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How to Use This Reference Guide

IEMS 304 extensively builds on knowledge from previous probability and statistics courses.

The purpose of this guide is to help provide a review of the key terms and concepts which

will support your understanding of the material in this class. The guide is designed for

your quick review of the topics and visuals to refresh your memory on the examples and

terminology, and give you valuable additional resources such as videos or textbooks if you

feel you need more in-depth exposure to certain subjects.

We recommend you start by looking through the table of contents and checking if any of our

headings sound unfamiliar or distant in memory. We’d recommend you look through those

sections first; there is no need to read this guide in order or in its entirety. This guide was

not intended for a thorough read from front to back, but you are certainly welcome to do so

if you wish. We encourage you to adapt this guide to your specific background in statistics,

probability and linear algebra and to refer to it throughout the course as needed.

Good luck with IEMS 304 and hope you enjoy the read!

Sources

Many examples are adapted from Probability and Statistics For Engineering and the SciencesProbability and Statistics For Engineering and the Sciences

by Devore and Peck. Images found on the web are referenced by superscripts in-text with

the appropriate corresponding source in the end-notes.
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This was developed under the guidance of Jill Wilson with significant input and course ma-

terials from Barry Nelson, Bruce Ankeman, Edward Malthouse, Daniel Apley and Zhaoran

Wang. We are also grateful for the feedback from Charlotte Oxnam, Alp Guneyman and

Ruramai Zimuto.
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1 An Introduction to R

R is a language and environment for statistical which provides a wide variety of statistical

(linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,

clustering, . . . ) and graphical techniques and is used throughout IEMS 304. If you have not

used R before, follow this linklink to install R and this linklink to install RStudio.

Here are a few more resources to get acquainted with R. Note that you do not have to use

all of them - browse our suggestions and choose the option that best fits your learning style.

1. Swirl TutorialSwirl Tutorial: built-in mini-courses that can be studied in-action directly from RStu-

dio. You get to choose which courses you would like to install, and we recommend “R

Programming E”. Simply run the following commands from your RStudio Console:

in s ta l l . packages ( ‘ sw i r l ’ )

l i b r a r y ( sw i r l )

i n s t a l l course ( ’R Programming E ’ )

sw i r l ( )

2. Data CampData Camp: free interactive online modules on R through a browser window.

3. Python to RPython to R posts written to help make the transition between Python code and R

code. Might be helpful if you have worked with Python previously.

4. R Cheat SheetsR Cheat Sheets: Short, consolidated reference sheets on R packages. We’ve provided

the “Base-R” sheet as it provides the basic commands for beginners.

2

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://swirlstats.com/students.html
https://www.datacamp.com/courses/free-introduction-to-r?utm_source=adwords_ppc&utm_medium=cpc&utm_campaignid=15888888220&utm_adgroupid=140760953428&utm_device=c&utm_keyword=data%20camp%20r&utm_matchtype=e&utm_network=g&utm_adpostion=&utm_creative=585907459669&utm_targetid=aud-299261629654:kwd-302366282812&utm_loc_interest_ms=&utm_loc_physical_ms=9021564&gclid=Cj0KCQiAmpyRBhC-ARIsABs2EApQy811ThI54dpJf8CqLA-MLRnnadk2E4jDWH5wYHhREIeRaYxHMcAaAm2lEALw_wcB
https://medium.com/@nawazahmad20/r-for-python-programmers-part-1-ca4eab668b8c
https://www.rstudio.com/resources/cheatsheets/


2 Fundamentals of Random Variables & Distributions

This section provides a brief overview of the most common discrete and continuous distri-

butions, and provides reference formulas to compute values from distributions. Note that

we use capital letters (e.g., X) for a random variable and lower case (e.g., x) for a particular

numerical value. For example, P (X = x) is the appropriate notation for the probability that

the random variable called X takes the value x.

2.1 Reference Readings

Introduction to Statistics and Data AnalysisIntroduction to Statistics and Data Analysis Ch 7.1-7.3, 7.6-7.7, 8.1-8.2

Probability and Statistics For Engineering and the SciencesProbability and Statistics For Engineering and the Sciences Ch 2-5

Applied Probability and Statistics For EngineersApplied Probability and Statistics For Engineers Ch 2-5

2.2 Review Videos

• Random VariablesRandom Variables

• Joint PMFsJoint PMFs

• Conditional PMFsConditional PMFs

2.3 Definitions

• Random variable: a function X which assigns a real number to each element in the

sample space

• Discrete random variables: a random variable X is defined to be discrete if its

probability space is either finite or countable, meaning it takes only a finite or countable

number of values.

✎ For example, a random variable that only takes values 0, 1 and 2 is discrete. As a more

realistic example, the two outcomes heads and tails of a coin flip can be modeled by a

discrete random variable.

• Continuous random variables: a random variable which can take a possibly infinite

set of values in an interval, and no single value has nonzero probability. If X is a

continuous random variable, then P (X = c) = 0 for any possible c value.
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✎ For example, a random variable that takes any real number in the interval (3, 5] is con-

tinuous. As another example, people’s heights can be modeled as continuous random

variables.

• Probability mass function (pmf): function pX(x) that describes the probability

that a discrete random variable X takes each of its values from its set of possible

(countable) values.

