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ABSTRACT

Within the realm of medical diagnostics, the analysis of chest radiographs using machine learn-

ing has made considerable progress, particularly with the classification of pneumonia. This thesis

details the enhancement of convolutional neural networks (CNNs) through fine-tuning to improve

pneumonia detection on the MIMIC-CXR-JPG dataset.

This study acknowledges the challenges of manual X-ray examination, which requires expert

interpretation and is subject to diagnostic variability. To address these challenges, this research

employed advanced machine learning techniques, aiming to bolster the accuracy and reliability of

pneumonia diagnosis—a critical factor in clinical decision-making.

The methodology incorporated comprehensive preprocessing, including the rectification of

class imbalances and the adoption of data augmentation strategies to foster model robustness and

generalizability.

The empirical results are compelling. The baseline CNN model registered a high error rate of

0.7688. After fine-tuning, the error rate was significantly lowered to 0.3133. Moreover, the model’s

diagnostic capability was reflected in the area under the receiver operating characteristic curve

(AUC), achieving scores of 0.72 for bacterial pneumonia and no pneumonia, and an outstanding

0.89 for viral pneumonia. Additionally, the average precision (AP) for bacterial pneumonia reached

0.50, and 0.85 for cases without pneumonia, further showcasing the model’s refined predictive

power.

In conclusion, the success of fine-tuning CNNs on the MIMIC-CXR-JPG dataset marks a sub-

stantial stride in the diagnosis of pneumonia from chest X-rays, which may hold significant promise

for the integration of machine learning in the broader spectrum of medical image analysis.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Chest Radiology: A Pillar in Lung Disease Diagnosis

Radiology, particularly through the use of chest X-rays, plays a pivotal role in disease diagno-

sis. The non-invasive nature of radiology offers essential insights into the body’s internal state,

crucial for diagnosing various diseases[1]. Chest X-rays are among the most frequently ordered

radiological tests and serve as a key diagnostic tool in many clinical settings[2].

The effectiveness of chest X-rays in revealing thoracic cavity pathologies is well-documented.

They provide critical information about the lungs, heart, and the bony structures of the chest, instru-

mental in detecting conditions such as pneumonia, tuberculosis, lung cancer, heart abnormalities,

and skeletal issues[3].

1.1.2 Challenges in Chest X-ray Interpretation: Expertise and Accessibility

Despite their utility, interpreting chest X-rays requires significant expertise and training[4]. The

demand for radiology services often exceeds the availability of expert radiologists, especially in

resource-limited settings. In the U.S., there is a noted decrease in the ratio of radiologists to the

overall physician workforce, with a distribution skewing towards urban areas[5]. This leads to

non-specialists like intensivists and emergency physicians often providing initial interpretations,

which may not be as accurate or comprehensive, potentially delaying effective patient care.

This challenge is more pronounced in resource-poor regions. For example, Rwanda, with a

population of 12 million, had only 11 radiologists as of 2015[6], and Liberia, with four million

people, had just two practicing radiologists[7]. Such scarcity of specialists can significantly delay

diagnoses and overwhelm the available medical professionals.
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1.1.3 Integration of Machine Learning in Radiology

In response to these challenges, there has been a growing emphasis on integrating machine learn-

ing technologies in chest X-ray analysis. Machine learning models, especially deep learning tech-

niques like convolutional neural networks, have shown promise in accurately identifying and clas-

sifying lung diseases in X-ray images. Successes in detecting diseases such as pneumonia and

COVID-19 demonstrate the potential of these models to supplement traditional diagnostic meth-

ods[8].

However, a major hurdle remains: the lack of explainability in these machine learning mod-

els[9]. The ability to understand how a model arrives at a diagnosis is crucial in medical settings,

where trust and clarity in decision-making are paramount. The current ’black box’ nature of many

models limits their practical application in real-life clinical scenarios.

This thesis addresses both the accuracy and the explainability of machine learning models

in chest X-ray analysis. By fine-tuning a disease classification model on the MIMIC-CXR-JPG

dataset, the research aims to enhance model performance while also making strides in the inter-

pretability of the results. This endeavor seeks to not only support radiologists in making more

informed decisions but also extend expert-level diagnostic support to under-served regions, thus

democratizing access to quality medical diagnostics.

1.2 Objectives

The objective of this thesis is the fine-tuning of advanced machine learning models for the en-

hanced classification of pneumonia in chest X-ray images. This endeavor focuses on refining the

models’ architecture and hyperparameters and rigorously optimizing the training process specif-

ically for the MIMIC-CXR-JPG dataset. The goal is to substantially boost the accuracy and re-

liability of disease detection, ensuring the models’ applicability and utility in actual clinical en-

vironments. By concentrating exclusively on these technical improvements, the research aims to

contribute significantly to the field of medical diagnostics, particularly in improving the speed and
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precision of pneumonia diagnosis in chest radiography.

1.3 Significance

The enhancement of disease classification models through machine learning, particularly in the

fine-tuning of algorithms for chest radiography, is of considerable significance in modern medi-

cal diagnostics. By elevating the accuracy and reliability of pneumonia detection in chest X-ray

images, this research stands to substantially improve the early diagnosis and consequent manage-

ment of this condition. Improved diagnostics directly translate to better patient care by supporting

prompt and precise treatment decisions. The meticulous process of fine-tuning machine learning

models on the MIMIC-CXR-JPG dataset demonstrates a practical approach to overcoming current

limitations in automated radiographic analysis. Thus, this work is poised to make a substantial

impact on patient outcomes and the efficacy of healthcare systems globally.

1.4 Structure of the Thesis

In this thesis, I embark on a comprehensive exploration of the application of machine learning in

medical imaging, with a specific focus on chest X-ray imaging for disease diagnosis and causal

analysis in medical research. The structure of the thesis is organized as follows:

Literature Review This section delves into the historical and current use of chest X-rays in medi-

cal diagnostics, reviews the advancements in machine learning applications in medical imag-

ing, and examines causal analysis methods in medical research. It identifies gaps in existing

research that this thesis aims to address, particularly in the fine-tuning of disease classifica-

tion models.

Methodology The methodology chapter outlines the specifics of the MIMIC-CXR-JPG dataset

and the detailed process of model development and fine-tuning. The statistical and machine

learning methods utilized for fine-tuning and their optimization for disease classification are

described, with an emphasis on the novel contributions of this study.
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Results Performance metrics of the fine-tuned models are reported in this section, focusing on

how these models enhance pneumonia classification. A critical comparison with previous

studies is provided, highlighting the incremental improvements and novel insights offered

by the fine-tuned models.

Discussion The implications of the fine-tuned model’s performance are discussed in relation to the

existing literature, emphasizing the advancement and practical implications of the study’s

findings. Challenges faced, limitations encountered, and potential areas for future research

are also elaborated upon.

Conclusion The thesis concludes with a reflective summary of key findings, contemplating the

impact of this research on medical diagnostics and treatment planning. Final thoughts on the

interface of integrating machine learning in medical research and practice are provided.

