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a b s t r a c t

The evidence that frequency modulated (FM) 50 kHz ultrasonic vocalizations (USVs) reflect a positive
emotional state in rats is reviewed. Positive emotional states in humans are measured by facial-vocal
displays (e.g., Duchenne smiling and laughter), approach behavior, and subjective self-report of feeling
states. In laboratory animals, only facial-vocal displays, along with approach behavior, can be measured.
FM 50 kHz USVs are uniquely elevated by hedonic stimuli and suppressed by aversive stimuli. Rates of
FM 50 kHz USVs are positively correlated to the rewarding value of the eliciting stimulus. Additionally,
playbacks of these vocalizations are rewarding. The neural and pharmacological substrates of 50 kHz
motion
at
uman
requency modulation
opamine
epression

USVs are consistent with those of human positive affective states. By experimentally eliciting FM 50 kHz
USVs, the novel molecular underpinning of positive affect can be elucidated and may be similar to those
in humans. In humans, positive emotional states confer resilience to depression and anxiety, as well
as promote overall health. Using rough-and-tumble play induced hedonic USVs, we have identified that
insulin like growth factor I and NMDA receptor 2B subunit as playing a functional role in positive affective
states. From this research, we have developed a promising new class of antidepressants that is entering
ucleus accumbens
0 kHz calls

phase II clinical trials for the treatment of depression.
© 2010 Published by Elsevier Ltd.
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se social positive affective stimuli (i.e., positive feedback, giving a
mall gift, or watching a video tape eliciting positive affective state).
ositive affective states that are elicited in an experimental setting
y these social stimuli have been shown to increase gregarious-
ess, optimism, and openness to new experiences (Lyubomirsky
t al., 2005; Fredrickson, 2004).

A functional distinction can be made between positive prosocial
ffective states primarily associated with subjective well-being and
onsummatory pleasures. Experimental study of nonsocial hedonic
timuli (i.e., food or regulatory thermal stimulus) showed that these
leasures function primarily to maintain homeostasis. For example,
warm stimulus would be experienced as pleasurable by a cold

ndividual, with the magnitude of the pleasure being proportional
o the ability of the stimulus to return the body to homeostatic
onditions (Cabanac, 1971). This emotionally driven change in sen-
ation associated with a return to homeostasis is referred to as
ensory alliesthesia (Cabanac, 1971, 1992).

Positive affective states, as studied longitudinally in humans,
onfer resilience to depression and anxiety and lead to an increase
n overall health and a decrease in mortality from all causes
Lyubomirsky et al., 2005). The psychological and physical health
enefits of positive affective states appear to be mediated through

ncreased resilience, defined as continued global functioning
espite the presence of stressors. For example, following a major

ife stressor individuals exhibiting greater resilience are less likely
o develop psychological disorders such as anxiety or depression
Fredrickson et al., 2003). Longitudinal studies also showed that
ositive affective states precede the health benefit effect of posi-
ive affect (Lyubomirsky et al., 2005). Therefore, positive affect is
ot simply a secondary consequence of overall good health. Major
ositive and negative life events having little long-term effect on
hese states (Lykken and Tellegen, 1996). Conversely, individuals
ho have low levels of positive affective states are at greater risk of
eveloping anxiety disorders, depression, and global health prob-

ems (Lyubomirsky et al., 2005). Interventions that increase positive
ffective states have been shown to reduce levels of depression and
nxiety (Duckworth et al., 2005).

At the present time, there is a growing positive psychology
ovement that is impacting how we understand human aspi-

ations for a better life as well as animal well-being (for recent
eviews, see McMillan, 2005; Sheldon et al., in press). Affective neu-
oscience can contribute a deeper neuroscientific understanding of
ow the various emotions, including positive ones, are organized in
he brain (Panksepp, 1998). Without a neuroscientific understand-
ng of our diverse affective states, both positive and negative, our
pproach to the treatment of depression and anxiety will remain
ncomplete (Panksepp, in press).