P (X = x) = pX(x).

Note that summing the pmf for all possible values of X equals 1:
∑

x pX(x) = 1.

✎ For example, if we let X be the value of a single die roll, then X can take any value in

the set {1, 2, 3, 4, 5, 6}, each with uniform probability P (X = 1) . . . = P (X = 6) = 1/6.

The pmf describes this mapping between all the possible values the random variable

X can take and the probability that X is that value.

✎ We often denote pmfs as piece-wise due to the discrete values the random variables

take:

pX(x) =



1/6 if x = 1

1/6 if x = 2

1/6 if x = 3

1/6 if x = 4

1/6 if x = 5

1/6 if x = 6

0 otherwise.

✎ We can also visualize pmfs on a number line. The height depicts the probability the

discrete random variable takes on the value shown on the x axis. In Figure 11, the pmf

shows that the discrete random variable takes the value 1 with probability 0.2, 3 with

probability 0.5 and 7 with probability 0.3:

Figure 1: Illustration of a pmf.11
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• Probability density function (pdf): function f(x) that describes the probability

that a random variable takes on values between an interval. In other words, for a ≤ b:

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

✎ Example pdf:

f(x) =

 1
24
(x2 + 1) 1 ≤ x ≤ 4

0 otherwise.

✎ We can also visualize pdfs. The area between two points on the x axis indicates the

probability the random variable takes a value in the interval between the two points.

For example, Figure 22 shows that the probability that a normal random variable takes

a value between −1σ and 1σ is 68.27%:

Figure 2: Illustration of the normal random variable pdf.22

• Cumulative distribution function (cdf): the probability that observed values from

a random variable will be at most x: F (x) = P (X ≤ x)

Discrete random variables:

F (x) = P (X ≤ x) =
∑
y:y≤x

p(y).

Graphically, this is the area underneath the pmf for values less than or equal to x.

Continuous random variables:

F (a) = P (X ≤ a) =

∫ a

−∞
f(x)dx.

Graphically, this is the area underneath the pdf for values less than or equal to x. As

the cdf is the area underneath the curve, then it is the integral of the pdf. This also
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means that the cdf can be differentiated to compute the pdf:

d

dx
FX(x) = fX(x).

See Figure 33 below for the visual connection between the pdf and the cdf.

Figure 3: Illustration of the relationship between the pdf and the cdf for continuous random
variables. The left graph plots the pdf, where the shaded area underneath the probability
density function is the value of the cdf at that x-axis value, which is labeled as a. On the
right, we see a plot of the cdf itself, where each value along the y axis is the area under the
pdf curve for all values less than or equal to the x-axis value.33

✎ Important facts about cdfs:

* F (x) is a monotonically non-decreasing function: If x1 ≤ x2, it follows that

F (x1) ≤ F (x2)

* F (x) → 0 as x → −∞

* F (x) → 1 as x → ∞

* F (x) is continuous from the right

* 0 ≤ F (x) ≤ 1 for all x ∈ R

• Expected value: an operator which sums all of the possible values in the sample

space multiplied by the probability of each value’s occurrence. This is a probability-

centered term since we weight each value of an outcome by the probability it occurs,

which requires knowing the underlying probability distribution. In reality, we expect

the arithmetic mean to converge to the expected value over a large number of samples.

Expected value can be computed for both discrete and continuous random variable:

E[X] =


∑

x xp(x) where X is discrete with pmf p(x)∫∞
−∞ xf(x)dx where X is continuous with pdf f(x).
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✎ From Figure 11, we can compute the expected value of the random variable with the

given distribution as:

E[X] =
∑
x

xp(x) = 1 · 0.2 + 3 · 0.5 + 7 · 0.3 = 3.8.

✎ From the example pdf shown above where:

f(x) =

 1
24
(x2 + 1) 1 ≤ x ≤ 4

0 otherwise.

We compute the expected value as:

E[X] =

∫ ∞

−∞
xf(x)dx =

∫ 4

1

x · 1

24

(
x2 + 1

)
dx =

1

24

(∫ 4

1

x3dx+

∫ 4

1

xdx

)
=

95

32
.

Note that we can also take the expectation of functions of random variables:

E[h(X)] =


∑

x h(x)p(x) where X is discrete with pmf p(x)∫∞
−∞ h(x)f(x)dx where X is continuous with pdf f(x).

• Variance: a measurement of the spread of data around the mean. It is computed

using either of the two formulas below:

Var(X) = E
[
(X − E[X])2

]
= E

[
X2
]
− (E[X])2.

✎ From Figure 11, we can compute the variance of the random variable as:

Var[X] = E
[
(X − E[X])2

]
= 0.2 · (1− 3.8)2 + 0.5 · (3− 3.8)2 + 0.3 · (7− 3.8)2 = 4.96.

✎ From the example pdf, we can compute the variance as:

Var(X) = E
[
X2
]
− (E[X])2

=

∫ ∞

−∞
x2f(x)dx−

(∫ ∞

−∞
xf(x)dx

)2

=

∫ 4

1

x2 · 1

24

(
x2 + 1

)
dx−

(
95

32

)2

=

(
47

5

)
−
(
95

32

)2

≈ 0.5865.