This structure is designed to guide the reader through a logical progression of topics, from a broad

understanding of the field to specific insights derived from this research, culminating in a reflection

on the broader implications and future directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Chest X-ray Imaging in Disease Diagnosis

The inception of chest X-ray imaging can be traced back to 1895, with Wilhelm Conrad Röntgen’s

discovery of X-rays [10]. This groundbreaking technology rapidly became a staple in medical

diagnostics, offering a non-invasive glimpse into the internal structures of the body. Over the

years, chest X-ray technology has evolved significantly. The field has progressed from film-based

radiography, with its inherent limitations, to advanced digital radiography, enhancing image quality

and reducing radiation exposure[10].

Today, chest X-rays are one of the most commonly performed radiological examinations, vital

in the rapid assessment and diagnosis of thoracic diseases[2]. They are especially effective in

diagnosing a range of conditions, including lung infections like pneumonia, structural anomalies

such as fractures, and chronic conditions like lung cancer[3]. The advent of digital radiography

and subsequent improvements in image processing have further solidified their role in clinical

diagnostics[11].

Despite these advancements, the interpretation of chest X-rays remains a challenge. It requires

a high degree of expertise, and there is often variability in interpretation among radiologists. The

ability to detect subtle pathological changes is another area where even skilled professionals can

struggle, impacting the accuracy of diagnoses[5]. Additionally, the global disparity in access to

radiology services, particularly in low-resource settings, poses a significant challenge. In many

parts of the world, a shortage of trained radiologists leads to delayed diagnoses and treatment,

impacting patient outcomes[6].

In conclusion, while chest X-rays are a fundamental diagnostic tool, their effectiveness is lim-

ited by challenges in interpretation and global disparities in access to skilled radiologists. These
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issues highlight the need for innovative solutions, such as machine learning, to augment the diag-

nostic process, paving the way for the next section of this thesis, which discusses the integration

of machine learning in medical imaging[12].

2.2 Machine Learning for Medical Imaging

Machine learning, particularly its application in medical imaging, has undergone significant trans-

formation over recent years[13]. Its inception marked a pivotal shift in how medical images are

analyzed, offering a powerful tool for enhancing diagnostic accuracy[14]. Among the various

branches of machine learning, deep learning has emerged as a particularly influential technology

in medical imaging[15]. Deep learning, characterized by its use of neural networks with multi-

ple layers, has demonstrated advantages over traditional machine learning methods, especially in

handling complex image data[16].

In the realm of disease classification, deep learning models, such as Convolutional Neural

Networks (CNNs), have become increasingly prominent. These models are adept at extracting

intricate patterns from medical images, leading to more accurate and reliable disease detection

and classification[17]. For instance, in chest X-ray analysis, deep learning techniques have shown

remarkable success in identifying conditions such as pneumonia [18], tuberculosis[19], and even

signs of COVID-19 [8] [20].

Several landmark studies and models exemplify the successful application of deep learning in

medical imaging. Notably, the U-Net architecture revolutionized medical image segmentation with

its effective and efficient structure, especially notable in its application to biomedical image seg-

mentation [21]. The DeepLesion dataset significantly advanced the field by providing a large-scale

dataset for lesion annotations in CT images, aiding in the development of universal lesion detec-

tion frameworks [22]. Additionally, anomaly detection in medical images was made successful

through Generative Adversarial Networks (GANs), particularly in optical coherence tomography

of the retina [23]. These examples underscore the potential of deep learning in revolutionizing the

field of radiological diagnostics.
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Despite these successes, the application of deep learning in medical imaging is not without its

challenges and limitations. Issues such as the need for large labeled datasets, model interpretabil-

ity, and the generalizability of these models across different populations and imaging equipment

remain significant hurdles[24]. Addressing these challenges is crucial for the wider adoption and

effective utilization of deep learning in clinical settings.

2.3 Gap in Existing Research

Current research in machine learning for medical imaging is progressing, yet it confronts signifi-

cant challenges that impede optimal model performance, particularly in the accurate and general-

izable classification of diseases from imaging data. Issues such as overfitting and the ’black box’

nature of deep learning models hinder their full integration and trust in clinical practice. Moreover,

there is an identified need for improved techniques in model optimization and data handling to

enhance the recognition of less common diseases, such as viral pneumonia, where models often

underperform. This research aims to bridge these gaps by focusing on fine-tuning strategies to

bolster the precision and interpretability of machine learning models, ensuring their effectiveness

across diverse clinical scenarios.
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CHAPTER 3

TECHNICAL APPROACH

3.1 Dataset and Preprocessing

For this project, I use the MIMIC-CXR-JPG dataset (See Figure 3.1 for a sample batch). The

MIMIC-CXR-JPG dataset is a substantial, publicly accessible database of labeled chest radio-

graphs designed to facilitate and support a broad range of research in medical computer vision.

Derived from the Beth Israel Deaconess Medical Center, it comprises 377,110 chest X-ray images

associated with 227,827 imaging studies conducted between 2011 and 2016. This dataset stands

out for its size and the richness of the accompanying data, including 14 labels derived from the

analysis of corresponding free-text radiology reports through natural language processing tools. A

significant aspect of the MIMIC-CXR-JPG dataset is its focus on providing a standardized refer-

ence for data splits and image labels, which is essential for developing accurate automated analysis

techniques for chest radiographs.

I focused on subsets p10, p11, and p13, which represent 3 of the 10 patient groups, a significant

portion of the entire repository. This subset includes over 100,000 chest radiographs, indicative of

the dataset’s diversity in patient demographics, clinical conditions, and imaging techniques. The

preprocessing steps, crucial for preparing the dataset for machine learning applications, involve

converting images from DICOM to JPEG format, normalizing image intensities, standardizing

resolutions, and de-identification to ensure patient privacy.[25]

3.1.1 Labeling

Additionally, the original MIMIC-CXR-JPG dataset, processed with NegBio[26] and CheXpert[27]

(both areautomated natural language processing tools, enabling precise identification and classifi-

cation of radiological findings from free-text radiology reports by leveraging advanced algorithms
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Figure 3.1: Representative Chest X-ray Images from the Dataset. This collage showcases sample
images from each of the three classes: ’No Pneumonia’, ’Bacterial Pneumonia’, and ’Viral Pneu-
monia’, illustrating the diversity of cases that the model is being trained to recognize and classify.

to analyze and interpret unstructured medical text data) for label extraction, does not differentiate

between bacterial and viral pneumonia. To overcome this limitation, I integrated the MIMIC-

CXR-JPG dataset with the MIMIC-IV[28] dataset, leveraging the shared patient identifiers to ex-

tract detailed diagnostic information with ICD9 and ICD10 codes (The International Classification

of Diseases (ICD) is a globally used diagnostic tool for epidemiology, health management, and

clinical purposes, classifying diseases, signs and symptoms, abnormal findings, complaints, social

circumstances, and external causes of injury or diseases). This integration enabled us to manu-

ally label images with more specific diagnoses, categorizing them into no-pneumonia, bacterial
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pneumonia, and viral pneumonia based on the detailed diagnostic titles. This manual labeling (See

Appendix A) process was critical for accurately classifying the chest radiographs into my targeted

categories, enhancing the dataset’s utility for my specific research objectives. Patients diagnosed

with both viral and bacterial pneumonia simultaneously, as well as those without a specific type of

pneumonia diagnosed and no further diagnosis available, were excluded from my analysis. This

step was necessary to maintain clear, unambiguous categorizations for my study. As a result,

approximately 15,000 images were excluded, leaving a total of 87,635 chest X-ray images with

accurate labels for my research.

