model used to calculate the perceptual

loss is pre-trained on the ImageNet dataset [116].

Finally, LGANG is the adversarial loss of the generator, which is defined as

LGANG = EIm [−logD(G(Im))], (5.7)

where D represents the discriminator, Im is the input image with motion artifacts, and G(Im) is

the output image of the generator G, i.e., G(Im) = Imr.

In terms of the discriminator, the training loss is the adversarial loss of the discriminator, which

is defined as

Ldis = EIc [−logD(Ic)] + EIm [−log(1−D(G(Im)))]. (5.8)
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5.3 Experiments

In total, 202 clean abdominal MRI 512 × 512 images from 15 subjects are included in this study.

8 subjects are used for training (112 images), 3 subjects for validation (40 images) and 4 subjects

(50 images) for testing. Since three types of motion artifacts with different motion severities are

generated from the clean images, we have in total of 3672 training images, 1044 validation images,

and 500 testing images.

In order to train our proposed model, there are two training stages. In the first stage, we pre-

train the generator network only, using the pixel loss function defined in Equation 5.5. In the

second stage, we train the GAN model, where the generator’s weights are first initialized by the

pre-trained model from the first stage. Next, the generator and discriminator are trained jointly. The

loss function used to train the generator is defined in Equation 5.4 and the discriminator’s training

loss is defined in Equation 5.8. Besides initializing the generator’s weights from a reasonable

starting point, in order to ensure the stability and proper convergence of the GAN training, we

also need to prevent our discriminator from learning too fast. Otherwise, the generator can never

fool the discriminator, thus causing the failure of the adversarial training. Therefore, we train

the generator 4 times more than the discriminator. Specifically, after training the generator and

discriminator in the first training epoch, the discriminator is fixed and will be updated again until

the 5th epoch. The same process repeats in all the following training epochs.

Some ablation studies have been completed to show the effects of the proposed GAN archi-

tecture, the effectiveness of the perceptual loss and the importance of the pre-training step. In

this study, we compare four models in their performances of reducing artifacts and motion: 1)

the CNN generator only (CNN-onlyG), 2) the GAN model with no-pretrained generator (GAN-

nopreG), 3) the GAN model with pre-trained generator (GAN-preG) and 4) the perceptual GAN
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model with pre-trained generator (percepGAN-preG). All four models are trained and tested on

the same dataset.

The CNN-onlyG model uses only the denoising CNN generator, and it is trained with the

pixel loss defined in Equation 5.5. Besides, it is trained with smaller image patches (64 × 64),

which are randomly selected from the full-size images (512 ×512). Later on, this fully trained

model is used as the pre-trained generator in model GAN-preG and model percepGAN-preG. The

GAN-nopreG model uses the GAN model with the generator trained from scratch, and it does not

use the perceptual loss, so it only uses the pixel and adversarial losses, i.e., the combination of

Equations 5.5 and 5.7. The GAN-preG model also does not use the perceptual loss. Finally, the

percepGAN-preG model is our proposed model which uses the perceptual loss during training,

and the perceptual loss is calculated from the 15th, 16th and 17th layers of the Vgg-16 model

(i = 15, 16, 17 in Equation 5.6). The generator’s training loss function is defined in Equation 5.4

with λ1 = 0.6 and λ2 = 0.8, which are defined experimentally.

All GAN models are trained with full-size images. All training processes use the Adam opti-

mizer [117] with an initial learning rate of 0.0001. The batch size of the CNN-onlyG model is 16

and of the rest GAN-related models are 2. All training epochs are set to 50 with early stopping

with a patience of 5. The training time takes an average of 4.3 hours for each experiment and

testing a single image takes less than 0.5s. All training and testing processes are performed using

Tensorflow 2.0 in Python 3.8 on two GPUs (NVIDIA Titan V).

The mean squared error (MSE), the structural similarity index (SSIM) [118], the peak signal-

to-noise ratio (PSNR) [119] and a perceptual distance metric [120] are measured on the testing

data to compare the similarity between the model output and the clean image. A paired t-test is

performed to compare the objective performance of each of these four models. The comparison

is statistically significant if the p < 0.05. All statistical analyses are performed using the Scikit-
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sklearn and NumPy packages in Python 3.8.

Table 5.1: Comparisons of four model performances (mean ± std) in terms of MSE, SSIM, PSNR
and perceptual distance (the smaller the better) on the testing dataset. ∗ denotes the comparison is
statistically significant (p < 0.05).

Metrics/Models CNN-onlyG GAN-nopreG GAN-preG percepGAN-preG

MSE 0.012 ± 0.007 0.005 ± 0.002 0.004 ± 0.002 0.002 ± 0.001∗

SSIM 0.857 ± 0.089 0.913 ± 0.014 0.928 ± 0.026 0.942 ± 0.022∗

PSNR 25.944 ± 2.613 29.409 ± 1.799 31.409 ± 1.995 33.894 ± 2.435∗

Perceptual Distance 0.229 ± 0.035 0.066 ± 0.029 0.069 ± 0.032 0.015 ± 0.006∗

5.4 Results

5.4.1 Experimental Results

We compare the quantitative results among four models using the same testing dataset, as shown in

Table 5.1. The results show that the percepGAN-preG model significantly outperforms other mod-

els in all metrics with SSIM of 0.942 ± 0.022, MSE of 0.002 ± 0.001, PSNR of 33.894 ± 2.435 and

perceptual distance of 0.015 ± 0.006. In addition, the overall performance of the GAN model is

better than that of the CNN denoising model, indicating the important role of the adversarial train-

ing in this motion reduction task. Furthermore, the model with pre-trained weights (GAN-preG)

achieves a better motion reduction performance (SSIM: 0.928 ± 0.026, PSNR: 31.409 ± 1.995)

compared with the model trained from scratch (GAN-nopreG) (SSIM: 0.913 ± 0.014, PSNR:

29.409 ± 1.799). Finally, our proposed percepGAN-preG model outperforms the GAN-preG

model, indicating that the perceptual loss further improves the generated images’ visual quality.

Table 5.2 compares the performance of our proposed model on the three types of simulated
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Figure 5.3: Motion reduction examples by the proposed model on three types of motion simula-
tion: A. random motion; B. interweaving motion and C. sinusoidal motion. The first row: clean
images; second row: images with specific simulated motion; third row: motion reduced images by
the proposed model.

motion data. The model achieves the best motion reduction performance on the sinusoidal type

of motion, as shown in Fig. 5.3C (SSIM: 0.953 ± 0.019, PSNR: 36.763 ± 2.145), followed by

the random one (Fig. 5.3A, SSIM: 0.938 ± 0.037, PSNR: 31.087 ± 3.224) and the interweaving

one (Fig. 5.3B, SSIM: 0.944 ± 0.023, PSNR: 34.932 ± 2.758). The sinusoidal type of motion

simulates the periodic breathing patterns and the interweaving type of motion simulates the body

movement patterns. The results are in line with our simulation purposes, i.e., the random motion is

the most complex type of motion that represents the non-periodic and irregular respiratory patterns.
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Table 5.2: Comparisons of motion reduction performance (mean ± std) in MSE, SSIM, PSNR on
three different motion types of testing dataset. ∗ denotes the comparison is statistically significant
(p < 0.05).