7



• Standard Deviation: a measure of average deviation from the mean, computed by

taking the square root of the variance.

• Covariance: a measure of a linear relationship between two variables. It is computed

through:

CovXY = σXY = E [(X − µX) (Y − µY )] .

A visual intuition of covariance is shown below in Figure 44:

Figure 4: Visual representation of covariance between two random variables X and Y .44

• Correlation: a measure of the degree to which a pair of variables have a linear

relationship. Correlation is essentially computed in the same way as covariance, but it

is normalized for the standard deviations of the two random variables. Since we divide

the covariance by the standard deviations, correlation values are between −1 and 1,

while covariances can be > 1 or < −1. Correlation is computed through:

CorrXY = ρXY = E [(X − µX) (Y − µY )] / (σXσY ) .

Note that, by our previous definitions,

ρXY =
σXY

σXσY

.

• Uncorrelated random variables: random variables which have no linear relation-

ship between them. Uncorrelated random variables have a correlation coefficient of

zero, assuming none of the random variables have zero variance. For uncorrelated

random variables, it follows that E[XY ] = E[X]E[Y ].

• Independent random variables: random variables are independent if knowing

information about one random variable does not affect the probability distribution

for the other random variable. For independent random variables, it follows that

E[f(X)g(Y )] = E[f(X)]E[g(Y )] and E[X|Y ] = E[X].

• Law of Total Probability: Given A1, A2, . . . , An are disjoint events that partition

the sample space and P (Ai) > 0 for all i, for any event B, the Law of Total Probability
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states that:
P(B) = P (A1 ∩B) + · · ·P (An ∩B)

= P (A1) P (B | A1) + · · ·P (An) P (B | An)

• Joint Distribution: the joint distribution for two random variables describes the

probability that two random variables take on values jointly

Discrete joint pmf for random variables X and Y :

P (X = x, Y = y) = pX,Y (x, y)

Continuous joint pdf for random variables X and Y :

P (a ≤ X ≤ b, c ≤ y ≤ d) =

∫ b

a

∫ b

c

fX,Y (x, y)dydx

• Marginal Distribution: the marginal distribution of a random variable is the distri-

bution of the random variable alone, unconditional on other random variables.

Discrete marginal pmfs for random variables X and Y :

pX(x) =
∑
y

pX,Y (x, y) and pY (y) =
∑
x

pX,Y (x, y)

Continuous marginal pdfs for random variables X and Y :

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy and fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

• Conditional Distribution: the distribution of a random variable when given another

random variable

Discrete conditional distribution for random variables X and Y :

pX|Y (x | y) = pX,Y (x, y)

pY (y)
, pY (y) > 0

Continuous conditional distribution for random variables X and Y :

fX|Y (x | y) = fX,Y (x, y)

fY (y)
, fY (y) > 0

9



• Law of Total Probability for Distributions:

pX(x) =
∑
y

pX,Y (x, y) =
∑
y

pX|Y (x | y)pY (y)

fX(x) =

∫
y

fX,Y (x, y)dy =

∫
y

fX|Y (x | y)fY (y)dy

• Conditional Expectation: taking the expectation of a jointly distributed random

variable by using the conditional distribution.

Discrete conditional expectation

E[X | Y = y] =
∑
x

XpX|Y (x | y)

Continuous conditional expectation

E[X | Y = y] =

∫
x

XfX|Y (x | y)dx

2.4 Common Distributions of Random Variables

2.4.1 Discrete

As a reminder, discrete random variables can take on a countable number of values. A

summary table is provided on the next page.

• Bernoulli: a random variable that only takes the values 0 and 1, where the random

variable is 1 with probability p and 0 with probability (1− p).

✎ A single coin flip where heads = 1 and tails = 0 is a Bernoulli random variable with

p = 0.5.

• Binomial: a random variable that describes the outcome of repeating a success or

failure Bernoulli variable a set number of times. Binomial random variables take two

parameters: the n number of repetitions of the success or failure experiment and the

p probability of success.

✎ The number of heads in a 5 coin flip experiment where “success” is defined as heads

and “failure” is defined as tails follows a binomial distribution with n = 5 and p = 0.5.

• Poisson: a random variable that models count data in a fixed time or space. The

Poisson only has a λ mean parameter.
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✎ A random variable that describes the number of spelling mistakes in a page of writing

can follow a Poisson distribution with mean λ = 2.1 mistakes per page.

• Geometric: a random variable that describes the number of failures until a success.

A Geometric distribution has a single parameter p, which is the probability of success.

✎ A random variable that counts the number of failures until a player scores a free throw

is described by a geometric random variable with a given p probability of success.

11



Summary of Discrete Distributions

Distribution Parameters Uses Mean and Variance PDF and CDF

Bernoulli
p: success
probability

Random variable that only
takes the values 0 and 1.

E[X] = p

Var[X] = p(1− p)
P (x) =

 p if x = 1

1− p if x = 0

Binomial

n: number
of trials
p: success
probability

Random variable that
describes the outcome of
repeating a success or failure
Bernoulli variable a set
number of times.

E[X] = np

Var[X] = np(1− p)

P (x) =

 n

x

 pxqn−x = n!
(n−x)!x!

pxqn−x

F (x) =
∑k

i=0

 n

i

 pi(1− p)n−i

Poisson λ: mean
Random variable that
models count data in a fixed
time or space.