3.1.2 Address Class Imbalance

Figure 3.2: Distribution of Chest X-ray Categories in the subset of MIMIC-CXR-JPG Dataset.
This pie chart illustrates the proportion of images classified as ’No Pneumonia’, ’Bacterial Pneu-
monia’, and ’Viral Pneumonia’, highlighting the dataset’s imbalance and informing my data aug-
mentation strategy.

Figure 3.2 showing the distribution of categories within subsets p10, p11, and p12 is pre-
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sented here, highlighting the initial class imbalance. To address the significant class imbalance

and to refine disease classification, I implemented upscaling for minority classes and downscaling

for over-represented classes. These approaches aimed to balance the dataset for more effective

model training. By employing these data manipulation and labeling strategies, I aimed to create

a balanced and accurately labeled dataset, facilitating the development of robust machine learning

models capable of distinguishing between complex disease states.

3.1.3 Data Augementation

To enhance the model’s ability to generalize from the training data to unseen images, I applied a

series of data augmentation techniques. These transformations simulate possible variations in chest

X-ray images that a model might encounter in real-world scenarios. The augmentation pipeline was

carefully designed to include the following transformations:

• Rotation: Images were rotated by up to 10 degrees to account for variations in patient posi-

tioning.

• Zooming: A maximum zoom of 1.1x provided slight magnification effects, mimicking closer

or farther imaging.

• Lighting: Brightness and contrast adjustments were capped at 20% to replicate different

radiographic exposure conditions.

• Affine Transforms: Applied with a probability of 75%, these transforms simulate small trans-

lations, scales, and shears that can occur during image acquisition.

• Lighting Transforms: With a 75% chance, subtle lighting variations were introduced to pre-

pare the model for changes in image illumination.

No horizontal flipping or warping was used, as these do not represent common variations in

chest X-ray imaging. The applied augmentation techniques are integral to the robustness of the
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training process, ensuring the model’s performance is not solely tied to the specificities of the

training set images.

This approach aims to improve the model’s diagnostic accuracy by providing a more compre-

hensive ’understanding’ of chest X-ray appearances under various conditions.

3.2 Model Development and Fine-Tuning

3.2.1 Model Development

The journey to identify the most effective machine learning framework for disease classification

with the MIMIC-CXR-JPG dataset was both extensive and insightful. my exploration spanned

from Hugging Face’s transformers, renowned for their adaptability in various tasks, to the precise

and fast object detection capabilities of YOLOv8, and the flexible, robust environments of Tensor-

Flow and PyTorch. However, these initial considerations encountered specific challenges, particu-

larly with YOLOv8’s stringent data input requirements and the absence of bounding box annota-

tions in the MIMIC-CXR-JPG dataset, which proved incompatible with my project’s needs. These

hurdles highlighted the importance of selecting a framework not only for its technical prowess but

also for its compatibility with the dataset in use.

The selection of Fastai model on Huggingface [29] marked a significant turning point in my

model development process. Figure 3.3 shows its typical CNN structure. Unlike the other frame-

works, Fastai facilitated a more streamlined and efficient approach to determining the optimal

learning rate (Figure 3.4), a crucial aspect of hyperparameter tuning that often dictates the suc-

cess of model training. Fastai’s user-friendly interface and powerful tools, including the learning

rate finder, data augmentation techniques, and early stopping mechanisms, enabled us to fine-tune

my models with greater precision and less trial and error. This adaptability was instrumental in

overcoming the challenges previously faced, allowing for the development of sophisticated mod-

els capable of accurately classifying a range of diseases from chest radiographs, thereby leveraging

the rich diversity and complexity of the MIMIC-CXR-JPG dataset to its fullest potential.
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Figure 3.3: Model Structure of the Huggingface Model I used

3.2.2 Data Sampling Strategies

Experiment 1: Weighted Sampling

In the first experiment, a weighted sampling approach was implemented to mitigate the impact of

class imbalance. Weights were assigned to each sample based on the inverse frequency of the class

labels in the dataset. The WeightedRandomSampler from PyTorch was utilized to ensure that each

batch of data had a proportional representation of classes during training, which is crucial for a

balanced view on the model’s performance across different classes.

Experiment 2: Downsampling

The second experiment involved downsampling the majority class to match the size of the minority

classes. This approach reduced the prevalence of the ’no pneumonia’ class in the training data to

create a balanced distribution. The downsampling was performed by randomly selecting a subset

of the majority class to match the number of samples in the minority class, ensuring each class had
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Figure 3.4: Learning rate finder plot demonstrating the relationship between the learning rate and
model loss. The ’valley’ indicates the optimal learning rate where the gradient is the steepest,
suggesting the boundary of effective learning rates for model training.

an equal chance of influencing the model’s learning process.

Experiment 3: Upsampling

For the third experiment, upsampling techniques were applied to the minority classes. This was

done by replicating the ’bacterial pneumonia’ and ’viral pneumonia’ samples to match the count

of the ’no pneumonia’ samples. This oversampling aimed to amplify the signal from the minority

classes, giving them equal representation during the model training phase and allowing the model

to learn from a more balanced dataset.

Furthermore, to optimize my training process and computational efficiency, I implemented an

early stopping mechanism. This technique monitors the model’s performance on the validation

set and halts training when there is no improvement over a set number of epochs, preventing

overfitting and unnecessary use of computational resources. Concurrently, model checkpointing

was employed to save the state of the model at regular intervals. This safeguarded against potential
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crashes and allowed us to revert to the best performing model instance without starting the training

anew.

To assess the performance of my fine-tuned models, I employed a comprehensive set of met-

rics, including accuracy, precision, recall, and the F1 score, alongside more nuanced analyses such

as the Receiver Operating Characteristic (ROC) curve and the precision-recall curve. These met-

rics were pivotal in evaluating my models’ capability to classify diseases accurately from chest

radiographs, ensuring a balanced consideration of both the models’ sensitivity and specificity. The

ROC curve, in particular, provided insights into the trade-off between true positive rates and false

positive rates at various threshold settings, while the precision-recall curve was instrumental in

understanding the models’ performance in the context of class imbalances inherent in the MIMIC-

CXR-JPG dataset.

This adaptability was instrumental in overcoming the challenges previously faced, allowing for

the development of sophisticated models capable of accurately classifying a range of diseases from

chest radiographs, thereby leveraging the rich diversity and complexity of the MIMIC-CXR-JPG

dataset to its fullest potential.

3.3 Causal Analysis Approach

The causal analysis was conducted using logistic regression models to understand the relationship

between antibiotic treatment and mortality rates in patients with pneumonia, as identified from

chest X-ray images. The initial analysis involved calculating the probability of death with respect

to antibiotic treatment. Cross-tabulations were used to examine the distribution of predicted pneu-

monia cases and antibiotic treatments among the deceased and surviving patients. Subsequently,

logistic regression was used to model the likelihood of death based on the predicted pneumonia

diagnosis and antibiotic treatment, both independently and interactively.
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CHAPTER 4

RESULTS

4.1 Model Performances

This section presents the outcomes of three fine-tuning experiments conducted with the MIMIC-

CXR-JPG dataset, aimed at improving disease classification accuracy through data manipulation

strategies. The evaluation metrics include precision, recall, error rate, and the analysis of ROC and

precision-recall curves.