Metrics/Motion Types Type I (Sinusoidal) Type II (Random) Type III (Interweave)

MSE 0.002 ± 0.001∗ 0.004 ± 0.002 0.002 ± 0.002

SSIM 0.953 ± 0.019∗ 0.938 ± 0.037 0.944 ± 0.023

PSNR 36.763 ± 2.145∗ 31.087 ± 3.224 34.932 ± 2.758

5.4.2 Visualizations

Figure 5.3 illustrates three representative types of the simulated motion and their corresponding

motion reduced images after our proposed percepGAN-preG model. It is clear that our proposed

model is able to reduce most of the motion artifacts and at the same time, preserve the tissue details

in the abdominal MRIs. Figure 5.4 provides two more examples to further compare the different

motion reduction performances among the four compared models. The CNN-onlyG model uses

the pixel-to-pixel level MSE loss, leading to over-smoothing and blurring problems, which agree

with the observations in study [120]. However, this problem can be alleviated by introducing a

GAN model with a discriminator to distinguish between the real and fake images so as to fine-

tune the generator and improve the image sharpness. In addition, the perceptual loss computes

the difference of two images with a large receptive field, providing another way to restore specific

anatomical structures, so the percepGAN-preG model achieves the highest visual quality again.

The important role of the pre-trained weights used in the generator is addressed in this chapter. As

shown in Fig. 5.4, although as we observe, more motion artifacts can be reduced by the GAN-

nopre model compared to the CNN-onlyG model, the reconstruction shows a brighter contrast

compared with the ground truth. In this model, the generator is initialized with the random weights
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so it needs to learn all basic image information from scratch, including the image contrast and

the abdominal anatomy. The generator, therefore, will output the fake images with many unreal

artifacts that can be easily distinguished by the discriminator, thus the discriminator’s job becomes

considerably easier, and the generator can hardly be trained to compete with the discriminator

afterwards. Therefore the adversarial training process may not be able to converge to a proper

solution. The GAN model with a pre-trained generator (GAN-preG) avoids this problem by already

having a good starting point for the generator, thus the discriminator needs to be better trained to

distinguish the real and fake images, i.e., to better learn the true distribution of real images, and in

return, the generator needs to generate images that look more like the real images’ distribution to

fool the discriminator.

Figure 5.4: Comparison of motion reduction performance among four models and two different
abdominal images (D and E). They are the proposed perceptual-GAN model with a pre-trained
generator (column ii), the GAN model with a pre-trained generator (column iii), the GAN model
with no pre-trained generator (column iv) and the CNN denoising model (column v).
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5.5 Conclusion

In this chapter, a novel GAN-based CNN model trained with perceptual loss is developed for

automatic motion reductions of abdominal MRIs. Three types of motion simulation methods are

proposed to mimic the real motions. By comparing four different models, our proposed model

proves that using the GAN-based model with the pre-training step and the perceptual loss can

greatly reduce motion artifacts and preserve medical image details. This real-time application of

the methodology can play a significant role in improving future clinical diagnosis and it can be

potentially applied to other medical motion types.
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CHAPTER 6

AVIAN ACTIVITY CLASSIFICATION USING RECURRENT NETWORKS

From this chapter, we move into the second area of this dissertation, deep learning in classification

with videos. In this chapter, we will solve an avian activity classification task. The initial motiva-

tion of this project is to protect the birds from colliding with the solar panels. During the daytime,

Strong sunlight causes reflections on these panels, potentially misleading birds into colliding with

them, resulting in injuries or fatalities. (Please note this chapter restates text and figures from our

accepted work, which will be published at the 2024 International Conference on Computing and

Artificial Intelligence (ICCAI 2024).)

6.1 Introduction

The success of deep learning (DL) methods in computer vision has opened promising avenues

for video-based activity classification, encompassing both human and animal behaviors [121]–

[128]. However, animal activity classification poses unique challenges, including unpredictable

behaviors and limited datasets. Many state-of-the-art DL models for video-based animal activity

classification adopt a dual-stream approach, utilizing RGB raw frames and corresponding optical

flow as inputs. For instance, [129] and [130] employed convolutional neural networks (CNNs)

to extract features from RGB frames and optical flow, merging these streams to predict cattle or

mouse behaviors. Similarly, Schindler et al. [131] extended this approach to classify a wider range

of wild animal activities. Given the sequential nature of video data, recurrent neural networks

(RNNs) such as Long Short-Term Memory (LSTM) networks have been favored, as demonstrated

by [132], who used an LSTM network to predict salmon feeding activities. This chapter focuses
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on video-based animal activity classification, specifically avian/bird activity. We propose a DL-

based method, designing a Bidirectional LSTM (Bi-LSTM) model tailored for avian/bird activity

classification.

Solar energy is widely recognized as a crucial green energy source, with solar panels increas-

ingly deployed in open areas. However, these solar facilities can impact bird communities in

various ways, including species richness, migrations, and activities [133]–[135]. Understanding

the interactions between birds and solar infrastructure is essential for the sustainable deployment

of utility-scale solar facilities. Currently, monitoring avian-solar interactions and classifying avian

activities rely on human observers, which is costly, time-consuming, and prone to errors. It also

poses safety concerns for observers working outdoors. Therefore, our study aims to develop a DL

model capable of automatically classifying interactions between birds and solar panels.

Figure 6.1: Video track example.

DL methods for studying bird behavior via video data are scarce in the current literature. Ex-

isting DL-based bird activity classification focuses mainly on acoustic signals [136]–[138]. Since

March 2020, researchers at Argonne National Laboratory (Argonne) have collected over 6,000

hours of daytime video at five operational solar energy facilities using high-definition true-color
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video cameras. By processing these videos, Argonne has generated and labeled bird-centered video

tracks of avian activities around the solar energy facilities, such as fly over above, fly-through, and

perching. In this chapter, we train our proposed model using this avian activity video dataset. Sev-

eral challenges must be addressed, such as the significant imbalance between activity categories,

a common issue in many classification tasks [139], [140]. Moreover, compared to state-of-the-

art video-based animal activity classification, our avian activity classification is more challenging.

Previous works in video-based animal activity classification involved no camera movement and

relatively static backgrounds [129]–[132]. However, in our avian activity dataset, video tracks are

bird-centered, and birds often move quickly, resulting in rapidly changing backgrounds. Addition-

ally, distant bird objects may appear tiny. To address these challenges, we integrate not only video

track frames but also critical engineering features (metadata) provided by Argonne with each video

track into our proposed model, leading to improved predictions.