.2. Neurobiology of positive affective states in the human brain

The primary neuroanatomical underpinnings of positive emo-
ional states are associated with the ascending mesolimbic
opamine system and have relied primarily on correlational brain

maging studies (i.e., functional Magnetic Resonance Imaging or
ositron Emission Tomography) and the direct elicitation of pos-
tive affective sates through drug administration or electrical brain
timulation. Brain imaging studies using recall of positive affec-
ive memories (Damasio et al., 2000), listening to positive music
Blood and Zatorre, 2001), male orgasm (Holstege et al., 2003), and
ositive anticipation of monetary reward (Knutson et al., 2001), all
ave been shown to activate aspects of the ascending mesolim-
Please cite this article in press as: Burgdorf, J., et al., Frequency-mod
molecular substrates of positive affect. Neurosci. Biobehav. Rev. (2010

ic dopamine system that includes the ventral tegmental area,
ucleus accumbens, medial prefrontal and orbitalfrontal cortices
Burgdorf and Panksepp, 2006). The euphoric effects of intravenous
mphetamine have been shown to be directly related to dopamine
ctivity in the nucleus accumbens (Drevets et al., 2001; Oswald
 PRESS
avioral Reviews xxx (2010) xxx–xxx

et al., 2005). Direct electrical brain stimulation of the accumbens
has been shown to elicit Duchenne laughter and self-report of pos-
itive affect (Okun et al., 2004). Patients given the opportunity to
self-administer electrical stimulation to the nucleus accumbens
(then called the nucleus accumbens septi as a ventral extension
of the lateral septum), or to an area at or near the ventral tegmen-
tal area, repeatedly self-administered this stimulation and reported
that the stimulation elicited a positive affective state (Heath, 1963,
1972).

It is important to note that this type of emotional positive
affect is distinctly different than the pleasures of sensory affects.
The feeling is more one of eager anticipation, enthusiasm and
euphoria rather than discrete pleasures such as those evoked by
sensory stimulation induced by food, massage or orgasm. The name
we chose to help reflect the concurrent behavioral and psycho-
logical functions of positively valenced appetitive behavior was
EXPECTANCY and SEEKING (Panksepp, 1981, 1982, 1998), which
is quite similar to the concept of ‘wanting’ which is thought
to mediate ‘incentive salience’ (Robinson and Berridge, 2000).
However, there is a substantial difference between ‘incentive
salience’, which is fundamentally a sensory-perceptual process,
and SEEKING, which is that (since each emotional system per-
forms sensory-perceptual gating functions), as well as an integrated
motor-action process (a coherent emotional response that allows
organisms to pursue all of the resources needed for survival)
(Panksepp and Moskal, 2008). The affect of SEEKING is tightly linked
to the primary-process instinctual-action aspects of an organism
and to the sensory inputs that the system harvests.

1.3. Molecular underpinnings of positive affective states

The molecular mechanisms that are involved in the regulation
of positive affective states are largely unknown. The best under-
stood mechanisms describe brain dopamine functions in appetitive
motivations and endogenous brain opioids in mediating various
sensory pleasures and bodily satisfactions, including social rewards
(Burgdorf and Panksepp, 2001; Panksepp, 1981). Another example
of a molecular mechanism involved in the regulation of positive
affective states are endogenous cannabinoids, which modulate
many emotional processes (Moreiram and Lutz, 2008), including
the modulation of sensory pleasures as well as social ones such
as physical play (Trezza et al., 2010). In order to develop a more
comprehensive affective neuroscience strategy for identification of
new hedonic pathways, we need to consider the criteria that would
allow us to study molecular processes in animal models.

In order to establish a causal link between a molecular mecha-
nism associated with positive affect, the following conditions must
be fulfilled: (1) concentrations of key molecules associated with
the mechanism under investigation must be significantly altered
in critical brain regions following positive affective stimuli; (2)
these molecular changes will change in the opposite direction or
not change significantly following presentation of negative affec-
tive stimuli; (3) direct injection of the target molecules or agonists
will produce a positive affective state; (4) and, pharmacological
antagonism of the key molecules will decrease positive affective
states. Thus far, no molecular mechanism has been characterized
could meet all of these four criteria.