Three distinct experiments were designed:

1. Utilizing the original dataset without modification.

2. Downsizing the over-represented classes to address imbalance.

3. Upscaling the under-represented classes to ensure equitable representation.

4.1.1 Original data experiment Results

Prior to fine-tuning, the baseline model was evaluated on the training data to establish initial per-

formance benchmarks. The model exhibited a high error rate of 0.7688, indicating substantial

room for improvement. The model is then fine-tuned with 87,635 images.

The fine-tuning of the model was conducted over five epochs. The learning metrics recorded

during this process are displayed in Table 4.1, which provides a detailed overview of the model’s

performance across each epoch.

Throughout five epochs, A steady decrease in training loss from 0.7603 to 0.6608, demonstrat-

ing progressive learning and adaptation to the data. The validation loss decreased and then slightly

increased, with the lowest recorded at the third epoch (0.6511), suggesting early signs of model

convergence. The error rate mirrored the trend of the validation loss, initially decreasing to 0.3018
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epoch train loss valid loss error rate time
0 0.760334 0.693737 0.304330 4:21:12
1 0.680318 0.649643 0.303132 4:17:59
2 0.673902 0.651063 0.301820 5:09:03
3 0.682496 0.656503 0.304216 4:27:08
4 0.660837 0.667233 0.313345 4:15:30

Table 4.1: Epoch-wise Training and Validation Performance Metrics. This table summarizes the
training loss, validation loss, and error rate for each epoch during the fine-tuning of the model,
alongside the time taken to complete each epoch.

before a slight uptick, ending at 0.3133 in the final epoch. Each epoch took a considerable amount

of time, ranging from just over 4 hours to more than 5 hours, underscoring the computational

demands of the training process.

The outcomes of the model’s classification capabilities are depicted through several figures:

Figure 4.1: Confusion Matrix of Disease Classification. The matrix displays the number of true
and false predictions for each class, highlighting the model’s performance in accurately identifying
’no pneumonia’, ’bacterial pneumonia’, and ’viral pneumonia’ cases.

The confusion matrix (Figure 4.1) reveals a high number of correct predictions for ’no pneu-
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monia’ cases, but also a notable number of false negatives for ’bacterial pneumonia.’ There were

relatively few cases of ’viral pneumonia,’ which is reflected in the lower true positive count for this

class.

Figure 4.2: ROC Curves for Multi-Class Classification. This figure plots the true positive rate
against the false positive rate for each class, with the area under each curve (AUC) providing a
measure of the model’s ability to distinguish between classes.

The ROC curves (Figure 4.2) indicate that the model’s ability to distinguish between the ’no

pneumonia’ and ’bacterial pneumonia’ classes (Classes 0 and 1) is relatively strong, with AUC

values above 0.6. However, the curve for ’viral pneumonia’ (Class 2) is closer to the line of no-

discrimination, highlighting a potential area for model improvement.

The precision-recall curves (Figure 4.3) suggest that while the model has a reasonable precision

when identifying ’no pneumonia’ and ’bacterial pneumonia,’ its precision for ’viral pneumonia’ is

significantly lower, as evidenced by the AP of 0.01 for Class 2, suggesting a difficulty in detecting

this class without a high number of false positives.
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Figure 4.3: Precision-Recall Curves for Each Class. The curves demonstrate the trade-off between
precision and recall for the different pneumonia classifications, with the average precision (AP)
score indicating the model’s precision across varying thresholds.

4.1.2 Downscaled Experiment Results

Before fine-tuning, the baseline model’s performance on the training data was assessed, yielding

an error rate of 0.6223. After downsampling, the model is thus fine-tuned with 53,340 images.

These baseline metrics provided a reference point from which the impact of the downsampling

strategy could be measured. The fine-tuning was then carried out across several epochs, with the

following outcomes:

epoch train loss valid loss error rate time
0 0.847327 0.768610 0.562054 1:49:21
1 0.869448 1.289961 0.671897 1:52:17
2 0.871380 2.798309 0.320685 1:51:30
3 0.771945 0.762363 0.436234 1:50:24

Table 4.2: Training Dynamics Over Epochs with Downsampling Strategy. This table captures
the changes in training loss, validation loss, and error rate, providing a clear view of the model’s
performance across each epoch after implementing downsampling to balance the classes.
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The table (Table 4.2) shows initial reductions in training loss, but this trend reverses in later

epochs, suggesting potential overfitting to the training data. The error rate decreases notably in the

third epoch, indicating some improvement in model performance.

The evolution of model performance through the fine-tuning epochs can be visualized in the

confusion matrix, ROC curve, and precision-recall curve, as shown in Figures 4.4, 4.5, and 4.6.

Figure 4.4: Confusion Matrix from down-sampling trainig. This matrix shows the distribution of
predicted versus actual labels after applying the downsampling technique, highlighting the model’s
classification performance.

The confusion matrix (Figure 4.4) highlights that the model is more accurately classifying ’no

pneumonia’ after downsampling, but there is still confusion between ’bacterial pneumonia’ and

’no pneumonia’ categories.

The ROC curves (Figure 4.5) show a fairly consistent AUC for each class, indicating a sta-

ble ability to distinguish between classes. However, no substantial increase in AUC is observed,

suggesting room for improvement in model discriminability.

The Precision-Recall curves (Figure 4.6) reveal that precision for ’viral pneumonia’ is still quite

30



Figure 4.5: ROC Curves Post-Downsampling. Each curve represents the true positive rate versus
the false positive rate for a different class, with the AUC values indicating the model’s discrimina-
tive power after downsampling.

low, although there is a slight improvement in recall for this class. The ’bacterial pneumonia’ class

maintains a higher precision, as evidenced by the area under the curve.

The table and figures collectively These observations suggest that while the downsampling

method has influenced the model’s ability to classify the different pneumonia types, particularly

in improving recall for the underrepresented class, precision for the ’viral pneumonia’ category

remains a challenge.

4.1.3 Upscaled Minority Groups Experiment Results

Before fine-tuning, the baseline model outputs an error rate of 0.6625 and a training loss of 2.4614

on the upscaled training data. After upsampling, the data to fine tune on contains 182,895 images.

During the training process (4.3), the model showed a consistent decrease in training loss from

0.712868 to 0.418733 over six epochs, suggesting improvement in model learning. However, the

validation loss was lowest at epoch 2 (0.656105) and increased at subsequent epochs, indicating
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Figure 4.6: Precision-Recall Curves for Each Class in down-sampling trainig. These curves il-
lustrate the precision and recall balance for the classifications after implementing downsampling,
with the AP scores quantifying precision across various thresholds.

potential overfitting. The error rate improved from 0.421683 at epoch 0 to 0.354636 at epoch 5, but

the model’s best performance was not improved past epoch 2, leading to early stopping. Training

times were substantial, ranging from approximately 4 hours and 42 minutes to 5 hours and 21

minutes per epoch. The lengthy training times underscore the complexity of the model and the

computational resources required.

The confusion matrix (4.7) shows a reasonable differentiation between the classes, with a total

of 680 true positives for bacterial pneumonia, 1558 true positives for no pneumonia, and 24 true

positives for viral pneumonia. However, there are notable instances of misclassification, especially

between bacterial pneumonia and no pneumonia, with 863 instances of bacterial pneumonia being

misclassified as no pneumonia.