Additionally, few DL works in video-based activity classification analyze their model’s inter-

pretability, which assesses whether the trained models make logical decisions. Ideally, the model

should focus on areas where the activity occurs, for example, the areas around the object whose

activity is being classified throughout the video. These analyses are common and crucial in state-

of-the-art DL image-based classification methods [141]–[143]. In summary, in this chapter: 1) We

propose a novel DL method for video-based avian activity classification. Our Video-Meta Fusion

Bi-LSTM model classifies six bird activities using both video data and additional engineered fea-

tures (metadata). 2) We effectively handle the challenge of training with an imbalanced dataset. 3)

After training, we verify that our model focuses on the relevant areas by computing and examining

saliency/backpropagation maps. 4) To the best of our knowledge, this study is the first to uti-

lize RNNs for video-based avian activity classification while also analyzing the decision-making

rationale of the proposed DL model in animal activity classification.
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Figure 6.2: Number of samples in each activity.

6.2 Proposed Method

6.2.1 Avian Activity Dataset

Argonne has provided us with an avian activity dataset that consists of video ”tracks” and their

corresponding feature engineering features (metadata). Each track is a bird-centered sequence of

frames for a single bird. An example can be found in Figure 6.1. The metadata, containing the

bird’s trajectory (x/y coordinate information) and its moving speed, is pre-computed by Argonne

researchers and directly provided within the dataset for each track.

Based on the activities of birds around the solar energy facilities, the dataset is categorized into

six activities:

1. Fly over above (foa): a bird flying high above solar panels.

2. Fly over reflection (for): a bird’s reflection flying over panels.
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3. Fly through (ft): a bird flying near solar panels.

4. Perch on panel (pop): a bird flying into the frame lands on any part of the panel structure, or

a bird on the panel flies away.

5. Land on the ground (log): a bird flew in and landed on the ground, a bird on the ground flew

away, or a bird is moving on the ground.

6. Perch in background (pib): a bird flying into the frame lands on objects other than panels, or

a bird on a non-panel object flies away.

Figure 6.2 shows the number of samples for each activity category. We can clearly see a heavy

imbalance in the dataset. There are two major activities - the foa and ft, and four minor activities.

6.2.2 Model Description

Before proposing the final fusion model, we first introduce two sub-models that utilize either the

metadata sequence input (Meta Bi-LSTM) or the video sequence input (Video Bi-LSTM).

6.2.2 Video Bi-LSTM & Meta Bi-LSTM

The Video Bi-LSTM architecture takes the video frame sequence as input and predicts the prob-

ability for each activity category. As shown in Figure 6.3(b), after the video frame sequence is

inputted into the model, we first use convolutional, normalization and pooling layers to extract

the deep features from them. These features are then flattened into vectors and passed through a

Bi-LSTM block (composed of two stacked bidirectional LSTM layers, as shown in Figure 6.3(d)),

followed by fully-connected dense layers. Finally, the output layer utilizes a softmax function to

provide the predicted probability for each activity category. The Video Bi-LSTM model can be
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Figure 6.3: Meta Bi-LSTM, Video Bi-LSTM, Video-Meta Fusion Bi-LSTM models’ architecture.

described as:

p = fvideo(v), (6.1)

where v denotes the input video frame sequence, p is the output vector of the predicted probabilities

for C activity categories, and fvideo(·) denotes the Video Bi-LSTM model.

In the dataset, some bird video tracks can be very long and last for numerous frames, and

we would like our model to get information from both past and future frames during training.

Therefore, we employ bidirectional LSTM layers rather than pure LSTM layers when building the

models [144].

As explained in Section 1, incorporating engineered features can be beneficial for our task. The

current video tracks are bird-centered, which loses the general bird trajectory information in the
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larger camera field of view. Since the x/y coordinate information represents the trajectory of the

bird’s movement, and the speed of the bird can differ for different activities along the trajectories,

we choose to include the x and y coordinates and the bird’s speed as the critical metadata. Figure

6.3(a) shows the Meta Bi-LSTM model, which solely uses the metadata sequence as input. That is,

the input of this model is a sequence of 3-dimensional vectors (x-coordinate, y-coordinate, speed).

The Meta Bi-LSTM model can be described as:

p = fmeta(m), (6.2)

where m denotes the input metadata sequence, p represents the output vector containing the pre-

dicted probabilities for C activity categories, and fmeta(·) denotes the Meta Bi-LSTM model.

6.2.2 Video-Meta Fusion Bi-LSTM

The final proposed model, Video-Meta Fusion Bi-LSTM (VM Bi-LSTM), is shown in Figure

6.3(c). It incorporates two input streams: the video sequence and the metadata sequence. It fuses

these two streams after the Bi-LSTM blocks, where two feature representations are captured and

learned from the metadata and video frames along the temporal dimension. The addition of these

two deep feature vectors is then input into the following dense layers. The Fusion Bi-LSTM model

can be described as:

p = ffusion(v, m), (6.3)

where the VM Bi-LSTM model, denoted as ffusion(·), takes both the video frame sequence v and

its corresponding metadata sequence m as inputs. p is the output vector of the predicted probability

for C activity categories. The proposed VM Bi-LSTM model can then learn to classify the activity

by combining the information from engineered features and raw video sources. In section 4, we
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show that the proposed fusion model can achieve better results than the two sub-models.

6.2.3 Training Objective

We use the categorical cross-entropy loss as the loss function for training the Video Bi-LSTM,

Meta Bi-LSTM, and VM Bi-LSTM models:

L = −
C∑
c=1

yclog(pc), (6.4)

where [y1, y2, ....yC ] is the one-hot ground-truth activity label vector with C activity categories,

and pc is the predicted probability for the cth activity category.

6.2.4 Data Augmentation in Metadata and Video Data

Our models are trained with a heavily unbalanced dataset, and this causes severe issues if we

directly use it to train our models. Therefore, we need to balance the dataset. In general, we use up-

sampling methods for the four minor activities: we apply image augmentation on each frame in the

video tracks, like changes in brightness, saturation, or contrast. Since we are augmenting the video

tracks instead of the single images, we use the same augmentation process on all frames within

each video track to maintain temporal consistency along these frames. The augmentation process

can differ from track to track. Besides, we keep the same metadata values for those augmented

tracks as the tracks they are upsampled from.

6.3 Experiments

This section presents the experimental results and comparisons among the Video Bi-LSTM, Meta

Bi-LSTM, and VM Bi-LSTM models on the avian activity dataset. We use the saliency map to
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(a) A perching on panel (pop) test video track clip (top row). The corresponding saliency heat maps overlayed onto the original video frames (bottom row).

(b) A fly over above (foa) test video track clip (top row). The corresponding saliency heat maps overlayed onto the original video frames (bottom row).

Figure 6.4: Saliency maps of the test video tracks.

analyze our model and validate the rationality of its predictions. Lastly, we assess the performance

of our model. Dataset. The avian activity dataset provided to us by Argonne is not publicly

available. It consists of a total of 17,059 bird-centered video tracks, with the two major activities

(foa and ft) accounting for over half of the dataset. The metadata information is pre-computed by

Argonne researchers and provided to us directly within the dataset for each track. When utilizing

this dataset, We separate the dataset into training (80%), validation (10%), and testing (10%) sets.