E[X] = λ

Var[X] = λ

P (x) =
e−λλx

x!

F (x) =
k∑

i=0

e−λλi

i!

Geometric
p: success
probability

Random variable that
describes the number of
failures until a success.

E[X] = 1/p

Var[X] = (1− p)/p2

P (x) = (1− p)k−1p

F (x) = 1− (1− p)k

12



2.4.2 Continuous

• Normal: a probability distribution that is symmetric about the mean and has a bell-shaped pdf. The normal distribution

is described by two parameters: a mean µ and a variance σ2.

• Uniform: a distribution in which every interval of the same length is equally likely. The probability that a random

variable takes a value inside an interval is proportional to the length of the interval.

• Exponential: Distribution that describes the time between events in a Poisson process. Takes in a single parameter µ

which is the expected time until the next event.

Summary of Continuous Distributions

Distribution Parameters Uses Mean and Variance PDF and CDF

Normal
µ: mean

σ2: variance

Random variable that follows

a distribution that is

symmetric about the mean

and has a bell-shaped pdf.

E[X] = µ

Var[X] = σ2

f(x) =
1

σ
√
2π

e−(x−µ)2/(2σ2)

Uniform a, b: bounds

Random variable that has

probability it takes a value

inside an interval is

proportional to interval

length.

E[X] = (a+ b)/2

Var[X] = (b− a)2/12

f(x) = 1
b−a

a ≤ x ≤ b

F (x) = x−a
b−a

a ≤ x ≤ b

Exponential
λ: average

rate

Random variable that

describes the time between

events in a Poisson process.

E[X] = 1/λ

Var[X] = 1/λ2

f(x) = λe−λx

F (x) = 1− e−λx a ≤ x ≤ b



2.5 Summary Computations

Discrete Random Variables Continuous Random

Variables

Expected Value µ =
n∑

i=1

xf(x) µ =

∫ ∞

−∞
xf(x)dx

Variance σ2 =
n∑

i=1

(x− µ)2f(x) σ2 =

∫ ∞

−∞
(x− µ)2f(x)dx

Standard deviation σ =
√
σ2 σ =

√
σ2

2.6 Summary Properties

Given a and b are constants and X and Y are random variables, the following statements

hold:

E[a] = a

E[aX] = aE[X]

E[aX + bY] = aE[X] + bE[Y]

E[aX + Y] = aE[X] + E[Y]

Var(a) = 0

Var(aX) = a2Var(X)

SD(aX) = |a|SD(X)

Cov(X, Y ) = E[XY ]− E[X]E[Y ]

Cov(X, a) = 0

Var(aX ± bY ) = a2Var(X) + b2Var(Y )± 2abCov(X, Y )

Cov(aX, bY ) = abCov(X, Y )

E(X) = E[E(X | Y )]

Var(X) = E[Var(X | Y )] + Var[E(X | Y )]

If X and Y are uncorrelated, then:

E[XY ] = E[X]E[Y ]

Cov(X, Y ) = 0

Var(aX + bY ) = a2Var(X) + b2Var(Y )
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3 Linear Algebra

In the previous review section, the formulas and definitions primarily focused on one-

dimensional applications. Now, we turn our attention to the higher-dimensional space. In

IEMS 304, it will be important to understand and work with variables and parameters that

are scalars, vectors, and matrices.

3.1 Reference Readings

Applied Linear AlgebraApplied Linear Algebra Ch 1.2, 1.5, 1.6, 2.3

Engineering Analysis I TextbookEngineering Analysis I Textbook Ch 1.1, 1.7, 2.1-2.3, 2.9, 3.1, 3.2, 4.3 and 4.6

3.2 Operations

Given an m× n matrix A:

• Transpose AT : matrix formed by switching the row and column indices of A such

that the new matrix is flipped across the diagonal. a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a21 a31

a12 a22 a32

a13 a23 a33


✎ Example:

A =

 1 2 3

4 5 6

7 8 9

 , AT =

 1 4 7

2 5 8

3 6 9


• Identity matrix I: matrix with 1’s along the diagonals and 0’s in all off-diagonals.

Useful for manipulations and transformations with matrices, and is similar to multi-

plying by 1 in scalar algebra. Note that given a matrix A, AI = IA = A.

✎ Example:

I3 =

 1 0 0

0 1 0

0 0 1



15

https://link.springer.com/content/pdf/10.1007%2F978-3-319-91041-3.pdf
https://www.pearson.com/store/p/linear-algebra-and-its-applications/P100002572057/9780321982384?tab=overview


• Matrix-Matrix Multiplication: given a m× n matrix A and n× p matrix B, then

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 , B =


b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...

bn1 bn2 · · · bnp



AB =


a11b11 + · · ·+ a1nbn1 a11b12 + · · ·+ a1nbn2 · · · a11b1p + · · ·+ a1nbnp

a21b11 + · · ·+ a2nbn1 a21b12 + · · ·+ a2nbn2 · · · a21b1p + · · ·+ a2nbnp
...

...
. . .