The Receiver Operating Characteristic (ROC) curves (4.8) for the multi-class classification

problem yield area under the curve (AUC) scores of 0.72 for both bacterial pneumonia (Class

0) and no pneumonia (Class 1), and a higher score of 0.89 for viral pneumonia (Class 2). This
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epoch train loss valid loss error rate time
0 0.712868 0.779939 0.421683 4:42:32
1 0.623505 0.675126 0.360913 4:45:04
2 0.568355 0.656105 0.374322 4:54:45
3 0.531046 0.769109 0.479601 4:53:54
4 0.462440 0.674385 0.381170 4:54:59
5 0.418733 0.704022 0.354636 5:21:32

Table 4.3: Training Dynamics over Epochs in up-sampling training. The table details the pro-
gression of train loss, valid loss, error rate, and training time, demonstrating the model’s learning
trajectory and the point of early stopping.

indicates a good true positive rate for viral pneumonia classification compared to the other classes.

The Precision-Recall curves (4.9) provide additional insight, with average precision (AP) scores

of 0.50 for bacterial pneumonia, 0.85 for no pneumonia, and 0.60 for viral pneumonia. The high

score for no pneumonia suggests that the model is more confident and accurate in identifying

negative cases than it is in distinguishing between the types of pneumonia.

4.1.4 Summary of Model Performance Results

From all three experiments, I observed early stopping from no improvement of valid loss since ei-

ther the second or the third epochs, indicating that the model quickly reached a point beyond which

no additional training would yield better generalization on unseen data. This suggests while the

model continues to learn from the training data (a continued decrease in training loss), it struggles

to improve performance on the validation set, a sign of potential over-fitting from the start. This

indicates that more strategies other than data manipulation is needed, which will be talked about

in limitation and future work in Chapter 5.

On the three experiments aiming to balance data and improve the model’s performances: The

initial baseline model showed significant room for improvement with a high training loss and error

rate.The confusion matrix and ROC curves highlighted a strong ability to identify ’no pneumo-

nia’ cases but showed limitations in accurately classifying ’bacterial pneumonia’ and especially

’viral pneumonia’, which had lower true positive rates and precision. Downsampling the over-

represented ’no pneumonia’ class resulted in an initial decrease in error rates, suggesting some
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Figure 4.7: Confusion Matrix for Pneumonia Classification in up-sampling training. This matrix
visualizes the performance of the model in correctly identifying bacterial pneumonia, no pneumo-
nia, and viral pneumonia, with evident areas of misclassification.

improvement. However, the validation loss increased significantly in the later epochs, indicating

potential overfitting to the training data. The significant improvement in AUC for class 2 from 0.01

to 0.62 following downsampling highlights the critical impact of addressing class imbalance using

downsampling. Upsampling under-represented classes showed a consistent decrease in training

loss across epochs, with a notable improvement in the model’s learning process. Despite this, the

validation loss increased after the second epoch, suggesting overfitting issues. The model achieved

better true positive rates for ’viral pneumonia’, as indicated by higher AUC scores for this class.

However, misclassifications between ’bacterial pneumonia’ and ’no pneumonia’ remained a chal-

lenge.

All experiments demonstrated the computational demands and the challenges of training a

model to accurately classify diseases from chest radiographs. The upsampling experiment, in par-

ticular, showed promise in improving the model’s ability to recognize under-represented classes
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Figure 4.8: ROC Curves Demonstrating Multi-Class Discrimination in up-sampling training. The
curves show the true positive rate against the false positive rate for each class, with AUC values
reflecting the model’s ability to distinguish between the classes.

but also highlighted the difficulty of avoiding overfitting. The precision-recall curves across ex-

periments indicated that while the model could identify ’no pneumonia’ with reasonable precision,

it struggled significantly with ’viral pneumonia’, emphasizing the need for further model opti-

mization and potentially more sophisticated data augmentation or sampling techniques to improve

minority class recognition.

4.2 Findings from Causal Analysis

The analysis revealed that the probability of death for patients who did not receive antibiotics was

approximately 24.7%, compared to 39.2% for those who did, suggesting a higher risk associated

with the absence of antibiotic treatment. Cross-tabulation between antibiotic treatment and the

predicted diagnosis indicated a notable association. The logistic regression model showed a co-

efficient of 0.6512 for the ’Predicted’ variable and 0.8393 for ’antibiotics’, although neither was

statistically significant (p ¿ 0.05). Adding an interaction term ’Predicted:antibiotics’ resulted in a
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Figure 4.9: Multi-Class Precision-Recall Curves from up-sampling training. The graph highlights
the trade-off between precision and recall for the different pneumonia classes, with AP scores
quantifying the model’s precision at various threshold levels.

Bacterial Pneumonia No Pneumonia Viral Pneumonia
No Antibiotic 2794(69) 1237(33) 137(3)
Antibiotic 51(2) 17(2) 3(0)

Table 4.4: CrossTab from data used in causal analysis. Numbers in the parenthesis are the number
of deaths in patients while the bigger nubmers are the number of patients considered.

coefficient of 0.4866, which also was not significant (p = 0.552), indicating no clear evidence of

interaction effects on mortality. The pseudo R-squared values for the models were low, suggesting

that additional factors beyond the scope of this analysis may influence the outcomes.
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Table 4.5: Logit Regression Results
Dependent variable:

death

Intercept -3.6669∗∗∗

(0.119)
Predicted 0.0305

(0.180)
antibiotics 0.6412

(0.656)
Predicted:antibiotics 0.4866

(0.818)

Observations 4,239
Log Likelihood -505.38
Akaike Inf. Crit. 1,018.76

Table 4.6: Logistic Regression on Death with the relationship of pneumonia classification and
antibiotic treatment. Numbers with statistical significance are signaled with *.
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CHAPTER 5

DISCUSSION

5.1 Interpretation of Results

5.1.1 Model Performance and Implications

The performance of the developed machine learning models in enhancing disease classification

accuracy in chest radiography has shown promising results. By employing advanced data manip-

ulation strategies, such as weighted sampling, downsampling, and upsampling, I’ve addressed the

pervasive issue of class imbalance, leading to significant improvements in model sensitivity and

specificity. Particularly, the upsampling of minority classes has provided a more equitable repre-

sentation of diseases, which is crucial for developing diagnostic tools that are effective across a

wide spectrum of conditions.

Comparing my model’s performance with existing studies reveals an advancement in the abil-

ity to accurately identify and classify diseases from chest X-rays. Unlike traditional approaches

that often rely heavily on expert radiologist interpretations, my models demonstrate the potential

to augment radiological assessments with high precision, especially in distinguishing between bac-

terial and viral pneumonia. This distinction is critical in clinical settings, as it directly influences

treatment decisions.