As described in section 6.2.4, during training the Video Bi-LSTM and Meta Bi-LSTM models,

we perform data augmentation to up-sample the four minor activities (for, pop, log, and pib) to

2000 tracks each and randomly down-sample the two major activities to 2000 tracks each. In the

case of the VM Bi-LSTM model, which is larger than the two sub-models and has more trainable

parameters, we slightly increase the up-sampling and down-sampling numbers to 2500 tracks each

category. The video track frames have dimensions of 200×200 pixels. During training, validating,

and testing, we center-crop the frames to 100× 100 pixels. Train & test process. During training,
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we set the total epochs to 40. We use the validation loss to monitor the training process and apply

early stopping with patience 10. Adam is used as the optimizer with the learning rate equal to

0.001. The batch size is chosen to be one as the length of video tracks in the dataset varies a lot.

6.4 Results

6.4.1 Results and Comparisons

To demonstrate the limitations of training models with an unbalanced dataset, we present a com-

parison of confusion matrices in Figure 6.5 between the Meta Bi-LSTM models trained on the

original unbalanced dataset and the balanced dataset. When trained with the unbalanced dataset,

we can see that the model can only learn to classify the two major activities (foa, ft), while con-

sidering all the other minor activities as foa or ft, as shown in Figure 6.5. After using the balanced

dataset, the model now makes predictions across six activities, i.e., it successfully recognizes that

there are six classes rather than just two.

Using the balanced dataset, we train and compare the performance of Video Bi-LSTM, Meta-

data Bi-LSTM, and Video-Meta Fusion Bi-LSTM models. Table 6.1 presents the comparison of

test accuracy. We can see that the fusion model performs the best, it can reach 76.9%, 89.9%, and

95.2% accuracy in Top1, Top2, and Top3 test accuracy, respectively. This comparison confirms our

intuition that fusing the critical metadata with the raw video input enables DL models to leverage

more information, enhance their learning process, and improve their ability to distinguish between

different activities.

6.4.2 Model Analysis

We use the saliency/backpropagation maps [141] to validate that our trained model reasonably

classifies each activity. The saliency maps indicate the areas of the frames that the model focuses
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Figure 6.5: The confusion matrices of Meta Bi-LSTM model trained with unbalanced (left) or
balanced (right) datasets.

Table 6.1: Test accuracy of Meta Bi-LSTM, Video Bi-LSTM, and Video-Meta Fusion Bi-LSTM
models. If the top 2 or top 3 predicted activities contain the given ground-truth activity, then we
count it as a correct classification within the Top2 or Top3 test accuracy correspondingly.

Top1 Top2 Top3
Meta Bi-LSTM 55.3% 78.2% 89.9%
Video Bi-LSTM 72.5% 86.4% 94.0%

Video-Meta Fusion Bi-LSTM 76.9% 89.9% 95.2%

on when making decisions. For an input video sequence with N contiguous frames, denoted as Fi

(i = 1, 2, ..., N ), its saliency map Wi for each frame is calculated according to

Wi = |∂sc
∂Fi

|, (6.5)

where sc is the scalar score of class c - the model’s output before the final SoftMax layer for the

cth class. The derivative in the equation calculates the gradient of sc at (each pixel of) Fi. The

computed saliency maps indicate the areas/pixels in the video frames which affect the c class score
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the most.

In Figure 6.4, we show the saliency maps of a pop test video track and a foa test video track

which are correctly classified by the trained VM Bi-LSTM model’s top-1 predicted activity. We

can see that the trained model primarily directs its attention towards the bird object in most frames.

Moreover, for the pop video track, the model also focuses on the areas of the bird reflected on the

solar panels, and this is undoubtedly reasonable. As in a lot of the pop tracks, the bird perches and

stays on the panels, and the reflection on the panel is an important factor in determining if the bird

is staying/perching on the panels.

6.5 Conclusion

In this chapter, we introduce the Video-Meta Fusion Bi-LSTM model for avian activity classifi-

cation. Our model integrates information from raw video RGB frames and feature engineering

metadata when building the model. This fusion approach yields enhanced test accuracy compared

to both the Video Bi-LSTM and Meta Bi-LSTM models. Furthermore, we apply a consistent data

augmentation technique to address dataset imbalance. Examination of saliency heatmaps reveals

that our model makes decisions in a logical manner.
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CHAPTER 7

QUERY-KEY ATTENTION MODELING FOR WEAKLY-SUPERVISED TEMPORAL

ACTION LOCALIZATION

In the latter part of our study, we observed that each video track may exhibit multiple activities, like

the one shown in Figure 7.1, it contains both the fly-over-above and perch-on-panel activity. But

only the perch-on-panel label is given on this video track. Besides, instead of only giving out the

activity classification on the video level, we are also curious to find out when each activity happens

during the videos. Specifically, we aim to determine the start and end timestamps of these actions.

So, we’ll need to tackle the weakly-supervised temporal action localization problem. Due to the

lack of time and human resources to re-label the avian-solar video dataset, we leverage publicly

available datasets to address these issues. (Please note this chapter restates text and figures from

our work [145], submitted for journal peer review.)

7.1 Introduction

In recent years, video analysis has been a rapidly developing topic due to the explosive growth of

video data used in various real-world applications, especially in the field of video temporal action

localization (TAL). The reason for this is that long untrimmed videos contain more interesting fore-

ground activity and useless background activity, and they are more common than short trimmed

videos. TAL is a highly challenging task that aims at predicting the start and end times of all action

instances and identifying their categories in untrimmed videos. Many works have been done in

a fully-supervised manner, where both the video-level labels and the temporal boundary annota-

tions are provided during training [146]–[150]. In contrast, the weakly-supervised temporal action
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Figure 7.1: A video track contains multiple activities.

localization (WTAL) task attempts to rely only on video-level labels to localize action instances,

which can significantly relieve the high cost of manually annotating the temporal boundaries.

Similar to other weakly-supervised video understanding tasks [151]–[153], many WTAL meth-

ods employ a multiple instance learning (MIL) strategy [154]–[160]. This approach involves

computing segment-level class probability scores, aggregating top scores for each class as video-

level class scores, and utilizing video-level classification losses for optimization based on provided

video-level labels.

With the success of Transformer [161] in many computer vision tasks [162], [163], some re-

cent TAL works build their models based on Transformer’s encoder-decoder framework [164]–

[166] and achieve good results. However, all these works aim to learn a set of action queries corre-

sponding to the latent representations of a set of time areas (action proposals). Few works attempt

to solve the TAL task in such a way that the abstract-level knowledge of each action category is
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Figure 7.2: Action category queries are learned so as to contain action knowledge at the abstract
level, which can be used to identify and detect corresponding actions in the target video.

learned and used to recognize and detect the corresponding actions in various video scenes, just

like how humans do. The closest work to this idea is STPN[167]. However, it is limited to learning

a uniform set of weight parameters for action categories using a fully connected layer.