...

am1b11 + · · ·+ amnbn1 am1b12 + · · ·+ amnbn2 · · · am1b1p + · · ·+ amnbnp


Note that the inner dimensions of A and B must be equal (e.g., the number of columns

in A must be equivalent to the number of columns in B).

✎ Example: [
3 4

2 1

]
∗

[
1 5

3 7

]
=

[
3 + 12 15 + 28

2 + 3 10 + 7

]
=

[
15 43

5 17

]

• Inverse A−1: given a square matrix A, its inverse A−1 is the matrix such that AA−1 =

I. The example shown below is for a 2× 2 matrix, but square matrices with any n×n

dimensions may be invertible.

A =

[
a b

c d

]

A−1 =

[
a b

c d

]−1

=
1

ad− bc

[
d −b

−c a

]

✎

A =

[
4 3

3 2

]
A−1 =

1

4 ∗ 2− 3 ∗ 3

[
2 −3

−3 4

]
=

[
−2 3

3 −4

]

Verifying that AA−1 results in the identity matrix:

AA−1 =

[
4 3

3 2

][
−2 3

3 −4

]
=

[
1 0

0 1

]

• Determinant: scalar computed for a square matrix that describes many matrix
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properties. Note that if the determinant of a matrix is 0, then the matrix has no

inverse (e.g., A−1 does not exist) and the matrix is called singular.

For 2×2 matrices, the determinant can be computed by finding the difference between

the product of the diagonals:

det

[
a b

c d

]
= ad− cb

For 3× 3 matrices, the determinant requires computing the determinant of three sub-

matrices:

det

 a b c

d e f

g h i

 = a · det

[
e f

h i

]
− b · det

[
d f

g i

]
+ c · det

[
d e

g h

]

This may be familiar to you from the cross product of i, j, k vectors from calculus.

✎ From the previous example where A =

[
4 3

3 2

]
, the determinant was the difference

between the product of the diagonals: 4 ∗ 2− 3 ∗ 3 = −1

However, we can also consider a matrix which has zero determinant:

A =

[
1 2

2 4

]

det(A) = 1 ∗ 4− 2 ∗ 2 = 0

As the procedure to find A−1 requires finding 1/ det(A), we can reason that det(A) = 0

would result in division by zero and therefore an inverse cannot be found.

• Linear independence: vectors v1, v2, . . . vn are linearly dependent if any of the vectors

can be written as a linear combination of the other vectors. A square matrix that does

not have all linearly independent rows and columns is singular.

✎ The following column vectors are linearly independent because no vector can be written

as a linear combination of other vectors:
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 0

0

1

 ,

 0

2

−2

 ,

 1

−2

1


In other words, there are no such constants c1 and c2 that would satisfy any:

c1

 0

0

1

+ c2

 0

2

−2

 =

 1

−2

1



c1

 1

−2

1

+ c2

 0

0

1

 =

 0

2

−2



c1

 1

−2

1

+ c2

 0

2

−2

 =

 0

0

1


Note that, if there exists a c1, c2 pair such that one of the vectors can be written as a

linear combination of the others, then we can find constants to write any vector as a

linear combination of the other vectors.

However, if we include one more vector to the set, we see that the vectors are linearly

dependent:  0

0

1

 ,

 0

2

−2

 ,

 1

−2

1

 ,

 4

2

3


We can find the constants 9, 5, 4 which express the fourth vector as a linear combination

of the other three:

9

 0

0

1

+ 5

 0

2

−2

+ 4

 1

−2

1

 =

 4

2

3


• Column/Row Rank: the number linearly independent column/row vectors in a ma-

trix. If all of the columns in a matrix are linearly independent, we say that the matrix

has full column rank.
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✎ For example, the third column of matrix A below can be written as the sum of columns

1 and 2. Columns 1 and 2, or 2 and 3, or 1 and 3 considered separately are linearly

independent, but no subset of three columns in matrix A are linearly independent. For

this reason, rank(A) = 2:

A =

 1 2 3

2 −3 1

4 1 7


✎ On the other hand, matrix B below has all three linearly independent columns. For

this reason, matrix B has rank(B) = 3 and is a full column rank matrix:

B =

 1 2 3

2 −3 1

4 1 1


• Eigenvalues: a λ is an eigenvalue of a matrix A if it satisfies the equation Ax = λx

where x is the eigenvalue’s corresponding eigenvector. To compute the eigenvalues of

a matrix, take det (A− λI) = 0 and solve for λ.

✎ Given A =

[
1 4

3 2

]
, we solve for the eigenvalues λ:

det(A− λI) = 0

det

([
1 4

3 2

]
− λ

[
1 0

0 1

])
= 0

det

([
1− λ 4

3 2− λ

])
= 0

(1− λ)(2− λ)− 12 = 0

λ2 − 3λ− 10 = 0

(λ− 5)(λ+ 2) = 0

λ = 5,−2

• Eigenvectors: a x is an eigenvector of a matrix A if it satisfies the equation Ax = λx

where λ is the corresponding eigenvalue. We solve for the eigenvector x by setting

(A− λI)x = 0.
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✎ Following from the previous example, we set (A− λI)x = 0:

λ = 5[
1− λ 4

3 2− λ

]
x = 0,

[
−4 4

3 −3

]
x = 0, x =

[
1

1

]

λ = −2[
1− λ 4

3 2− λ

]
x = 0,

[
3 4

3 4

]
x = 0, x =

[
−4

3

]
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4 Linear Algebra & Random Variables

Let each Xi for i = 1, 2, . . . n be a Random Variable. We define the following:

• Random vector: vector of random variables. For example, each Xi can be a normally

distributed random variable.