Endogenous opioids acting on �-receptor s (endomorphins,
met-enkephalin, and �-endorphin) and dopamine have been the
most extensively examined (reviewed in Burgdorf and Panksepp,
2006). Mu(�)-opiate and dopamine levels in the mesolimbic pos-
ulated 50 kHz ultrasonic vocalizations a tool for uncovering the
), doi:10.1016/j.neubiorev.2010.11.011

itive affect circuit have been found to be positively correlated 171

with the euphoric effect of exercise and amphetamine, respectively 172

(Boecker et al., 2008; Drevets et al., 2001). Intravenous administra- 173

tion of �-opiate and dopamine agonists produced positive affective 174

states in humans (Drevets et al., 2001; Zacny et al., 1994). Mu(�)- 175
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Table 1
Non-affective hypotheses of 50 kHz USVs emission with their rebuttal.

I. 50 kHz USVs are an artifact of locomotor activity-induced thoratic
compressions (Blumberg, 1992).

Only 10% of 50 kHz were coincident with thoratic
compressions, and could be dissociated from locomotion
(Panksepp and Burgdorf, 2003).

II. 50 kHz USVs are a non-affective contact call (Schwarting et al., 2007)
interactions (Burgdorf et al., 2008).

Flat 50 kHz calls appear to be a contact call, occurring at the highest rates
during non-positive affective social interactions. However, FM 50 kHz calls
appeared to be selective for positive affective social.

III. 50 kHz calls are evident during aggression (Berridge, 2003). 50 kHz calls occur primarily before the onset of aggression, and the vast
majority the 50-kHz calls were of the non-affective flat variety (Panksepp and
Burgdorf, 2003; Burgdorf et al., 2008)

IV. 50 kHz calls reflect a non-positive affective “wanting” state (Schwarting
et al., 2007).

50 kHz USVs were increased in the anticipation of delivered reward, which in
humans has been shown to elicit a positive affective state (Knutson et al.,
2001). However, during extinction bursts or “frustrative non-reward” such
appetitive behavior decreased rates of 50 kHz calls and increased rates of
aversive 22 kHz calls (Burgdorf et al., 2000) “frustrative non-reward” such
appetitive behavior decreased rates of 50 kHz calls and increased rates of
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V. Adult and infant rat ultrasonic calls reflect a state of high arousal that is not
specific to positive affective states (Bell, 1974).

piate antagonists has been shown to blunt the positive affective
tate elicited by exercise and alcohol (Janal et al., 1984; Davidson
t al., 1999), and dopamine antagonists decreased positive affec-
ive states associated with psychostimulants (Jönsson et al., 1971;
ewton et al., 2001; Romach et al., 1999) and could produce a state
f dysphoria (Voruganti et al., 2001). However, aversive stimuli
lso increase �-opiate and dopamine levels in the nucleus accum-
ens (Tidey and Miczek, 1996; Marinelli et al., 2004). Therefore, the
-opiate and dopamine systems are not completely specific to posi-

ive emotions. Part of their hedonic action may be due to alleviation
f negative feelings.

. Measuring positive affective states in laboratory animals

In order to establish that an animal behavior reflects a pos-
tive affective state, several criteria must be met. In humans,
ositive affective states are measured primarily via subjective self-
eport and behaviorally by facial/vocal displays such as felt- or
uchenne-smiling (Ekman et al., 1990). Therefore, in laboratory
nimal experiments, where we can rely only on empirical observa-
ions with no possibility of semantic reports of subjective states, a
ositive affective state should be expressed as facial or vocal dis-
lays with the predicted changes in approach/avoidance behaviors,
nd especially by certain central states in animals, as provoked by
ocal brain stimulation, whether chemical or electrical (Panksepp,
998; Ikemoto, 2010) to serve as rewards in various learning
asks. In humans, positive affective states are elicited primarily by
ewarding social interaction, food, and exercise, and are decreased
y negative affective stimuli (Csikszentmihalyi and Hunter, 2003;
ahneman and Krueger, 2006; Stone et al., 2006). Therefore, in

aboratory animals, the same categories of positive affective (appet-
tive) stimuli should increase the facial/vocal displays and aversive
timuli should decrease them. Finally, what is known about the
eurobiological mechanisms of the facial/vocal displays in ani-
als should be consistent with the neurobiological mechanisms

f human positive affective states. To date, only two such animal
ehaviors meet all of these criteria; emission of ultrasonic vocaliza-
ions (USVs) that are discussed below, and hedonic taste reactivity
eviewed by Berridge et al. (2008). In addition, from a more strictly
euroscientific perspective, the gold standard that direct stimula-
Please cite this article in press as: Burgdorf, J., et al., Frequency-mod
molecular substrates of positive affect. Neurosci. Biobehav. Rev. (2010