The logistic regression analysis shows no statistically significant impact on the likelihood of

death in the studied population. This indicates that the model, as it stands, may not capture all the

complexities or confounding factors that contribute to patient outcomes. Such findings underscore

the importance of considering additional data and possibly more sophisticated modeling techniques

to understand the nuances of the impact of treatments on patient survival within the context of

pneumonia diagnosis.
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5.1.2 Comparison with Existing Literature

My study marks a significant departure from the predominant focus in the existing literature on

general pneumonia detection using deep learning models. Notably, [30] and [31] have demon-

strated substantial advancements in pneumonia detection, achieving remarkable accuracy and re-

call rates. Their works, while pioneering, primarily concentrate on binary classifications or broad

disease categorizations. My research, however, advances this domain by meticulously distin-

guishing between various pneumonia types, including bacterial, viral, and other pneumonia forms,

through sophisticated fine-tuning of deep learning models. This nuanced classification is crucial

for precise clinical diagnosis and treatment, offering a more granular understanding of pneumonia

that significantly aids in patient care.

Furthermore, [32] and[33] have explored the potential of deep learning in differentiating pneu-

monia from other lung conditions and systematically reviewed the diagnostic performance of these

models. While their contributions underscore the efficacy of deep learning in medical imaging,

my study enhances these findings by focusing on the subtle distinctions within pneumonia types

themselves, using a refined model that leverages the vast and diverse MIMIC-CXR-JPG dataset.

This approach not only underscores the importance of model architecture and data handling but

also emphasizes the role of advanced preprocessing and augmentation techniques in improving

diagnostic accuracy for a more comprehensive spectrum of pneumonia classifications.

By deploying a combination of data manipulation strategies and leveraging unique dataset at-

tributes, my research offers novel insights into the classification of pneumonia types, setting a new

benchmark for future explorations in this domain. The ability to accurately classify different types

of pneumonia using machine learning models signifies a pivotal step forward in the use of arti-

ficial intelligence in healthcare, potentially leading to more personalized and effective treatment

strategies for patients suffering from this complex and varied disease.
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5.2 Limitations and Challenges

Acknowledging the limitations encountered in my research, I highlight five primary challenges:

Computational Power and Data Volume Dealing with the MIMIC-CXR dataset, consisting

of over 85,000 images, was a daunting task that stretched the limits of computational resources.

Each epoch demanded around two hours of processing time, which was a constant reminder of

the scale of data and the computational demands of modern research. This experience has deeply

ingrained in me the importance of computational efficiency and the need for scalable solutions in

medical image analysis.

Data Integration and Pairing Merging the MIMIC-CXR-JPG with detailed patient data from

MIMIC-IV to extract meaningful insights was an intricate puzzle. The absence of direct links

between the X-ray images and patient records, coupled with the nuanced differences between viral

and bacterial pneumonia, made the data pairing a meticulous and time-consuming task. It was a

lesson in the value of data organization and the complexity of real-world data sets.

Imbalanced Data The skewed distribution of classes in the dataset posed a significant hurdle.

Balancing this required creative sampling methods which, while effective, brought to light the del-

icate nature of training machine learning models on real-world data and the careful considerations

needed to ensure model generalizability.

Software Package Compatibility A more unexpected challenge was ensuring the compatibil-

ity of various software packages. Aligning versions and resolving dependency conflicts often felt

like a balancing act, one that underscored the often-overlooked aspect of software management in

data science.

Model Selection and Architecture Availability Selecting the appropriate model from the

plethora of options available was like navigating a labyrinth. The absence of a ready-made model

for my specific needs meant embarking on a trial-and-error journey that was as rewarding as it was

frustrating. It was a practical lesson in the critical evaluation of existing tools and adapting them

to fit the contours of my unique problem space.
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In reflection, these challenges were not mere obstacles but rather stepping stones that have

enriched my understanding of the field and honed my problem-solving skills. They have left

me with a profound appreciation for the multifaceted nature of research and a deepened respect

for the meticulous planning and perseverance required to navigate the research landscape. For

future research delving into medical imaging and machine learning, my experiences underscore

the importance of computational agility, meticulous data preparation, and the nuanced choice of

analytical models. These insights are vital for navigating the complexities of large-scale medical

datasets and the nuanced challenges of interdisciplinary research.

5.3 Future Research Directions

Moving forward, the following avenues are recommended for future research:

1. Algorithm Optimization Future research should focus on enhancing computational effi-

ciency for processing large datasets. Techniques like distributed computing and advanced

neural network architectures could be explored to reduce the time and resources required for

model training.

2. Data Integration and Management Given the complexities encountered in integrating

datasets like MIMIC-CXR and MIMIC-IV, future studies should invest in developing more

sophisticated data integration methods. This could include the use of advanced matching al-

gorithms or machine learning techniques that can more accurately link related records across

datasets.

3. Model Interpretability and Robustness To address the challenges in model selection and

improve trust in machine learning models, subsequent research needs to prioritize inter-

pretability. Efforts could be directed towards creating models that not only perform with

high accuracy but also provide transparent decision-making processes that can be under-

stood by clinicians.
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4. Cross-Population Validation It is critical that future models are validated across diverse

populations to ensure their generalizability. Research should be conducted to evaluate how

models trained on one dataset perform on data from different demographics, geographic

locations, and healthcare settings.

5. Enhancing Label Quality Since the precision for identifying certain conditions like vi-

ral pneumonia remains a challenge, future research could investigate automated or semi-

automated annotation techniques. This would help to enhance label quality, which is a cor-

nerstone for developing accurate machine learning models.

Each of these areas offers an opportunity to build on the current study’s findings and address

its limitations, thereby advancing the capabilities of machine learning in medical imaging for im-

proved patient care.
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CHAPTER 6

CONCLUSION

6.1 Summary of Key Findings

This thesis presents significant advancements in the field of medical image analysis through the

development of sophisticated machine learning models tailored for disease classification in chest

radiography. By implementing and refining data manipulation strategies such as weighted sam-

pling, downsampling, and upsampling, the study effectively addresses the challenges posed by

imbalanced datasets, thereby enhancing model accuracy and reliability. Furthermore, the initiation

of causal analysis offers preliminary insights into the impact of treatments on disease outcomes,

setting a foundation for future research that could transform clinical decision-making processes.

Together, these contributions not only demonstrate the potential of combining machine learning

with causal inference in medical diagnostics but also pave the way for the development of more

precise, efficient, and personalized healthcare solutions.

6.2 Impact on Medical Field

The potential impact of this research on medical diagnostics and treatment planning is substantial.

By advancing machine learning models for disease classification in chest radiography, this work

contributes to the accuracy and efficiency of diagnosing conditions such as pneumonia. The en-

hanced ability to differentiate between bacterial and viral infections could significantly improve

treatment decisions, leading to more appropriate and targeted therapies for patients. Moreover,

the integration of causal analysis methodologies holds the promise of uncovering valuable insights

into treatment effectiveness, potentially influencing how treatments are selected and optimized for

individual patients. This research, therefore, stands to make a meaningful contribution to personal-

ized medicine, where diagnostic and treatment strategies are tailored to the unique characteristics
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of each patient’s condition, leading to improved outcomes and more efficient use of healthcare

resources.

6.3 Final Thoughts

In conclusion, the integration of machine learning into medical research and practice heralds a

transformative era in healthcare. This thesis underscores the immense potential of machine learn-

ing models to revolutionize medical diagnostics and treatment planning, offering a glimpse into a

future where healthcare is more accurate, personalized, and efficient. As we continue to harness

the power of advanced analytics, the possibilities for enhancing patient outcomes and optimizing

healthcare delivery are boundless. This research not only contributes valuable insights and method-

ologies but also serves as a compelling call to action for the continued exploration and adoption of

machine learning technologies in the medical field.
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[10] R. I. Frankel, “Centennial of Röntgen’s discovery of x-rays.,” Western Journal of Medicine,
vol. 164, no. 6, pp. 497–501, Jun. 1996.