X =


X1

...

Xn


• Expectation of random vector: vector of the expectations of each random variable

Xi.

E[X] =


E [X1]

...

E [Xn]


• Variance Matrix: n by n square matrix in which each i, j entry is cov(Xi, Xj). I

think it is more common to call this Var(X) where X is a vector; the covariance matrix

is Cov(X, Y) where both are vectors. This way they are both consistent with the scalar

case. Note at the bottom of p. 20 there is the same result twice stated as Var and

Cov.
Var(X) ≡ [cov (Xi, Xj)]

≡


var (X1) cov (X1, X2) · · · cov (X1, Xn)

cov (X2, X1) var (X2) · · · cov (X2, Xn)
...

...
. . .

...

cov (Xn, X1) cov (Xn, X2) · · · var (Xn)


Note three key properties of the covariance matrix:

– The matrix is symmetric. Each i, j entry is equal to each j, i entry.

– The diagonals are variances. Each i, i entry is the variance of Xi, and the square

root of each diagonal is the standard deviation of Xi.

– The matrix is positive semidefinite. This means that all of its eigenvalues are

nonnegative.

For example, the following illustrative covariance matrix allows us to identify the vari-

ance of x1 and x2 across the diagonals, and the covariance between x1 and x2 on the

off-diagonals. We see that the variance of x1 is 2.5, the variance of x2 is 10 and the

covariance of x1 and x2 is 3.0:

21



Var(X) =

(
2.5 3.0

3.0 10.0

)
=

(
S2
x1

Sx1x2

Sx1x2 S2
x2

)

• Correlation Matrix: n by n square matrix in which each i, j entry is corr(Xi, Xj).

corr(X) ≡ [corr (Xi, Xj)]

≡


1 corr (X1, X2) · · · corr (X1, Xn)

corr (X2, X1) 1 · · · corr (X2, Xn)
...

...
. . .

...

corr (Xn, X1) corr (Xn, X2) · · · 1


Note the correlation matrix is symmetric, positive semidefinite, and diagonals are 1.

For example, the following illustrative correlation matrix allows us to identify that the

correlation between x1 and x2 is 0.45 by looking at the off-diagonal elements.

Corr(X) =

(
1 0.45

0.45 1

)
=

(
ρ2x1

ρx1x2

ρx1x2 ρ2x2

)

4.1 Manipulations

Let X be a n× 1 column vector of random variables and A be a n× n matrix of constants.

These properties and identities can be useful when deriving estimators.

• E[AX] = AE[X]

• cov(AX) = A cov(X)AT

• var(AX) = A var(X)AT

• XX−1 = I and XX−1Y = Y
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5 Statistics Overview

The section on the statistics glossary is a quick reference to terminology on descriptive

statistics which you have likely encountered before. We make a clear distinction between

the entire population of interest and the sample which we are able to gather data on, and

summarize the notation used for key parameters and statistics as well as their formulas.

5.1 Reference Readings

Probability and Statistics For Engineering and the SciencesProbability and Statistics For Engineering and the Sciences Ch 1.1, 1.3-1.4

Applied Probability and Statistics For EngineersApplied Probability and Statistics For Engineers Ch 6.1

5.2 Reference Videos

• Basic IntroductionBasic Introduction

• Measures of DispersionMeasures of Dispersion

5.3 Definitions

Definitions based on Probability and Statistics For Engineering and the SciencesProbability and Statistics For Engineering and the Sciences.

• Population: collection of all objects that are of interest to a problem. Note that, in

this context, a population does not necessarily have to be composed of people. For

example, a population can be all computer chips produced by a factory.

• Sample: a subset of the whole population of interest. This is often a subset of the

population which data is gathered on.

• Variable: a characteristic that may change between items in the population. For

example, the thickness of a computer chip.

• Inferential Statistics: the branch of statistics that is concerned with generalizing

information from a sample to the actual whole population.

• Parameter: true value that numerically characterizes a population value. This is

often not possible to know exactly in practice.

• Statistic: numerical fact about a sample that approximates a parameter. For example,

the average age computed from a sample to approximate the mean age of a population.
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• Mean: measure of center computed as the arithmetic average of a set. We make the

distinction between the sample mean, which is the arithmetic mean for a subset of the

population, and the population mean, which is the true mean of all elements in the

population.

• Variance: a measure of dispersion computed by finding each observation’s squared

deviation from the mean.

• Standard deviation: average deviation from the mean, which is the square root of

the variance.

5.4 Notation

In IEMS 304, it will be important to identify whether we are referring to true parameters

for the population or to sample statistics. This distinction is made through notation, and

this will be helpful to understand proofs and derivations.

Note: this notation is common but not universally used. Verify the context of use.