ion of certain brain networks should have rewarding properties
Panksepp, 1998), has been well documented ever since the work
f Olds and Milner (1954), validated psychologically with human
rain stimulation studies (Heath, 1972, also see Volker et al., this

ssue).
aversive 22 kHz calls (Burgdorf et al., 2000)
Highly arousing aversive stimuli such as predatory odor, foot shock, and bright
light, decrease rates of 50 kHz calls, whereas rewarding stimuli increase rates
of 50 kHz calls (Knutson et al., 2002a,b)

We seek to develop a vocal output measure of positive affective
states, such as the way that screaming expresses pain-perception
in animals. Research involving laboratory rodents expressing emo-
tional vocalizations in the ultrasonic range has been proposed as
potential non-semantic ‘self-report’ measures when animals are in
positive affective state (Brudzynski, 2007; Knutson et al., 2002a,b;
Panksepp et al., 2002).

2.1. 50 kHz social vocalizations in rats

Fifty kilohertz ultrasonic vocalizations (50 kHz USVs) have been
shown to reflect a positive affective state in rats, especially the
frequency-modulated variety. The less complex “flat” variety, may
be a social-exploration/contact signaling mechanism that is less
indicative of positive affect. Rewarding social interactions (i.e.,
mating and rough-and-tumble play in juveniles), anticipation of
food, and action of euphorigenic drugs of abuse increased num-
ber of emitted 50 kHz USVs (Burgdorf et al., 2000, 2001a, 2007,
2008; Panksepp and Burgdorf, 2000), whereas aversive stimuli such
as social defeat, frustrative non-rewarding situations, sickness-
inducing doses of lithium chloride, and foot shock all decreased
the number of 50 kHz USVs (Burgdorf et al., 2000, 2001b, 2008). The
rewarding value of the stimuli eliciting positive affective states was
positively correlated with the rates of 50 kHz USVs elicited by posi-
tive social, drug, and electrical brain stimulation rewards (Burgdorf
et al., 2007, 2008). Mu(�) opiate and dopamine agonists, as well as
electrical brain stimulation of the mesolimbic dopamine system,
also increased rates of 50 kHz USVs in rats (Burgdorf et al., 2000,
2007).

Additionally, alternative non-hedonic interpretations of the
emission of 50 kHz USVs (e.g., non-positively valenced arousal,
non-positively valenced seeking behavior, or non-affective social
contacts) are not supported by the available experimental data
(for details, see Table 1). Further, this measure has already proved
useful in studies of drug addiction characterizing resilient and non-
resilient rats in studies of the neuroanatomical regions that are
impacted most by stressors that promoted depression (Kanarik
et al., in press; Mällo et al., 2009). Indeed, tickling of rats, a way to
quickly evoke positive social affect in rats (Burgdorf and Panksepp,
2006; Panksepp and Burgdorf, 2000).
ulated 50 kHz ultrasonic vocalizations a tool for uncovering the
), doi:10.1016/j.neubiorev.2010.11.011

2.2. 22 kHz aversive vocalizations in adult rats and isolation calls 257

(35–40 kHz) in infants 258

Adult 22 kHz USVs and infant isolation calls (35–40 kHz) may 259

represent a negative emotional state associated with human anxi- 260
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ty and/or depressive states (e.g., aversive facial expressions such
s crying, and behavioral inhibition (Knutson et al., 2002a,b)).
espite significant sonographic differences between these adult
nd infant vocalizations, both of them share similar characteristics
n aversive and dangerous situations. In humans, these affective
tates are often elicited by social loss and anticipation of perceived
hreats (Knutson et al., 2002a,b). In rats, infant isolation 35–40 kHz
SVs are best elicited by separating the pup from the mother.
2 kHz USVs are best elected by social defeat and the presence
f a predator (Blanchard and Blanchard, 1989; Brunelli and Hofer,
007; Panksepp et al., 2007). Emission of 22 kHz USVs is strongly
elated to avoidance behavior and freezing during social defeat
esting (Panksepp et al., 2007). Environments paired with drugs
ausing aversive states also elicit 22 kHz USVs. Rates of emitted
alls are positively correlated with drug-induced conditioned place
voidance (Burgdorf et al., 2001b). Anxiolytic benzodiazepines and
ntidepressants reduce rates of 22 kHz calls and 35–40 kHz USVs
Carden and Hofer, 1990; Covington and Miczek, 2003).