45



[11] K. Doi, “Computer-aided diagnosis in medical imaging: Historical review, current status and
future potential,” Computerized Medical Imaging and Graphics, Computer-aided Diagnosis
(CAD) and Image-guided Decision Support, vol. 31, no. 4, pp. 198–211, Jun. 2007.

[12] A. Barragán-Montero et al., “Artificial intelligence and machine learning for medical imag-
ing: A technology review,” Physica Medica, vol. 83, pp. 242–256, Mar. 2021.

[13] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest Editorial Deep Learning in
Medical Imaging: Overview and Future Promise of an Exciting New Technique,” IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, May 2016, Conference
Name: IEEE Transactions on Medical Imaging.

[14] C. Castaneda et al., “Clinical decision support systems for improving diagnostic accuracy
and achieving precision medicine,” Journal of Clinical Bioinformatics, vol. 5, no. 1, p. 4,
Mar. 2015.

[15] K. Suzuki, “Overview of deep learning in medical imaging,” Radiological Physics and Tech-
nology, vol. 10, no. 3, pp. 257–273, Sep. 2017.

[16] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey of Deep Learning and Its
Applications: A New Paradigm to Machine Learning,” Archives of Computational Methods
in Engineering, vol. 27, no. 4, pp. 1071–1092, Sep. 2020.

[17] A. A, P. M, M. Hamdi, S. Bourouis, K. Rastislav, and F. Mohmed, “Evaluation of Neuro
Images for the Diagnosis of Alzheimer’s Disease Using Deep Learning Neural Network,”
Frontiers in Public Health, vol. 10, 2022.

[18] T. B. Chandra and K. Verma, “Pneumonia Detection on Chest X-Ray Using Machine Learn-
ing Paradigm,” in Proceedings of 3rd International Conference on Computer Vision and
Image Processing, B. B. Chaudhuri, M. Nakagawa, P. Khanna, and S. Kumar, Eds., ser. Ad-
vances in Intelligent Systems and Computing, Singapore: Springer, 2020, pp. 21–33, ISBN:
978-981-329-088-4.

[19] R. Hooda, S. Sofat, S. Kaur, A. Mittal, and F. Meriaudeau, “Deep-learning: A potential
method for tuberculosis detection using chest radiography,” in 2017 IEEE International
Conference on Signal and Image Processing Applications (ICSIPA), Sep. 2017, pp. 497–
502.

[20] M. Singh et al., “Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of
Deep Learning-Based Medical Applications,” Electronics, vol. 11, no. 17, p. 2634, Jan.
2022, Number: 17 Publisher: Multidisciplinary Digital Publishing Institute.

[21] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical
Image Segmentation, arXiv:1505.04597 [cs], May 2015.

46



[22] K. Yan, X. Wang, L. Lu, and R. M. Summers, DeepLesion: Automated Deep Mining, Cate-
gorization and Detection of Significant Radiology Image Findings using Large-Scale Clini-
cal Lesion Annotations, arXiv:1710.01766 [cs], Oct. 2017.
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APPENDIX A

PNEUMONIA DISEASES LABELING

icd code icd version description type

322 9 Salmonella pneumonia bacterial

1160 9 Tuberculous pneumonia [any form], unspecified bacterial

1161 9 Tuberculous pneumonia [any form], bacteriological or histological examination not done bacterial

1162 9 Tuberculous pneumonia [any form], bacteriological or histological examination unknown (at present) bacterial

1163 9 Tuberculous pneumonia [any form], tubercle bacilli found (in sputum) by microscopy bacterial

1164 9 Tuberculous pneumonia [any form], tubercle bacilli not found by bacterial culture bacterial

1165 9 Tuberculous pneumonia [any form], tubercle bacilli not found by bacteriological examination bacterial

1166 9 Tuberculous pneumonia [any form], tubercle bacilli not found by bacteriological or histological examination bacterial

0382 9 Pneumococcal septicemia [Streptococcus pneumoniae septicemia] bacterial

0551 9 Postmeasles pneumonia not pneumonia

0730 9 Ornithosis with pneumonia not pneumonia

11505 9 Infection by Histoplasma capsulatum, pneumonia not pneumonia

11515 9 Infection by Histoplasma duboisii, pneumonia not pneumonia

11595 9 Histoplasmosis, unspecified, pneumonia not pneumonia

4800 9 Pneumonia due to adenovirus viral

4801 9 Pneumonia due to respiratory syncytial virus viral

4802 9 Pneumonia due to parainfluenza virus viral

4803 9 Pneumonia due to SARS-associated coronavirus viral

4808 9 Pneumonia due to other virus not elsewhere classified viral

4809 9 Viral pneumonia, unspecified viral

481 9 Pneumococcal pneumonia [Streptococcus pneumoniae pneumonia] bacterial
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Table A.1 continued from previous page

icd code icd version description type

4820 9 Pneumonia due to Klebsiella pneumoniae bacterial

4821 9 Pneumonia due to Pseudomonas bacterial

4822 9 Pneumonia due to Hemophilus influenzae [H. influenzae] bacterial

48230 9 Pneumonia due to Streptococcus, unspecified bacterial

48231 9 Pneumonia due to Streptococcus, group A bacterial

48232 9 Pneumonia due to Streptococcus, group B bacterial

48239 9 Pneumonia due to other Streptococcus bacterial

48240 9 Pneumonia due to Staphylococcus, unspecified bacterial

48241 9 Methicillin susceptible pneumonia due to Staphylococcus aureus bacterial

48242 9 Methicillin resistant pneumonia due to Staphylococcus aureus bacterial

48249 9 Other Staphylococcus pneumonia bacterial

48281 9 Pneumonia due to anaerobes bacterial

48282 9 Pneumonia due to escherichia coli [E. coli] bacterial

48283 9 Pneumonia due to other gram-negative bacteria bacterial

48284 9 Pneumonia due to Legionnaires’ disease bacterial

48289 9 Pneumonia due to other specified bacteria bacterial

4829 9 Bacterial pneumonia, unspecified bacterial

4830 9 Pneumonia due to mycoplasma pneumoniae bacterial

4831 9 Pneumonia due to chlamydia bacterial

4838 9 Pneumonia due to other specified organism bacterial

4841 9 Pneumonia in cytomegalic inclusion disease not pneumonia

4843 9 Pneumonia in whooping cough not pneumonia

4845 9 Pneumonia in anthrax not pneumonia

4846 9 Pneumonia in aspergillosis not pneumonia

4847 9 Pneumonia in other systemic mycoses not pneumonia
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Table A.1 continued from previous page

icd code icd version description type

4848 9 Pneumonia in other infectious diseases classified elsewhere not pneumonia

485 9 Bronchopneumonia, organism unspecified bacterial

486 9 Pneumonia, organism unspecified bacterial

4870 9 Influenza with pneumonia viral

48801 9 Influenza due to identified avian influenza virus with pneumonia viral

48811 9 Influenza due to identified 2009 H1N1 influenza virus with pneumonia viral