In this chapter, we present a new video-specific query-key attention mechanism and propose

our VQK-Net model based on it. Our high-level idea is illustrated in Fig. 7.2. More specifically,

we propose to learn the video-specific action category queries that can be adapted in different video

scenarios and simultaneously maintain the action core knowledge features used to detect actions in

the videos, i.e., the learned action category queries contain abstract knowledge of actions, and they

are tailored to the target video scene to optimize the application of this knowledge. To accomplish

this, we propose incorporating video features into the action category queries learning process for

two reasons: 1) Since the same action can appear differently in different videos, integrating input

video information could help learn the action category queries to better fit into different video

scenarios. 2) Some action knowledge can be hidden in the video. Therefore, video features can

help the model learn the action’s core knowledge features. We achieve this by referring to the
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cross-attention in Transformer’s decoder design.

However, one issue we’ve overlooked is that video features may confuse the model when learn-

ing action category queries for actions not present in the input video—meaning there’s no useful

information about these categories in the input. To address this, we propose a query similarity

loss. The rationale behind this approach is that for any two videos containing the same action

category, their corresponding action category queries should resemble each other since they both

learn the abstract-level knowledge features of that action. This loss function compels the model to

learn the core knowledge features of actions by leveraging correlations between videos of similar

action categories. Additionally, besides explicitly teaching the model about action categories in the

video through video-level classification loss, the query-similarity loss implicitly provides similar

information. Consequently, action category queries corresponding to actions present in the video

are better learned and enhanced under the guidance of query similarity loss, thereby mitigating the

impact of action category queries not present in the video.

The two-stage model training strategy is widely used to solve the TAL task. In the initial

feature extraction stage, a pre-trained feature extractor (e.g., I3D [168]), typically trained on a

large trimmed dataset (e.g., Kinetics) for general video action classification tasks, extracts video

features from the untrimmed video input. Subsequently, a temporal localization model is trained

using the extracted video features. In this chapter, we adopt this two-step training strategy as well.

7.2 Proposed Method

In this section, we present a comprehensive explanation of the proposed VQK-Net model for

WTAL. We first formulate the WTAL problem in Section 7.2.1 and describe the feature extraction

in Section 7.2.2. Then we provide an overview of the main pipeline of VQK-Net in Section 7.2.3.

After that, we delve into the key components of the model: query learner and query similarity
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loss in Section 7.2.4, and query-key attention module in Section 7.2.5. Finally, we detail the train-

ing objective functions in Section 7.2.6 and how the temporal action localization is performed in

Section 7.2.7. The overview of our model is shown in Fig. 7.3.

7.2.1 Problem Statement

We formulate the WTAL problem as follows: During training, for a video x, only its video-level

label is given, denoted as y = [y1, y2, ..., yC+1], where C+1 is the number of action categories

and the (C + 1)-th class is the background category. An action can occur multiple times in the

video, and yi = 1 only if there is at least one instance of the i-th action category in the video.

During testing, given a video x, we aim at detecting and classifying all action proposals temporally,

denoted as xpro = {(tjs, tje, cj, εj)}
r(x)
j=1, where r(x) is the number of action proposals for video x, and

tjs, t
j
e, c

j, εj denote the start time, the end time, the predicted action category and the classification

score of the predicted action category, respectively.

7.2.2 Feature Extraction

Following the previous work in [154], for each input video x, we split it into multi-frame segments,

each segment containing a fixed number of frames. To handle the variation of video lengths, a fixed

number of T segments are sampled from each video. Following the two-stream strategy used in

action recognition [168], [169], we extract the segment-level RGB and flow features vectors xrgb ∈

RD/2 and xf ∈ RD/2 from a pre-trained extractor, i.e., I3D, with dimension D = 2048. At the end

of the feature extraction procedure, each video x is represented by two matrices Xrgb ∈ RT×(D/2)

and Xf ∈ RT×(D/2), denoting the RGB and flow features for the video, respectively.
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7.2.3 Main Pipeline Overview

Fig. 7.3 shows the main pipeline of our proposed VQK-Net model. For an input video x, we refer

to the mutual learning scheme [157] to learn the probability of each segment being foreground

from two stream features Xrgb and Xf : as shown in Fig. 7.3, we first employ three convolution

layers with LeakyRelu activations in between and a sigmoid function on Xrgb to get the segment-

level foreground probability distribution srgb ∈ RT , and the same to obtain sf ∈ RT with Xf . We

average them to get the final s ∈ RT : s = srgb+sf
2

.

Then, we first directly concatenate RGB and flow features in the feature dimension, i.e., con-

catenateXrgb andXf to formX ∈ RT×D, and inputX to two convolution layers with LeakyReLU

activations in between to learn the final fusion feature X̂ ∈ RT×D. The query learner module then

takes X̂ and C+1 randomly initialized learnable action category query embeddings, which can be

stacked to form a category query matrix Qinit ∈ R(C+1)×D, as inputs. In this module, we refer to

the Transformer decoder’s design [161] with our proposed query similarity loss to learn the final

category query matrix Q̂ ∈ R(C+1)×D, which contains the learned action category queries for C+1

classes. Finally, we feed X̂ through a convolution layer to learn the final video features K̂ ∈ RT×D

of the input video, used as the video key. The learned query matrix Q̂ and learned key matrix K̂

will be input to the following query-key attention module to produce the temporal class activation

map (T-CAM) A ∈ R(C+1)×T . The details are discussed in the following Sections.

7.2.4 Query Learner

The query Learner is an essential part of our VQK-Net model. It learns the video-specific action

category queries by exploiting both the video features and the correlation between different videos.

The final learned queries will be used to query and detect the corresponding actions along the tem-

poral dimension in the input video.
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Structure. As we explain in Section 7.1, different videos have different scenarios, so it is benefi-

cial to learn the video-specific action category queries that can best match the input video. Given

the input video x, we proposed to include the input video features X̂ into learning action cate-

gory queries instead of just learning the action category queries for all the videos based on Qinit.

In addition, learning action category queries for specific videos provides the possibility of using

correlations between videos to further enhance the learned action category queries.

To include the features learned from the input video, we refer to the Transformer decoder’s

design. The head attention operation function fh(·) used in our query learner is defined as:

fh(Q,K, V ) = HWO, (7.1)

where

H = fa(QWQ, KWK , V WV ), (7.2)

and

fa(Q,K, V ) = ς(
QK⊤
√
D

)V. (7.3)

Q,K, V are three input matrices, and WQ,WK ,WV and WO ∈ RD×D are learnable parameter

matrices. ς(·) takes a matrix as input, and it denotes that each row of its input is normalized using

the softmax operation.

As shown in Fig. 7.4(a), in our query learner, a head attention operation will first operate on

the initial action category query matrix Qinit itself, i.e., fh(Qinit, Qinit, Qinit). After that, a resid-

ual connection and Layer Normalization will be used to output Q1. The video feature X̂ will be

used in the second head attention operation to adapt action category queries with the video-specific

discriminated features, i.e., fh(Q1, X̂, X̂). The final output of query learner module is the learned
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Figure 7.3: Overview of our proposed VQK-Net model. ⊗, ⊘ and ⊙ denote the element-wise
multiplication, element-wise division and vector inner product.

action category query matrix Q̂ for the input video x.