Using social defeat as a method to elicit negative emotional
tates associated with 22 kHz USVs, we conducted a transcrip-
omic analysis of gene expression in the periaqueductal gray, one
f the regions found to be critical for the generation of nega-
ive affect and 22 kHz USVs in rats (Kroes et al., 2007). These
tudies revealed that mRNA expression of genes associated with
cetylcholine metabolism and receptor function was altered in
he PAG following social defeat. This finding is consistent with
he previously reported role of tegmental cholinergic system in
he generation of 22 kHz USVs (Brudzynski, 2001). Carbachol has
een shown to be the best elicitor of aversive vocalizations in both
ats, cats, and squirrel monkeys (Brudzynski, 2007; Lu and Jür-
ens, 1993) Recent studies in humans demonstrated that depressed
atients have altered cholinergic transmission (Wang et al., 2008),
nd scopolamine has been shown to be a potent a rapid antidepres-
ant (Furey and Drevets, 2006).

.3. Selective breeding for differential rates of 50 kHz and 22 kHz
SVs

In order to further elucidate the molecular mechanisms that are
nvolved in the regulation of positive and negative emotional states,
Please cite this article in press as: Burgdorf, J., et al., Frequency-mod
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ats were selectively bred for differential rates of hedonic 50 kHz
SVs (Burgdorf et al., 2005, 2008). Animals selectively bred for

ow rates of 50 kHz USVs (Low Line) had a concomitant increase in
2 kHz USVs and showed elevated levels of anxiety in the open field,

n the social contact test, and in infant distress vocalization tests
unit mRNA and protein levels were upregulated in the frontal and posterior cortex
ed by an agonist dose of the NR2B preferring glycine site partial agonist GLYX-13
d ***P < .0001.

compared to randomly bred animals (Burgdorf et al., 2008). Con-
versely, animals selectively bred for high rates of 50 kHz USVs (High
Line) had a concomitant decrease in the 22 kHz USVs, showed lower
levels of anxiety in the open field test, decreased rates of aggression,
and increased sensitivity to sucrose reward compared to randomly
breed animals (Burgdorf et al., 2008). These animals have been
selectively bred for 18 generations to date and have displayed sta-
ble differences in USVs from adolescence through adulthood (3
months).

Studies on the molecular mechanisms associated with the USV
patterns of the High Line and Low Line animals to date are consis-
tent with depression-resilient and depression-prone phenotypes as
discussed above. For example, High Line animals exhibited higher
levels of the �-opiate acting Met-enkephalin-like immunoreac-
tivity in the hypothalamus and ventral tegmental area and other
related limbic structures (Burgdorf et al., 2008). Injections of
the �-opiate agonist DAMGO into the ventral tegmental area
increased rates of 50 kHz USVs and was rewarding to the animals
(Burgdorf et al., 2007). Low Line animals exhibited higher levels of
cholecystokinin-like immunoreactivity in the posterior neocortex.
Cholecystokinin (CCK) content in the posterior cortex was elevated
by social defeat, and was correlated with 22 kHz USVs rate of the
defeated animal (Panksepp et al., 2004). It has also been shown that
social defeat, which elevates levels of 22 kHz USVs, increased CCK-
like immunoreactivity in cortical microdialysates (Becker et al.,
2001) and CCK administration promoted social defeat-induced
behaviors including 22 kHz USVs (Becker et al., 2007).

3. Using hedonic USVs to uncover the novel molecular
substrates of positive affect

Genes specific to positive affective states can be uncovered by
examining transcripts that are upregulated by hedonic play, but not
aversive social defeat (Burgdorf et al., 2010a). To this aim, we have
developed an in-house fabricated focused microarray platform,
which can detect families of genes that are specifically upregu-
lated following hedonic rough-and-tumble play when coupled with
appropriate bioinformatics tools, These mRNA changes are cor-
roborated by quantitative qrtPCR and quantitative protein assays
(Radioimmunoassay, ELISA, Western blots). These studies identi-
ulated 50 kHz ultrasonic vocalizations a tool for uncovering the
), doi:10.1016/j.neubiorev.2010.11.011

