Faculty DirectoryEvan Scott
Adjunct Professor of Biomedical Engineering
Contact
2145 Sheridan RoadSilverman Hall 4613
Evanston, IL 60208
847-467-6719Email Evan Scott
Website
Departments
Affiliations
PhD Program in Interdisciplinary Biological Sciences
Education
Ph.D., Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO
Sc.B. with Honors, Biomedical Engineering, Brown University, Providence, RI
Research Interests
The overall research objective of my laboratory is to investigate the basic inflammatory and immunological processes contributing to diverse pathologies and develop targeted therapeutic approaches using engineering- and materials-based strategies. More specifically, we aim to achieve controlled elicitation or suppression of the immune system via the rational design of delivery systems that target key inflammatory cell populations. We approach this by synthesizing, assembling and testing in vivo a range of novel nanostructures loaded with strategically selected combinations of therapeutics. By validating our unique bioinspired nanomaterials in mouse models for heart disease, cancer, glaucoma, and Chagas disease, we intend to demonstrate therapeutic immunomodulation based on the rational design of synthetic materials.
Selected Publications
1. Du F, Rische S, Li Y, Vincent M, Krier-Burris R, Qian Y, Yuk S, Almunif S, Bochner B, Qiao B, Scott EA. Bioactive multi-protein adsorption enables targeted mast cell nanotherapy. Nat. Nanotechnol. In Press. DOI: 10.21203/rs.3.rs-2468299/v1.
2. Morgun E, Zhu J, Almunif S, Bobbala S, Aguilar MS, Wang J, Conner K, Cui Y, Cao L, Seshadri C, Scott EA‡, Wang C-R‡. Vaccination with mycobacterial lipid loaded nanoparticle leads to lipid antigen persistence and memory differentiation of antigen-specific T cells. eLife. 12:RP87431, 2023. DOI: 10.7554/eLife.87431.2. ‡Corresponding authors.
3. Vincent MP, Navidzadeh J, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell. 2022. DOI: 10.1016/j.ccell.2022.01.006
4. Burke JA, Zhang X, Bobbala S, Frey MA, Furentes CB, Haddad HF, Allen SD, Richardson R, Ameer GA, Scott EA. Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability.2022. Nat Nanotechnol. Epub 20220117. DOI: 10.1038/s41565-021-01048-2. PubMed PMID: 35039683.
5. Du F, Qiao B, Nguyen TD, Vincent M, Bobbala S, Yi S, Lescott C, Dravid VP, Olvera de la Cruz O, Scott EA. Homopolymer self-assembly of poly(propylene sulfone) hydrogels via dynamic noncovalent sulfone-sulfone bonding. Nat. Commun. 2020. DOI: 10.1038/s41467-020-18657-5
6. Karabin NB, Allen S, Kwon H, Firlar E, Wang Q, Shokuhfar T, Shull K, Scott EA. Sustained Micellar Delivery via Inducible Transitions in Nanostructure Morphology. Nat. Commun. 2018. DOI:10.1038/s41467-018-03001-9.
7. Vincent M, Bobbala S, Karabin NB, Frey M, Liu Y, Navidzadeh JO, Stack T, Scott EA. Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets. Nat. Commun. 12, 648. 2021. DOI:10.1038/s41467-020-20886-7.
8. Yi S, Zhang X, Sangji H, Liu L, Allen S, Xiao B, Bobbala S, Braverman C, Cai L, Hecker P, DeBerge M, Thorp E, Temel R, Stupp S, Scott EA. Surface engineered polymersomes for enhanced modulation of dendritic cells during cardiovascular immunotherapy. Adv. Funct. Mat. 2019. DOI: 10.1002/adfm. 201904399.
9. Stack T, Liu YG, Frey M, Bobbala S, Vincent M, Scott EA. Enhancing subcutaneous injection and target tissue accumulation of nanoparticles via co-administration with macropinocytosis inhibitory nanoparticles (MiNP). Nanoscale Horiz. 2021. DOI: 10.1039/D0NH00679C.
10. Stack T, Vincent T, Vahabikashi A, Li G, Perkumas KM, Stamer WD, Johnson M, Scott EA. Targeted Delivery of Cell Softening Micelles to Schlemm’s Canal Endothelial Cells for Treatment of Glaucoma. Small. 2020. DOI:10.1002/smll.202004205.
11. Allen S, Osorio O, Liu YG, Scott EA. Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation. J. Control. Release. 2017; 262:91-103. DOI: 10.1016/j.jconrel.2017.07.026.
12. Bobbala S, Allen SD, Scott EA. Flash nanoprecipitation permits versatile assembly and loading of polymeric bicontinuous cubic nanospheres. Nanoscale. 2018. DOI: 10.1039/c7nr06779h.
13. Vincent MP*, Karabin NB*, Allen SD, Bobbala S, Frey MA, Yi S, Yang Y, Scott EA. The Combination of Morphology and Surface Chemistry Defines the Biological Identity of Nanocarriers in Human Blood. Adv. Therap. 2021. DOI: 10.1002/adtp.202100062.
14. Dowling DJ†‡, Scott EA†‡, Scheid A, Bergelson I, Joshi S, Pietrasanta C, Brightman S, Sanchez-Schmitz G, Van Haren SD, Ninković J, Kats D, Guiducci C, de Titta A, Bonner DK, Hirosue S, Swartz MA, Hubbell‡, JA, Levy O‡. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses, J. Allergy Clin. Immunol. 2017 Mar 14. pii: S0091-6749(17)30242-7. DOI: 10.1016/j.jaci.2016.12.985.
15. Scott EA, Karabin NB, Augsornworawat P. Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu. Rev. Biomed. Eng. 2017 19:1. DOI: 10.1146/annurev-bioeng-071516-044603
Patents
Elbert DL, Scott EA, Nichols MD. “Hydrogel Microparticle Formation in Aqueous Solvent for Biomedical Applications”, US provisional patent application 61/089310 (2008).
Elbert DL, Scott EA, Kaneda M , Wacker BK, Alford SK. “Biomaterials Having Nanoscale Layers and Coatings”, International Application Number PCT/US2007/063142 filed Mar. 2, 2007.