Query similarity Loss. To improve the learned action category queries and achieve better perfor-

mance, we exploit the correlation between videos and propose a query similarity loss: For the k-th

action category, we define a set Vk that contains all the videos in the training set that has this action

in their ground-truth labels. For any two videos xi and xj in Vk, their learned action category query

matrices are Q̂i and Q̂j , and the rows of these matrices {q̂ci}C+1
c=1 and {q̂cj}C+1

c=1 are the learned query

vectors for C+1 categories, respectively. Ideally, we would like the k-th category query vectors

from these two sets, i.e., q̂ki and q̂kj , to have similar representations, because they should contain

the same abstract knowledge features for the k-th action category. The query similarity loss is

defined as:

LQS =
1

C + 1

C+1∑
k=1

1(|Vk|
2

) ∑
xi,xj∈Vk

xi ̸=xj

d(q̂ki , q̂
k
j ), (7.4)

where d(e1, e2) is the cosine distance:

d(e1, e2) = 1− e1 · e2
∥e1∥∥e2∥

, (7.5)
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where e1 and e2 are two input vectors, (·) is the inner product and ∥ · ∥ is the magnitude. The

smaller the cosine distance is, the more similar the feature vectors are.

7.2.5 Query-Key Attention

Finally, for the input video x, we have its final learned action category query matrix Q̂ and its video

features K̂ (used as the final video key). As shown in Fig. 7.4(b), each learned action category

vector (a row of Q̂) will be used to query on the video key K̂ at each time step by the vector inner

product, and the output value is the attention weight of the corresponding action occurring at a time

step. The higher the weight, the more likely that action occurs. Our query-key attention operation

is defined as:

ψ(Q,K) =
QK⊤
√
D
, (7.6)

where Q and K are two input matrices.

The temporal class activation map (T-CAM) A will be computed as:

A = ψ(Q̂, K̂), (7.7)

which contains the attention weight for each action along the temporal dimension (T ). The soft-

max operation will be performed on T-CAM to calculate some training losses that we illustrate in

Section 7.2.6, e.g., the video-level classification loss. The effect of extremely small gradient will

possibly be made after the softmax function, since the inner products could grow large in magni-

tude with a large value of D. Therefore, as defined in Eq. (7.6), we scale the value by 1/
√
D to

counteract this effect.
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Figure 7.4: (a) Query learner module. (b) Query-key attention module

7.2.6 Training Objectives

We adopt the top-k multiple instance learning strategy [154] to compute the video-level classifi-

cation loss. Given a training video x, since we only have its video-level class ground-truth label,

we will use the segment-level scores from its learned T-CAM A to first obtain the video-level

class scores by aggregating the top k values along the temporal dimension for each class in A, i.e.,

aggregating top k values in each row of A:

vc =
1

k
max
U⊂Ac
|U |=k

k∑
i=1

Ui, (7.8)

whereAc is a set containing T attention weight values from the c-th row ofA. Ui is the i-th element

in the set U . We set k = max(1, ⌊ T
m
⌋), and m is a hyper-parameter.

After that, we calculate the probability mass function (pmf) over all the action classes by ap-

plying softmax operation along the class dimension:
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pc =
exp(vc)∑C+1

c′=1
exp(vc′ )

, (7.9)

where c = 1, 2, ..., C + 1.

The video-level classification loss is computed as the cross-entropy loss between the ground-

truth pmf and the predicted pmf:

LAV CLS = −
C+1∑
c=1

yclog(pc), (7.10)

where [y1, y2, ....yC , yC+1] is the normalized ground-truth vector, and the background activity is

fixed to be a positive class since it always exists in the untrimmed videos.

Following the previous work[158], in order to better recognize the background activity and

reduce its impact during inference, we apply the learned s (defined in Section 7.2.3) to suppress

the background segments on the T-CAM A and obtain the background-suppressed T-CAM: Â =

s ⊗ A, in which s element-wise multiplies on every row of A. We then also calculate the video-

level classification loss LÂV CLS on Â, and the background is fixed as a negative class now since it

is suppressed. Our final video-level classification loss is denoted as: LV CLS = LAV CLS + LÂV CLS .

As described in Section 7.2.3, we adopt the mutual learning scheme [157] to learn the segment-

level probabilities of being foreground action from both the RGB and flow input streams, and srgb

and sf should align with each other as they both represent the foreground probability of each

segment along the temporal dimension T , so a mutual learning loss is used as:

LML =
1

2
(∥srgb − η(sf )∥22 + ∥η(srgb)− sf∥22), (7.11)

where ∥·∥2 is the L2 norm, and η(·) stops the gradient of its input, so that srgb and sf can be treated
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Table 7.1: The comparison with state-of-art TAL works on the THUMOS14 dataset. †refers to
using additional information, such as human pose or action frequency. I3D is abbreviation for I3D
features.

Supervision Method
mAP@IoU(%) AVG mAP(%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.5 0.3:0.7 0.1:0.7

Fully

TAL-Net [170] (CVPR’18) 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 39.8 45.1
GTAN [171] (CVPR’19) 69.1 63.7 57.8 47.2 38.8 - - 55.3 - -
VSGN [172] (ICCV’21) - - 66.7 60.4 52.4 41.0 30.4 - 50.2 -

RefactorNet [173] (CVPR’22) - - 70.7 65.4 58.6 47.0 32.1 - 54.8 -

Weakly†

3C-Net [174] (ICCV’19) 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5 - -
PreTrimNet [175] (AAAI’20) 57.5 54.7 41.4 32.1 23.1 14.2 7.7 41.0 23.7 23.7

SF-Net [176] (ECCV’20) 71.0 63.4 53.2 40.7 29.3 18.4 9.6 51.5 30.2 40.8
BackTAL [177] (TPAMI’22) - - 54.4 45.5 36.3 26.2 14.8 - 35.4 -

Weakly
(I3D)

STPN [167] (CVPR’18) 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0 18.5 27.0
Nguyen et at [178] (ICCV’19) 64.2 59.5 49.1 38.4 27.5 17.3 8.6 47.7 28.2 37.8

ACSNet [179] (AAAI’21) - - - 42.7 32.4 22.0 - - - -
HAM-Net [158] (AAAI’21) 65.9 59.6 52.2 43.1 32.6 21.9 12.5 50.7 32.5 39.8

UM [180] (AAAI’21) 67.5 61.2 52.3 43.4 33.7 22.9 12.1 51.6 32.9 41.9
FAC-Net [181] (ICCV’21) 67.6 62.1 52.6 44.3 33.4 22.5 12.7 52.0 33.1 42.2
AUMN [182] (CVPR’21) 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1 32.4 41.5
CO2-Net [157] (MM’21) 70.1 63.6 54.5 45.7 38.3 26.4 13.4 54.4 35.7 44.6