Name Parameter Statistic

Mean µ x̄

Total N n

Proportion (percent) p p̂

Standard deviation σ s

Variance σ2 s2

Covariance σij sij

Correlation ρ r

Intercept β0 b0

Slope β1 b1
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5.5 Descriptive Statistics Formulas

Name Population Sample

Mean µ =

∑N
i=1 xi

N
x̄ =

∑n
i=1 xi

n

Variance σ2 =

∑N
i=1 (xi − µ)2

N
s2 =

∑n
i=1 (xi − x̄)2

n− 1

Standard deviation σ =

√∑N
i=1 (xi − µ)2

N
s =

√∑n
i=1 (xi − x̄)2

n− 1

Covariance σij =

∑
(xi − x̄) (yj − ȳ)

n
sxy =

∑
(xi − x̄) (yj − ȳ)

(n− 1)

Correlation ρij =
σij

σiσj

rxy =
sxy
sxsy

5.6 Properties of Summations

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E (Xi)

Cov

(
n∑

i=1

Xi,
m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov (Xi, Yj)

If Xi are independent random variables:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi)
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6 Statistical Tests

To evaluate models in IEMS 304, it will be important to understand which statistical tests

to apply where and how to execute them. Read this section for an overview of statistical

tests and their formulas.

6.1 Reference Readings

Introduction to Statistics and Data AnalysisIntroduction to Statistics and Data Analysis Ch 8.3, 9.2-9.4, 10.2

Probability and Statistics For Engineering and the SciencesProbability and Statistics For Engineering and the Sciences Ch 7-9

Applied Probability and Statistics For EngineersApplied Probability and Statistics For Engineers Ch 7-10

6.2 Reference Videos

• Distribution of Sample MeanDistribution of Sample Mean (12 minutes)

• Properties of EstimatorsProperties of Estimators (6 minutes)

• Normal Distribution and the z-tableNormal Distribution and the z-table (13 minutes)

• Normal Distribution and the z-table Example (Test Scores)Normal Distribution and the z-table Example (Test Scores) (3 minutes)

• A Confidence Interval for the Mean (Potato Chip Example)A Confidence Interval for the Mean (Potato Chip Example) (12 minutes)

• Interpreting Confidence IntervalsInterpreting Confidence Intervals (9 minutes)

• A Confidence Interval for the Mean (t-dist and Sub Example)A Confidence Interval for the Mean (t-dist and Sub Example) (19 minutes)

• Prediction IntervalsPrediction Intervals (16 minutes)

• MSE and BiasMSE and Bias (30 minutes)

• Paired t-testPaired t-test (18 minutes)

• Confidence IntervalsConfidence Intervals (20 minutes)

6.3 Reference Formulas

• Margin of error on the estimate of a sample mean at 5%

E = ±1.96sx̄ = ±1.96
sx√
n
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• 95% Confidence interval on the estimate of a sample mean

x̄± 1.96sx̄ or x̄± 1.96
sx√
n

• 100(1− α)% Confidence interval on the sample mean

x̄± zα/2sx̄ or x̄± zα/2
sx√
n

Where zα/2 is the z score for α/2.

• t-statistic for sample mean

t =
x̄− µx

sx/
√
n
=

x̄− µx

sx̄

The t-statistic follows a t distribution and has n− 1 degrees of freedom.

• Prediction interval for a new observation drawn from the same population

Lower and upper bounds for the interval, respectively

x̄− tn−1,α/2sx
√
1 + 1/n x̄+ tn−1,α/2sx

√
1 + 1/n

• Central limit theorem for sample means states that Z approximately follows a standard

normal distribution for large n

Z =
x̄− µx

σx/
√
n
∼ N(0, 1)

• A chi-square random variable with n− 1 degrees of freedom (df) (written χ2
n−1 ) is

χ2
n−1 =

(n− 1)s2

σ2
=

SST

σ2

6.4 Sums of Squares

We compute different types of error values in order to evaluate different models and to

perform statistical tests. In the equations below, xi,j is the jth measurement taken from the

ith experiment. Additionally, xi is the sum of all xi,j’s for a fixed i, and x.. is the total sum

of all xi,j’s.
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SST =
I∑

i=1

J∑
j=1

(xij − x̄.)
2 =

I∑
i=1

J∑
j=1

x2
ij −

1

IJ
x2
.

SSR =
I∑

i=1

J∑
j=1

(x̄i.− x̄.)
2 =

1

J

I∑
i=1

x2
i. −

1

IJ
x2
.

SSE =
I∑

i=1

J∑
j=1

(xij − x̄i)
2 where xi. =

J∑
j=1

xij x.. =
I∑

i=1

J∑
j=1

xij

SST = SSE + SSR

6.5 Overview of Single Sample Hypothesis Testing

In order to make statistical statements about sample data and parameter estimates, we want

to verify if our data support such claims. To do so, we develop an alternative hypothesis,

Ha and test it against our null hypothesis H0, where the alternative and null hypothesis

must cover all possibilities.