fied both the insulin like growth factor I (IGFI) and the NMDA 342

NR2B receptor subunit as being specifically upregulated by hedonic 343

rough-and-tumble play. 344

Function studies with IGFI and NR2B demonstrate that they play 345

a regulatory role in positive affective states (Burgdorf et al., 2010a). 346
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ntracerebroventricular (icv) injections of IGFI increased hedo-
ic USVs in an IGFI receptor (IGFIR) dependent manner, whereas

cv injections of an IGFIR specific small interfering RNA (siRNA)
ecrease rates of hedonic USVs. Peripheral injections of the NMDAR
R2B-preferring glycine site partial agonist, GLYX-13, increases

ates of hedonic USVs, whereas the NR2B receptor antagonist, ifen-
rodil, decreases rates of hedonic USVs. Microinjections of GLYX-13

nto the medial prefrontal cortex (but not dorsal control sites)
ncreases rates of hedonic USVs (Fig. 1).

The modulation of glutamatergic transmission has become a
ajor target in the development of antidepressants for biogenic-

mine anti-depressant resistant patients (Hashimoto, 2009;
achado-Vieira et al., 2009; Skolnick, 2009). NMDAR is a validated

arget for depression and GLYX-13 is entering phase II clinical
rials for the treatment of depression. Recent human clinical
tudies with known NMDAR antagonists CP-101,606 and ketamine
ave found significant reductions in depression scores in patients
ith treatment-resistant depression. Ketamine was also shown to
roduce a robust antidepressant effect in patients with treatment-
esistant bipolar disorder (Zarate et al., 2006). Although these
rugs produced clinically unacceptable dissociative side effects,
he efficacy in these studies was significant (>50% response rate in
esistant subjects, fast onset of action, and long duration of effect up
o 7 or more days following a single dose), and confirmed NMDAR
s a novel target of high interest in the treatment of depression.
ike ketamine, GLYX-13 produces a robust anti-depressant effect
n the rat Porsolt test 20 min and 2 weeks post-injection (Burgdorf
t al., 2010b). However, unlike ketamine or CP-101,606, GLYX-13
hows no sedative or dissociative side effects clinically or in
re-clinical models.

. Conclusions

Affective neuroscience approaches to brain emotional systems
rovide convergent methodologies to decipher molecular mech-
nisms for the generation of a variety of positive affective states.
e are confident that indices such as 50 kHz USVs express positive

motional states because all of the brain sites localized in SEEKING
ircuits that generate these sounds also sustain self-stimulation
ehavior (Burgdorf et al., 2007), a critical criterion for positive affect
rocesses of the brain. The implications of these developments

n psychiatric medicine are becoming more evident. For instance,
epressive disorders can be ameliorated by promoting various pos-

tive emotions, whether psychobehaviorally or pharmacologically.
The discovery that 50 kHz ultrasonic vocalizations (50 kHz

SVs) reflect a positive affective state in rats allows this mea-
ures to be used effectively to monitor hedonic states in animal
odels of addictions (Panksepp et al., 2002) as well as various

re-clinical models of psychiatric disorders characterized by imbal-
nce mood states, especially depression. Our working hypothesis is
hat these vocalizations directly reflect bursting of ventral tegmen-
al dopamine neurons within the mesolimbic reward-SEEKING
opamine circuits. Our prediction is that 50 kHz “chirps” are
mitted in close relationship to the bursting of dopamine cells,
neurophysiological condition that promotes active dopamine

elease.
In addition, by studying diverse forms of positive pro-social

motional states – LUST, CARE, and PLAY – the neuroanatomical
asis and molecular mechanisms of various types of positive affect
an now be understood. These finding have direct implications for
ew therapeutics in biological psychiatry as well as psychother-
Please cite this article in press as: Burgdorf, J., et al., Frequency-mod
molecular substrates of positive affect. Neurosci. Biobehav. Rev. (2010

peutic approaches to achieve affective homeostasis. The use of
ffective neuroscience approaches has led to the discovery that the
R2B NMDA receptor subunit plays functional role in hedonic USVs.
LYX-13 (an NR2B preferring glycine site partial agonist) is in phase
clinical trials for the treatment of depression.
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