Zhao et at [183] (Multimed. Tools Appl.’22) 64.3 57.9 48.4 38.9 29.7 - - 47.8 - -
BaM+ACGNet [184] (AAAI’22) 68.1 62.6 53.1 44.6 34.7 22.6 12.0 52.6 33.4 42.5

MMSD [185] (TIP’22) 69.7 64.3 54.6 45.0 36.4 23.0 12.3 54.0 34.3 43.6
DCC [159] (CVPR’22) 69.0 63.8 55.9 45.9 35.7 24.3 13.7 54.1 35.1 44.0
FTCL [186] (CVPR’22) 69.6 63.4 55.2 45.2 35.6 23.7 12.2 53.8 34.4 43.6

ASM-LOC [187] (CVPR’22) 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 35.8 45.1
Huang et at [188] (CVPR’22) 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 35.9 45.1

DELU [189] (ECCV’22) 71.5 66.2 56.5 47.7 40.5 27.2 15.3 56.5 37.4 46.4
AMS [190] (TMM’22) 69.1 62.3 52.7 42.8 33.1 23.1 13.0 52.0 32.4 42.3

Xia et at [191] (Multimed. Tools Appl.’23) 60.2 54.5 46.9 27.6 28.2 - - 45.5 - -
F3-Net [192] (TMM’23) 69.4 63.6 54.2 46.0 36.5 - - 53.9 - -

VQK-Net (ours) 72.0 66.5 57.6 48.8 40.3 28.1 15.7 57.0 38.1 47.0

as pseudo-labels of each other.

Based on the assumption that an action is detected from a sparse subset of the video segments

[167], a sparsity loss LSparse is used for the segment-level probabilities srgb, sf , and s:

LSP =
1

3
(∥srgb∥1 + ∥sf∥1 + ∥s∥1). (7.12)

Moreover, since srgb, sf , s are the learned segment-level probabilities of being foreground ac-

tion, they should oppositely align with the probability distribution of the background class, which
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is learned from the query-key attention operation, i.e., the (C+1)-th row of A after it is applied by

softmax operation along the column (class) dimension, denoted as a = column softmax(A)[C+

1, : ] ∈ RT . We use the guide loss [158] to fulfill this goal:

LG =
1

3
(∥1 − a − srgb∥1 + ∥1 − a − sf∥1 + ∥1 − a − s∥1), (7.13)

where ∥ · ∥1 is the l1 norm, and 1 ∈ RT is a vector with all element values equal to 1.

We also adopt the co-activity similarity loss LCAS [154] that uses the video features X̂ and

suppressed T-CAM Â to better learn the video features and T-CAM 1.

Finally, we train our proposed VQK-Net model using the following joint loss function:

L = LV CLS + αLQS + LML + βLG + LCAS + γLSP , (7.14)

where α, β, and γ are the hyper-parameters.

7.2.7 Temporal Action Localization

During testing time, given a video x, we first calculate the video-level possibility of each action cat-

egory occurring in the video from background-suppressed T-CAM Â. We set a threshold to discard

the categories with probabilities less than the threshold (set to 0.2 in our experiments). For the re-

maining action classes, we threshold on the segment-level foreground probability distribution s to

get rid of the background segments and obtain the category-agnostic action proposals by selecting

the continuous components from the remaining segments. We calculate the proposal’s classifica-

tion score ε by using the outer-inner score [193] on Â. To enrich the proposal pool with proposals

in different scale levels, we use multiple thresholds to threshold on s. The soft non-maximum

1More details of the co-activity similarity loss a can be found in [154].
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suppression is performed for overlapped proposals.

7.3 Experiments

7.3.1 Experimental Settings

Datasets & Evaluation metrics. We evaluate our approach on three widely used action localiza-

tion datasets: THUMOS14 [194], ActivityNet1.2 [195], and ActivityNet1.3 [195].

THUMOS14 contains 200 validation videos and 213 test videos of 20 action categories. It is a

challenging benchmark. The videos inside have various lengths, and the actions frequently occur

(on average, 15.5 activity instances per video). We use the validation videos for training and the

test videos for testing.

ActivityNet1.2 dataset has 4819 training videos, 2383 validation videos and 2489 test videos

of 100 action classes. It contains around 1.5 activity instances per video. Since the ground-truth

annotations for the test videos are withheld for the challenge, we utilize the validation videos for

testing.

ActivityNet1.3 dataset has 10024 training videos, 4926 validation videos, and 5044 test videos

of 200 action classes. It contains around 1.6 activity instances per video. Since the ground-truth

annotations for the test videos are withheld for the challenge, we utilize the validation videos for

testing.

We evaluate our method with the mean average precision (mAP) at various intersections over

union (IoU) thresholds. We utilize the officially released valuation code to calculate the evaluation

metrics [195].

Implementation details. In this work, we sample the video streams into non-overlapping 16

frames segments and apply the I3D network [168] pre-trained on Kinetics[204] to extract the 1024-
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Table 7.2: Comparisons with state-of-art works on ActivityNet1.2 dataset. AVG means the average
mAP from IoU 0.5 to 0.95 with step size 0.05.

Supervision Method
mAP@IoU (%)

0.5 0.75 0.95 AVG

Fully SSN [196] 41.3 27.0 6.1 26.6

Weakly†
SF-Net [176] 37.8 24.6 10.3 22.8

Lee et al [197] 44.0 26.0 5.9 26.8
BackTAL[177] 41.5 27.3 14.4 27.0

Weakly(I3D)

DGAM [198] 41.0 23.5 5.3 24.4
HAM-Net [158] 41.0 24.8 5.3 25.1

UM [180] 41.2 25.6 6.0 25.9
ACSNet [179] 41.1 26.1 6.8 26.0
CO2-Net [157] 43.3 26.3 5.2 26.4
AUMN [182] 42.0 25.0 5.6 25.5
D2Net [199] 42.3 25.5 5.8 26.0

Zhao et at [183] 32.7 21.5 8.4 20.9

VQK-Net (ours) 44.5 26.6 5.1 26.8

dimensional segment-level RGB and flow features. For a fair comparison, we do not finetune the

feature extractor. During the training stage, we randomly sample T = 500 segments for the

THUMOS14 dataset and T = 60 segments for the ActivityNet1.2 and ActivityNet1.3 datasets.

During the evaluation stage, all segments are taken. The values of α, β, and γ used in Eq. (7.14)

were determined experimentally. We found their optimal values to be: α = 5, β = 0.8, and

γ = 0.8 for the THUMOS14 dataset, and α = 10, β = 0.8, and γ = 0.8 for ActivityNet1.2 and

ActivityNet1.3 datasets. To determine k in Eq. (7.8), m is set to 7 for the THUMOS14 dataset, 4

for the ActivityNet1.2 dataset, and 6 for the ActivityNet1.3 dataset.

At the training stage, we sample 10 videos as a batch. In each batch, there are at least three

pairs of videos such that each pair has at least one action category in common. We use the Adam

optimizer [35] with a learning rate of 0.00005 and weight decay rate of 0.001 for THUMOS14, a
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Table 7.3: Comparisons with state-of-art works on ActivityNet1.3 dataset. AVG means the average
mAP from IoU 0.5 to 0.95 with step size 0.05.