✎ For example, if we estimate a parameter θ, then want to test whether the parameter

is not equal to zero, we define the following hypotheses:

Ha : θ ̸= 0, H0 : θ = 0

✎ If we estimate a parameter β, then want to test whether the parameter is greater than

5, we define the following hypotheses:

Ha : β > 5, H0 : β ≤ 5

We use a test statistic to decide whether to reject H0 or to fail to reject H0, and accept

Ha. Using the test statistic, we compute P-values, the probability of obtaining the sampled

data assuming that the null hypothesis is true. The lower the P-value, the less likely it is

that the null hypothesis holds true for the generated data. We compare the P-value from

the test-statistic to our threshold called the significance level, denoted by α:

• If P ≤ α reject H0 in favor of Ha

• If P > α, fail to reject H0

Common levels for α are often 5% and 1%.

At a high level, the steps for hypothesis testing given data is already available are:

1. Define null and alternative hypotheses
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2. Compute test statistic p-value

3. Compare to threshold significance level

4. Reject or fail to reject null hypothesis

6.6 Z Test on Population Mean

We assume the population follows a normal distribution with known standard deviation. We

test the relationship between the population mean µ and a null value of interest µ0.

Test statistic:

Z =
X̄ − µ0

σ/
√
n

H0 Ha P-Value Determination

µ ≤ µ0 µ > µ0 Area under the standard normal curve to the right of z

µ ≥ µ0 µ < µ0 Area under the standard normal curve to the left of z

µ = µ0 µ ̸= µ0 2 × Area under the standard normal curve to the right of |z|

✎ Example: A computer manufacturer states the length of a piece of hardware is 130

cm. The manufacturer tests 9 pieces from the factory and gets an average length of

131.08 cm. Given that the lengths of the pieces follow a normal distribution with

standard deviation of 1.5cm, is the manufacturer’s statement valid at α = 1%?

1. Define null and alternative hypotheses:

H0 : µ = 130 Ha : µ ̸= 130

2. Compute test statistic and p-value:

z =
x̄− µ0

σ/
√
n

=
x̄− 130

1.5/
√
n

Substitute n = 9 samples and the sample mean of 131.08:

z =
131.08− 130

1.5/
√
9

=
1.08

.5
= 2.16
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Compute P-value using test statistic:

P-value = 2[1− Φ(2.16)] = 2(.0154) = .0308

3. Compare to threshold significance level

P-value = 0.0308 ≥ 0.01

4. Reject or fail to reject null hypothesis:

We fail to reject the null hypothesis.

6.7 One-Sample t Test

When we have a small n, we should use the t-test as the Central Limit Theorem (CLT)

cannot be applied. To apply the one-sample t test, we assume that the data is a random

sample from a normal distribution.

Test statistic:

T =
X̄ − µ

s/
√
n

H0 Ha P-Value Determination

µ ≤ µ0 µ > µ0 Area under the tn−1 distribution, to the right of the computed t

µ ≥ µ0 µ < µ0 Area under the tn−1 distribution, to the left of the computed t

µ = µ0 µ ̸= µ0 2 × Area under the tn−1 distribution, to the right of the computed |t|

✎ Example: Biologists studying evolution collect data on the lengths of birds’ beaks to

test whether the mean differs from the 300-year old mean of 45mm. The average beak

length from their data composed of 20 sampled birds is 59.30 with sample standard

deviation of 9.84. Is the true average today different from the true average from 300

years ago at the 5% level?

1. Define null and alternative hypotheses:

H0 : µ = 45 Ha : µ ̸= 45

30



2. Compute test statistic and p-value:

T =
X̄ − 45

s/
√
n

Substitute n = 20, the sample mean of 59.3 and the sample standard deviation of 9.84:

T =
59.3− 45

9.84/
√
20

= 6.5

Find P-value using test statistic t = 6.5 and the degrees of freedom df = n − 1 =

20− 1 = 19. t-tables can be found online and in Table A.8 in

Probability and Statistics For Engineering and the SciencesProbability and Statistics For Engineering and the Sciences

P-value for t = 6.5 = 2 ∗ 0

3. Compare to threshold significance level

P-value = 0 ≤ 0.05

4. Reject or fail to reject null hypothesis:

We reject the null hypothesis in favor for the alternative hypothesis.

There are multiple other tests in the suggested readings, and we encourage you keep reference

statistical test material within reach so that you may look up other tests when needed.

6.8 Error Types

Even though we develop hypothesis and perform statistical tests, our conclusions of which

hypothesis to accept or reject may be incorrect. We classify these errors as:

• Type I Error: occurs when we reject the null hypothesis H0 when H0 is in fact true.

This is a false positive.

• Type II Error: occurs when we fail to reject the null hypothesis H0 when H0 is in

fact false. This is a false negative.

By using a test procedure where P-value ≤ α results in the rejection of H0, then the proba-

bility of a type I error is α.
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A confusion matrix, as shown below, helps us visually classify the relationship between

rejecting and failing to reject H0 with the actual result of whether or not H0 is true. The

confusion matrix visually demonstrates the correct values, which are the true positives and

true negatives in which our predictions match the the actual values, and false positives (Type

I) and false negatives (Type II) as described previously.

Reject Ho Fail to Reject Ho

H0 Is True Type I Error Correct

α 1− α

(False Positive) (True Negative)

H0 Is False Correct Type II Error

1− β β

(True Positive) (False Negative)
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Notes

1. By Oleg Alexandrov - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2073424

2. By Jhguch at en.wikipedia, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=14524285

3. By ShristiV - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84530726

4. By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=90452334
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