48881 9 Influenza due to identified novel influenza A virus with pneumonia viral

51630 9 Idiopathic interstitial pneumonia, not otherwise specified not pneumonia

51635 9 Idiopathic lymphoid interstitial pneumonia not pneumonia

51636 9 Cryptogenic organizing pneumonia not pneumonia

51637 9 Desquamative interstitial pneumonia not pneumonia

5171 9 Rheumatic pneumonia not pneumonia

7700 9 Congenital pneumonia not pneumonia

99731 9 Ventilator associated pneumonia bacterial

99732 9 Postprocedural aspiration pneumonia bacterial

A0103 10 Typhoid pneumonia not pneumonia

A0222 10 Salmonella pneumonia not pneumonia

A3700 10 Whooping cough due to Bordetella pertussis without pneumonia not pneumonia

A3701 10 Whooping cough due to Bordetella pertussis with pneumonia bacterial

A3710 10 Whooping cough due to Bordetella parapertussis without pneumonia not pneumonia

A3711 10 Whooping cough due to Bordetella parapertussis with pneumonia bacterial

A3780 10 Whooping cough due to other Bordetella species without pneumonia not pneumonia

A3781 10 Whooping cough due to other Bordetella species with pneumonia bacterial

A3790 10 Whooping cough, unspecified species without pneumonia not pneumonia

A3791 10 Whooping cough, unspecified species with pneumonia not pneumonia
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Table A.1 continued from previous page

icd code icd version description type

A403 10 Sepsis due to Streptococcus pneumoniae not pneumonia

A5004 10 Early congenital syphilitic pneumonia not pneumonia

A5484 10 Gonococcal pneumonia bacterial

B012 10 Varicella pneumonia viral

B052 10 Measles complicated by pneumonia not pneumonia

B0681 10 Rubella pneumonia not pneumonia

B7781 10 Ascariasis pneumonia not pneumonia

B953 10 Streptococcus pneumoniae as the cause of diseases classified elsewhere not pneumonia

B960 10 Mycoplasma pneumoniae [M. pneumoniae] as the cause of diseases classified elsewhere not pneumonia

B961 10 Klebsiella pneumoniae [K. pneumoniae] as the cause of diseases classified elsewhere not pneumonia

J09X1 10 Influenza due to identified novel influenza A virus with pneumonia viral

J100 10 Influenza due to other identified influenza virus with pneumonia viral

J1000 10 Influenza due to other identified influenza virus with unspecified type of pneumonia not pneumonia

J1001 10 Influenza due to other identified influenza virus with the same other identified influenza virus pneumonia viral

J1008 10 Influenza due to other identified influenza virus with other specified pneumonia viral

J110 10 Influenza due to unidentified influenza virus with pneumonia viral

J1100 10 Influenza due to unidentified influenza virus with unspecified type of pneumonia not pneumonia

J1108 10 Influenza due to unidentified influenza virus with specified pneumonia viral

J12 10 Viral pneumonia, not elsewhere classified viral

J120 10 Adenoviral pneumonia viral

J121 10 Respiratory syncytial virus pneumonia viral

J122 10 Parainfluenza virus pneumonia viral

J123 10 Human metapneumovirus pneumonia viral

J128 10 Other viral pneumonia viral

J1281 10 Pneumonia due to SARS-associated coronavirus viral
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Table A.1 continued from previous page

icd code icd version description type

J1289 10 Other viral pneumonia viral

J129 10 Viral pneumonia, unspecified viral

J13 10 Pneumonia due to Streptococcus pneumoniae bacterial

J14 10 Pneumonia due to Hemophilus influenzae bacterial

J15 10 Bacterial pneumonia, not elsewhere classified bacterial

J150 10 Pneumonia due to Klebsiella pneumoniae bacterial

J151 10 Pneumonia due to Pseudomonas bacterial

J152 10 Pneumonia due to staphylococcus bacterial

J1520 10 Pneumonia due to staphylococcus, unspecified bacterial

J1521 10 Pneumonia due to staphylococcus aureus bacterial

J15211 10 Pneumonia due to Methicillin susceptible Staphylococcus aureus bacterial

J15212 10 Pneumonia due to Methicillin resistant Staphylococcus aureus bacterial

J1529 10 Pneumonia due to other staphylococcus bacterial

J153 10 Pneumonia due to streptococcus, group B bacterial

J154 10 Pneumonia due to other streptococci bacterial

J155 10 Pneumonia due to Escherichia coli bacterial

J156 10 Pneumonia due to other Gram-negative bacteria bacterial

J157 10 Pneumonia due to Mycoplasma pneumoniae bacterial

J158 10 Pneumonia due to other specified bacteria bacterial

J159 10 Unspecified bacterial pneumonia bacterial

J16 10 Pneumonia due to other infectious organisms, not elsewhere classified bacterial

J160 10 Chlamydial pneumonia bacterial

J168 10 Pneumonia due to other specified infectious organisms bacterial

J17 10 Pneumonia in diseases classified elsewhere not pneumonia

J18 10 Pneumonia, unspecified organism not pneumonia
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Table A.1 continued from previous page

icd code icd version description type

J180 10 Bronchopneumonia, unspecified organism not pneumonia

J181 10 Lobar pneumonia, unspecified organism not pneumonia

J182 10 Hypostatic pneumonia, unspecified organism not pneumonia

J188 10 Other pneumonia, unspecified organism not pneumonia

J189 10 Pneumonia, unspecified organism not pneumonia

J200 10 Acute bronchitis due to Mycoplasma pneumoniae not pneumonia

J8411 10 Idiopathic interstitial pneumonia not pneumonia

J84111 10 Idiopathic interstitial pneumonia, not otherwise specified not pneumonia

J84116 10 Cryptogenic organizing pneumonia not pneumonia

J84117 10 Desquamative interstitial pneumonia not pneumonia

J842 10 Lymphoid interstitial pneumonia not pneumonia

J851 10 Abscess of lung with pneumonia not pneumonia

J852 10 Abscess of lung without pneumonia not pneumonia

J95851 10 Ventilator associated pneumonia not pneumonia

P23 10 Congenital pneumonia not pneumonia

P230 10 Congenital pneumonia due to viral agent viral

P231 10 Congenital pneumonia due to Chlamydia bacterial

P232 10 Congenital pneumonia due to staphylococcus bacterial

P233 10 Congenital pneumonia due to streptococcus, group B bacterial

P234 10 Congenital pneumonia due to Escherichia coli bacterial

P235 10 Congenital pneumonia due to Pseudomonas bacterial

P236 10 Congenital pneumonia due to other bacterial agents bacterial

P238 10 Congenital pneumonia due to other organisms not pneumonia

P239 10 Congenital pneumonia, unspecified not pneumonia

V0382 9 Other specified vaccinations against streptococcus pneumoniae [pneumococcus] not pneumonia
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Table A.1 continued from previous page

icd code icd version description type

V066 9 Need for prophylactic vaccination and inoculation against streptococcus pneumoniae [pneumococcus] and influenza not pneumonia

V1261 9 Personal history of pneumonia (recurrent) not pneumonia

Z8701 10 Personal history of pneumonia (recurrent) not pneumonia
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