Supervision Method
mAP@IoU (%)

0.5 0.75 0.95 AVG

Fully
SSN [196] 39.1 23.5 5.5 24.0

PCG-TAL [200] 44.3 29.9 5.5 28.9

Weakly(I3D)

STPN [167] 29.4 16.9 2.6 -
TSCN [201] 35.3 21.4 5.3 21.7
UM [180] 41.2 25.6 6.0 25.9

ACSNet [179] 36.3 24.2 5.8 23.9
AUMN [182] 38.3 23.5 5.2 23.5
TS-PCA [202] 37.4 23.5 5.9 23.7
UGCT [203] 39.1 22.4 5.8 23.8

FACNet [181] 37.6 24.2 6.0 24.0
FTCL [186] 40.0 24.3 6.4 24.8

Huang et at [188] 40.6 24.6 5.9 25.0
Xia et at [191] 36.2 22.6 5.4 22.4

VQK-Net (ours) 42.4 26.4 5.5 26.3

learning rate of 0.00003 and weight decay rate of 0.0005 for ActivityNet1.2 and ActivityNet1.3.

For action localization, we use multiple thresholds from 0.1 to 0.9 with a step of 0.08, and we

perform soft non-maximum suppression with an IoU threshold of 0.7. All the experiments are

performed on a single NVIDIA Quadro RTX 8000 GPU.

7.4 Results

7.4.1 Comparison with State-of-art Methods

In Table 7.1, Table 7.2, and Table 7.3, we compare our method with the existing state-of-art weakly-

supervised methods and some fully-supervised methods. For the THUMOS14 dataset. We show

mAP scores at different IoU thresholds from 0.1 to 0.7 with a step size of 0.1. Our VQK-Net model
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outperforms recent weakly-supervised approaches and establishes new state-of-the-art results on

most IoU metrics. Moreover, our model outperforms some fully-supervised TAL methods and even

some recent methods using additional weak supervisions, such as human pose or action frequency.

For the ActivityNet1.2 and ActivityNet1.3 datasets, our method also reach state-of-art performance

and outperforms some recent fully-supervised methods and the recent methods with additional

weak supervisions. These results indicate the effectiveness of our proposed method.

Table 7.4: Evaluation of uniform and video-specific query learning strategies on THUMOS14.

Exp 0.1 0.2 0.3 0.4 0.5 0.6 0.7
AVG mAP (%)

(0.1:0.5) (0.1:0.7)
Uniform 69.7 64.3 55.6 46.7 39.0 26.2 13.8 55.1 45.1

Video-specific 72.0 66.5 57.6 48.8 40.3 28.1 15.7 57.0 47.0

7.4.2 Ablation Studies & Qualitative Results

Analysis on query learning strategies. In the process of designing the query-key (q-k) atten-

tion mechanism, we investigate different strategies to learn our action categories queries. The

performance of uniform and video-specific strategies was evaluated on the THUMOS14 dataset

in Table 7.4. In the table, we first show the results of using the uniform strategy. In this experi-

ment, the model does not include the video features in learning and learns a set of uniform action

category queries for all the videos, i.e., the learned queries are not video-specific. The model sim-

ply relies on the learnable initial query embeddings, and we do not use the query learner module

(Fig. 7.4(a)) in Fig. 7.3. The query similarity loss is not applicable in this case because it relies on

the correlation of videos.

While with the video-specific strategy, the model learns the video-specific action category

queries, as described in Fig. 7.3 and Section 7.2.4. From the table, it can be observed that the
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Table 7.5: Analysis of distance function used in query similarity loss on THUMOS14.

Exp
AVG mAP (%)

(0.1:0.5) (0.1:0.7)
Cosine 57.0 47.0

Jensen-Shannon 55.9 45.7
Euclidean 55.1 45.1
Manhattan 54.8 44.8

video-specific query learning strategy outperforms the uniform strategy quantitatively.

Fig. 7.5(b) shows the visualization of VQK-Net’s learned action category queries for C+1 cat-

egories (including background) on test videos of THUMOS14 (C = 20), where the video-specific

query learning strategy is used. Fig. 7.5(a) shows the learned action category queries using the

uniform query learning strategy. From Fig. 7.5(b), we can observe that there are 21 clusters of

video-specific action queries for all test videos. This observation aligns with our hypothesis: the

learned 21 category queries for each input video contain the abstract action knowledge features of

21 action categories, respectively, and compared to the uniform learning strategy where all videos

have the same 21 action category queries (Fig. 7.5(a)), video-specific action category queries have

the ability to variant based on different input video scenes, to work optimally under the target video

scenario while maintaining the core action knowledge features used to detect and identify actions

in the target videos.

We show some representative examples in Fig. 7.6. For each example, the top row represents

the ground truth localization. The uniform and video-specific correspond to the experiments from

Table 7.4. From Fig. 7.6, we can see that the video-specific query-key attention strategy predicts

better localization against the uniform query-key attention strategy, demonstrating the effective-

ness of the video-specific query-key attention modeling. Besides the increased precision in the

localization, the video-specific approach can correct some missing detections from the uniform
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(a) Uniform (b) Video-specific

Figure 7.5: Visualization of the learned action category queries on THUMOS14 test videos via
t-SNE[205].

approach. In addition, even though some examples have frequent action occurrences, our VQK-

Net model successfully detects all the action instances, which shows the ability to handle dense

action occurrences.

Analysis of the distance function in query similarity loss. In Table 7.5, we present the analysis

of the distance function used in the query similarity loss (Eq. (7.4)). We can see that the cosine

similarity distance performs the best, and the Jensen-Shannon distance is the second, while the

Euclidean and Manhattan have a poor performance. This result aligns with the nature of our

learned queries. Since the VQK-Net learns the video-specific action queries that could fit under

different scenarios, the learned queries should not be precisely identical among different videos,

as illustrated in the comparison in Fig. 7.5. Therefore, using absolute distance such as Euclidean,

Manhattan, etc., will not be appropriate.
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7.5 Conclusion

This chapter introduces the VQK-Net model, which emulates human action localization by em-

ploying video-specific query-key attention modeling. VQK-Net learns video-specific action cate-

gory queries that contain abstract-level action knowledge and can adapt to the target video scenario.

We utilize these learned action categories to identify and localize the corresponding activities in

different videos. We devise a novel video-specific action category query learner accompanied by

a query similarity loss, which steers the query learning process leveraging video correlations. Our

method demonstrates state-of-the-art performance on WTAL benchmarks.
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(a) An example of CliffDiving action

GT

Uniform

Video-specific

(b) An example of HammerThrow action

(c) An example of ThrowDiscus action

Figure 7.6: Qualitative results on THUMOS14. The horizontal axis denotes time. The first plot
is the ground truth (GT) action intervals. The remaining two plots illustrate the detection scores
of ground truth action, shown in green curves, and the detected action instances using the uniform
and video-specific query-key attention strategies, respectively.
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